1. Compute the following values of ϕ :
2. $\phi(20)=8$
3. $\phi(89)=88$
4. $\phi(1048576)=524288$
5. $\phi\left(p^{n}\right)$ for any prime number $p=(p-1) p^{n-1}$
6. Compute the following GCDs. Use the Extended Euclidean algorithm and show your work:
7. $\operatorname{GCD}(100,35)$

x	y	100
x	$-2 y$	35
$-x$	$+3 y$	30

2. $\operatorname{GCD}(256,35)$

x	y	256
x	$-7 y$	35
$-3 x$	$+22 y$	11
$16 x$	$-117 y$	2

Note that $-117 \equiv 139(\bmod 256)$, and $35 * 139=1+256 * 19$.

3. $\operatorname{GCD}(1111111111111,11111111)$

There is a trick to this problem: the arguments are strings of 13 and 81 s , respectively. After one step of the Euclidean algorithm you will have strings of 8 and 51 s ; the length of the arguments are two successive Fibonacci numbers, and they remain that way until the arguments are 1 and 1.
3. Prove that $\operatorname{GCD}(\mathrm{a}+\mathrm{b}, \mathrm{b})=\mathrm{GCD}(\mathrm{a}, \mathrm{b})$

According to the Euclidean algorithm, the first step is as follows:
x
x

	$a+b$
y	b
$-y$	a

Another way to prove this: any number that divides into both \mathbf{a} and \mathbf{b} also divides into $(\mathbf{a}+\mathbf{b})$, and any number that divides into b and $(\mathbf{a}+\mathbf{b})$ also divides into $(\mathbf{a}+\mathbf{b})-\mathbf{b}=\mathbf{a}$. Hence the greatest common divisor of (\mathbf{a}, \mathbf{b}) is also the greatest common divisor of (\mathbf{a} $+b, b)$.
4. Compute the following inverses or powers:

1. $3^{-1}(\bmod 256)=171$
2. $3^{-1}(\bmod 1000)=667$
3. $21^{-1}(\bmod 35)=$ does not exist $(21$ and 35 have a factor in common)
4. $3^{999}(\bmod 100)=3^{-1}=67$
5. Give an example of an odd number n where $\phi(n)<n / 2$.

Since $\phi(n)=n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \ldots\left(1-1 / p_{k}\right)$, we just need a number composed of enough primes that this product falls below $\mathrm{n} / 2$.

If we choose primes 3,5 , and 7 , we get $n=105$ with $\phi(n)=48$.
6. Write all the elements of \mathbb{Z}_{21}, and also write their squares. What are the square roots of 1 ?

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{2 0}$
1	4	16	4	1	16	16	1	4	16	4	1

7. Find a number X that is congruent to $5(\bmod 37)$ and congruent to $7(\bmod 13)$.

Using the Chinese remainder theorem we have:
$13^{-1}(\bmod 37)=20$
$37^{-1}(\bmod 13)=6$
$5 \cdot 20 \cdot 13+7 \cdot 37 \cdot 6=2854$ is congruent to $5(\bmod 37)$ and $7(\bmod 13)$.

Supplemental 560 Problems:

1. Let G be a group with operation \bullet, and $\mathrm{H} \subseteq \mathrm{G}$ is a subset of G . If H is closed under the - operation, is it also a group? Why or why not?

No. For example, let G be the integers under addition, and H be the positive integers. H is closed under addition, but is not a group.
2. Let G be a finite group, and $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$. Define the three sets:

$$
\begin{aligned}
& A=\left\{a, a^{2}, a^{3}, \cdots a^{n}=e\right\}, \text { the set of powers of } A ; \\
& b A=\left\{b a, b a^{2}, b a^{3}, \cdots b a^{n}=b \cdot e=b\right\} \\
& c A=\left\{c a, c a^{2}, c a^{3}, \cdots c a^{n}=c \cdot e=c\right\}
\end{aligned}
$$

1. Prove that cA and bA are either completely disjoint or completely equal.

If these two sets have any element in common, then cak=bai for some integers k and j . Hence $\mathrm{c}=$ bail $^{-\mathrm{k}}$, and so caanything is a member of bA , and baanything is in cA . Hence cA and bA have no elements in common, or all elements in common.
2. Prove that $\mathrm{cA}=\mathrm{bA}$ if and only if $\mathrm{b}^{-1} \mathrm{c} \in \mathrm{A}$

Again, if $\mathrm{cA}=\mathrm{bA}$ then $\mathrm{c}=\mathrm{ba}^{-\mathrm{k}}$, and so $\mathrm{b}^{-1} \mathrm{c}=\mathrm{a}^{-\mathrm{k}} \in \mathrm{A}$
3. Give an example of a group with two disjoint bA and cA

For example, take the additive group \mathbb{Z}_{100}, with $\mathrm{A}=\{20,40,60,80,0\}$.
we can let $\mathrm{b}=1$ and $\mathrm{c}=2$, so $\mathrm{bA}=\{21,41,61,81,1\}$ and $\mathrm{cA}=\{22,42,62,82,2\}$.
3. A group element $a \in G$ is called a generator if every element of G is a power of a; that is to say, if $A=\left\{a, a^{2}, a^{3}, \cdots a^{n}=e\right\}$ then $A=G$. Under addition modulo 26,3 is a generator while 4 is not.

1. Give an example of a group with no generators.

As shown in class, \mathbb{Z}_{8} has no generators. Neither does the set of bytes under XOR.
2. Give an example of a group where every element is a generator except for the identity.

The additive group \mathbb{Z}_{7} has this property, because it has 7 elements, and the order of every element has to divide the size of the group.
4. Suppose $\mathrm{n}=\mathrm{pq}$ is the product of two primes. If there are only two square roots of 1 $(\bmod n$,$) then prove that one of the primes is 2$.

Hint: if $A=p^{-1}(\bmod q)$ and $B=q^{-1}(\bmod p)$, then any number of the form $(\pm A p+ \pm B q)$ is a square root of 1 . How can there be only two numbers of this form?

Basically you must observe that there are four expressions of the form ($\pm \mathrm{Ap}+ \pm \mathrm{Bq}$), and only two roots of 1 , so two of these expressions must be congruent.

We either have $\mathrm{Ap}+\mathrm{Bq} \equiv \mathrm{Ap}-\mathrm{Bq}(\bmod \mathrm{n})$, meaning that $\mathrm{Bq} \equiv-\mathrm{Bq}(\bmod \mathrm{n})$; or $\mathrm{Ap}+\mathrm{Bq}=-\mathrm{Ap}+\mathrm{Bq}(\bmod \mathrm{n})$. In either case you have a nonzero value congruent to its own additive inverse. This is only possible if n is even: you have some number K that is not a multiple of n, but 2 K is a multiple of n .

