Final Exam

Practice Test with some answers

December 11, 2006

I have left out some answers for the questions that just ask, "what is a QPRNF?" Those can be found in your notes or in the course material.

1. (a) Explain how the RSA algorithm works.
(b) Show an example of RSA using primes $p=19, q=11$. This means

- Choose an encryption key and the corresponding decryption key.
- Encrypt the plaintext number $P=2$.

The trick here is choosing a nice, small value e so encrypting is easy.
First, you need e and d with $e d \equiv 1(\bmod \phi(N))$, with $\phi(N)=$ $(p-1)(q-1)=180$. Pick a random e. How about 3? No, because it isn't invertible mod 180 . Neither is 2 , or 4 , or 5 , or 6.7 is the smallest possible exponent.
So if $e=7$, What is d ? Using the Euclidean algorithm:

$$
\begin{aligned}
\phi & =180 \\
e & =7 \\
\phi-25 e & =5 \\
-\phi+26 e & =2 \\
3 \phi-77 e & =1
\end{aligned}
$$

Always check: $77 e=(77)(7)=539 \equiv 179$ - wait, that's not 1 . Of course, the inverse of e is negative 77. Careful with those signs. $-77 \equiv 103$, and $(103)(7)=721 \equiv 1$. So $e=7, d=103$.
To encrypt, compute $c=2^{7} \quad(\bmod N)=128 \quad(\bmod 209)=128$. We chose e small enough that we didn't even have to mod anything.
2. (a) What is a group?
(b) Prove: in a group, if $a b=a c$, then $b=c$.

Proof: a has an inverse a^{-1} due to property 4. So $a^{-1}(a b)=$ $a-1(a c)$. Thanks to associativity (property 2), we can rearrange the parentheses: $\left(a^{-1} a\right) b=(a-1 a) c$, so $1 b=1 c$ and $b=c$.
(c) Provide an example of arithmetic $\bmod N$, where $a b=a c$ but $b \neq c$.

Wait, we just proved this, and now we want to provide a counterexample? Not exactly: we proved something was true in a group.
\mathbb{Z}_{n} is not a group under multiplication. To get a group you must strike out a bunch of numbers. For example, $\mathbb{Z}_{n}=\{0,1,2,3,4,5\}$ while $\mathbb{Z}_{n}^{\times}=\{1,5\}$.
For a counterexample, try \mathbb{Z}_{6} with some of these unwanted numbers: $3 \times 2 \equiv 3 \times 4 \equiv 0 \quad(\bmod 6)$, and yet $2 \not \equiv 4$.
3. (a) Explain the ElGamal encryption algorithm.
(b) Provide an example using the prime $p=19$, and generator $g=2$ That means: generate a public key, and use it to encrypt the plaintext $P=3$.
We choose h_{A} (secret,) then public $H_{A}=2^{h_{A}} \quad(\bmod 19)$. That's part one. If we do not choose h_{A} carefully, then we cannot compute part two all the way.
Encryption means choosing a random r and computing $P\left(H_{A}\right)^{r}$. That part has to be easy, so we want a small H_{A}. How to get a small H_{A} ? Trial and error is one possibility. Look at the powers of $2 \bmod 19: 1,2,4,8,16,13,7,14,9,18,17,15,11,3,6,12,5,10,1$. Okay, so $2^{1} 3 \equiv 3$, and 3 is small.
Great, we choose $h_{A}=13$, so $H_{A}=3$. Encryption is $P \times 3^{r}$, and let's choose a small $r=2$. $C=3^{3}=27 \equiv 8$.
4. Write out the elements of the group \mathbb{Z}_{30}^{\times}. Name three elements of \mathbb{Z}_{30}^{\times} equal to their own inverses.
The wrong way to do this is to compute the inverse of each element of \mathbb{Z}_{30}^{\times}. The right way is to observe that if $a=a^{-1}$, then $a^{2} \equiv 1$.
So first compute the elements of \mathbb{Z}_{30}^{\times}, then write out their squares:

a	1	7	11	13	17	19	23	29
a^{2}	1	19	1	19	19	1	19	1

...so 1, 11, 19 and 29 are self-inverses.
5. Compute:

- $\phi(50)=50(1-1 / 2)(1-1 / 5)=20$
- $\phi(1024)=1024(1-1 / 2)=512$
- $\phi(77)=77(1-1 / 7)(1-1 / 11)=(7-1)(11-1)=60$
- The last 3 digits of $7^{5122005}$

3 digits means $\bmod 1000 . \phi(1000)=400$, and so we reduce the exponent mod 400:

$$
7^{5122005} \equiv 7^{4} \quad(\bmod 1000)
$$

...so take the last 3 digits of 49^{2}.
6. Compute the following inverses:

- $16^{-1}(\bmod 31)$

$$
\begin{aligned}
N & =31 \\
N & =16 \\
N-a & =15 \\
-N+2 a & =1
\end{aligned}
$$

Check: $2(16)=32 \equiv 1 \quad(\bmod 31)$.

- $7^{-1}(\bmod 100)$

$$
\begin{array}{rlr}
N & =100 \\
a & =7 \\
N-14 a & =2 \\
-3 N+43 a & =1
\end{array}
$$

Check: $43(7)=301 \equiv 1$.
7. (a) Suppose you have a large number $n=p q$. Now suppose I have the job of computing $3^{2^{M}}(\bmod n)$. That is, I have to start with the number 3 , then square it M times.
This requires M squarings. Explain how I could do it faster if I knew the factorization of n.
(b) An example: suppose I take the number 3 and square it 15 times. What is this number modulo 100 ?

The trick is to use Fermat's Little Theorem. To compute $3^{2^{M}}(\bmod n)$, reduce the exponent $2^{M} \quad(\bmod \phi(n))$.
For example, $3^{2^{15}}(\bmod 100)$: we take $2^{15}=32768(\bmod 40)$. This is easy, because $32768=32000+600+160+8 \equiv 8$. So $3^{2^{15}} \equiv 3^{8}$ (mod 100). The last two digits are 61.

