EE 480F

Review Summary

May 5, 2005

1 Modular Arithmetic

1.1 Groups

A Group is any set G with some operation defined on them, such that these four rules hold:

- 1. Closure: if $g \in G$ and $h \in G$, then $gh \in G$.
- 2. Associativity: For $f, g, h \in G$, f(gh) = (fg)h.
- 3. Identity: There is an identity $1 \in G$, so that g1 = 1g = g.
- 4. Inverses: Every element $g \in G$ has an inverse $g^{-1} \in G$, such that $gg^{-1} = g^{-1}g = 1$.

Examples of groups: the set of real numbers \mathbb{R} under addition; the set of nonzero real numbers $\mathbb{R} - \{0\}$ under multiplication; the set of integers \mathbb{Z} under addition.

1.2 The integers modulo N

Two integers are congruent modulo N if their difference is a multiple of N. For example, 22 and 30002 are congruent modulo 10. We write $22 \equiv 30002 \pmod{10}$.

The set \mathbb{Z}_N is a set of N elements $\{0, 1, 2, \dots, N-1\}$, with addition and multiplication defined modulo N.

 \mathbb{Z}_N is a group under addition, but not under multiplication. The set \mathbb{Z}_N^{\times} is the subset of \mathbb{Z}_N containing all the elements with multiplicative inverses. For example, $\mathbb{Z}_8^{\times} = \{1, 3, 5, 7\}$. A number a has a multiplicative inverse modulo N, if a and N have no common factors.

1.3 The Euclidean Algorithm

The Euclidean algorithm is used to find the greatest common divisor (GCD) of two numbers N and M. It is also used to find the inverse of one number modulo another. What the algorithm finds is the smallest positive integer K such that this equation:

$$Na + Mb = K$$

...has a solution for some integers a and b. The number K is the GCD of N and M. If the GCD is 1, the extra numbers a and b tell you the inverses: a is the inverse of $N \pmod{M}$; b is the inverse of $M \pmod{N}$.

The algorithm works as follows: start with the system of equations

$$\begin{array}{rcl} x & = & N \\ y & = & M \end{array}$$

Assume M < N. Suppose N = kM + R: then subtract k times the bottom equation from the top, to get

$$y = M$$
$$x - ky = R$$

...Now R < M. Repeat this process for as long as the right side of the equations are nonzero. Eventually you will have an equation of the form Ax + By = R. R is the GCD, and if the GCD is 1, then $AN \equiv 1 \pmod{M}$.

2 The RSA algorithm

2.1 Euler's Phi function

The number $\phi(N)$ is the size of \mathbb{Z}_N^{\times} , or the number of integers from $1 \cdots N$ with no factors in common with N. For example, $\mathbb{Z}_{15}^{\times} = \{1, 2, 4, 7, 8, 11, 13, 14\}$, so $\phi(15) = 8$.

The formula for $\phi(N)$ is

$$\phi(N) = N \cdot \prod_{p|N} (1 - 1/p)$$

The productis taken over every distinct prime p that divides N. Example: $\phi(100) = 100 \cdot (1 - 1/2) \cdot (1 - 1/5) = 40$.

2.2 Euler's Generalization of Fermat's Little Theorem

The theorem is very simple to state: if a, N have no factors in common,

$$a^{\phi(N)} \equiv 1 \pmod{N}$$

This says that as we multiply and exponentiate modulo N, the exponents will behave like an additive group modulo $\phi(N)$.

An example application: what is the last digit of $m = 7^{1234567}$? Well, we want to know $m \pmod{10}$, and the formula tells us $\phi(10) = 4$. $7^4 \equiv 1$, so

$$7^{1234567} = 7^{4 \cdot K + 3} = (7^4)^K \cdot 7^3 \equiv 1^K \cdot 7^3$$

So the last digit is a "3", because $7^3 = 343$.

2.3 The RSA algorithm

Factoring is hard (see below), so for two appropriately chosen primes p and q, we can compute N = pq but nobody can determine p or q from N. We can also compute $\phi(N) = (p-1)(q-1)$, but nobody else can.

In other words, if we know the factors of N we know how exponents behave modulo N. Other people don't.

The RSA algorithm: pick exponents e and d that are inverses modulo $\phi(N)$. Encryption is

$$C = M^e \pmod{N}$$

and decryption is

$$C^d \pmod{N} \equiv (M^e)^d \equiv M^{ed=1+k\phi(N)} \equiv M \cdot 1^k \equiv M$$

3 Other Topics

3.1 Diffie-Hellmann-Merkle key exchange

The discrete log problem is difficult: if I have a large prime p, and a generator g (meaning that every element of \mathbb{Z}_p^{\times} can be written as g^a for some a), then it is easy to compute $H = g^h \pmod{p}$, but difficult to derive h given H. Exponentiation becomes a one-way function.

So, given a public prime p and generator g, Alice and Bob can each choose a random secret h_A, h_B , and compute their exponents $H_A = g^{h_A} \pmod{p}$, $H_B = g^{h_B} \pmod{p}$.

If Alice and Bob want to communicate, Bob can raise Alice's public number to the power of his secret exponent: $k = H_A^{h_B} = g^{h_A h_B} \pmod{p}$.