Final Exam

Practice Test
December 7, 2006

1. (a) Explain how the RSA algorithm works.
(b) Show an example of RSA using primes $p=19, q=11$. This means

- Choose an encryption key and the corresponding decryption key.
- Encrypt the plaintext number $P=2$.

2. (a) What is a group?
(b) Prove: in a group, if $a b=a c$, then $b=c$.
(c) Provide an example of arithmetic $\bmod N$, where $a b=a c$ but $b \neq c$.
3. (a) Explain the ElGamal encryption algorithm.
(b) Provide an example using the prime $p=19$, and generator $g=2$ That means: generate a public key, and use it to encrypt the plaintext $P=3$.
4. Write out the elements of the group \mathbb{Z}_{30}^{\times}. Name three elements of \mathbb{Z}_{30}^{\times} equal to their own inverses.
5. Compute:

- $\phi(50)$
- $\phi(1024)$
- $\phi(77)$
- The last 3 digits of $7^{5122005}$

6. Compute the following inverses:

- $16^{-1} \quad(\bmod 31)$
- $7^{-1}(\bmod 100)$

7. (a) Suppose you have a large number $n=p q$. Now suppose I have the job of computing $3^{2^{M}}(\bmod n)$. That is, I have to start with the number 3 , then square it M times.
This requires M squarings. Explain how I could do it faster if I knew the factorization of n.
(b) An example: suppose I take the number 3 and square it 15 times. What is this number modulo 100 ?
