EECE 405/560 --- Arithmetic assignment

- 1. Compute the following values of φ :
 - 1. φ(20) = 8
 - φ(89) = 88
 - 3. $\phi(1048576) = 524288$
 - 4. $\phi(p^n)$ for any prime number $p = (p-1)p^{n-1}$
- 2. Compute the following GCDs. Use the Extended Euclidean algorithm and show your work:

1.	GCD(100,35)	
х		100
	У	35
х	-2y	30
-X	-2y +3y	5
2.	GCD(256,35)	
х		256
	У	35
х	-7y	11
-3x	+22y	2
16x	-117y	1

Note that $-117 = 139 \pmod{256}$, and $35^{*}139 = 1 + 256^{*}19$.

3. GCD(1111111111111,1111111)

There is a trick to this problem: the arguments are strings of 13 and 8 1s, respectively. After one step of the Euclidean algorithm you will have strings of 8 and 5 1s; the length of the arguments are two successive Fibonacci numbers, and they remain that way until the arguments are 1 and 1.

3. Prove that GCD(a+b, b) = GCD(a, b)

According to the Euclidean algorithm, the first step is as follows:

x		a+b
	У	b
x	-у	а

Another way to prove this: any number that divides into both **a** and **b** also divides into (**a+b**), and any number that divides into b and (**a+b**) also divides into (**a+b**)-**b=a**. Hence the greatest common divisor of (**a**,**b**) is also the greatest common divisor of (**a**,**b**).

- 4. Compute the following inverses or powers:
 - 1. $3^{-1} \pmod{256} = 171$
 - 2. $3^{-1} \pmod{1000} = 667$
 - 3. $21^{-1} \pmod{35} = \text{does not exist} (21 \text{ and } 35 \text{ have a factor in common})$
 - 4. $3^{999} \pmod{100} = 3^{-1} = 67$
- 5. Give an example of an odd number n where $\varphi(n) < n/2$.

Since $\phi(n) = n(1-1/p_1)(1-1/p_2)...(1-1/p_k)$, we just need a number composed of enough primes that this product falls below n/2.

If we choose primes 3,5, and 7, we get n=105 with $\phi(n)$ =48.

6. Write all the elements of \mathbb{Z}_{21} , and also write their squares. What are the square roots of 1?

1	2	4	5	8	10	11	13	16	17	19	20
1	4	16	4	1	16	16	1	4	16	4	1

7. Find a number X that is congruent to 5 (mod 37) and congruent to 7 (mod 13).

Using the Chinese remainder theorem we have:

 $13^{-1} \pmod{37} = 20$ $37^{-1} \pmod{13} = 6$

 $5 \cdot 20 \cdot 13 + 7 \cdot 37 \cdot 6 = 2854$ is congruent to 5 (mod 37) and 7 (mod 13).

Supplemental 560 Problems:

1. Let G be a group with operation ●, and H⊆G is a subset of G. If H is closed under the ● operation, is it also a group? Why or why not?

No. For example, let G be the integers under addition, and H be the positive integers. H is closed under addition, but is not a group.

2. Let G be a finite group, and $a,b,c\in G$. Define the three sets:

A = {a, a^2 , a^3 , \cdots $a^n=e$ }, the set of powers of A; bA = {ba, ba^2 , ba^3 , \cdots $ba^n=b \cdot e=b$ } cA = {ca, ca^2 , ca^3 , \cdots $ca^n=c \cdot e=c$ }

1. Prove that cA and bA are either completely disjoint or completely equal.

If these two sets have any element in common, then ca^k=ba^j for some integers k and j. Hence c=ba^{j-k}, and so ca^{anything} is a member of bA, and ba^{anything} is in cA. Hence cA and bA have no elements in common, or all elements in common.

2. Prove that cA=bA if and only if $b^{-1}c \in A$

Again, if cA=bA then c=ba^{j-k}, and so $b^{-1}c = a^{j-k} \in A$

3. Give an example of a group with two disjoint bA and cA

For example, take the additive group \mathbb{Z}_{100} , with A = {20, 40, 60, 80, 0}. we can let b=1 and c=2, so bA={21,41,61,81,1} and cA={22,42,62,82,2}.

- A group element a∈G is called a *generator* if every element of G is a power of a; that is to say, if A= {a, a², a³, ··· aⁿ=e} then A=G. Under addition modulo 26, 3 is a generator while 4 is not.
 - 1. Give an example of a group with no generators.

As shown in class, \mathbb{Z}_8 has no generators. Neither does the set of bytes under XOR.

2. Give an example of a group where every element is a generator except for the identity.

The additive group \mathbb{Z}_7 has this property, because it has 7 elements, and the order of every element has to divide the size of the group.

4. Suppose n=pq is the product of two primes. If there are only two square roots of 1 (mod n,) then prove that one of the primes is 2.

Hint: if $A=p^{-1} \pmod{q}$ and $B=q^{-1} \pmod{p}$, then any number of the form $(\pm Ap + \pm Bq)$ is a square root of 1. How can there be only two numbers of this form?

Basically you must observe that there are four expressions of the form $(\pm Ap + \pm Bq)$, and only two roots of 1, so two of these expressions must be congruent.

We either have $Ap+Bq = Ap-Bq \pmod{n}$, meaning that $Bq = -Bq \pmod{n}$; or $Ap+Bq=-Ap+Bq \pmod{n}$. In either case you have a nonzero value congruent to its own additive inverse. This is only possible if n is even: you have some number K that is not a multiple of n, but 2K *is* a multiple of n.