1. A cipher is closed if encrypting twice with two separate keys is equivalent to encrypting only once with a third key. For example, performing the shift cipher twice with shifts of 3 and 2 is the same as shifting once with a shift of 5 .

Determine if the following ciphers are closed:
(a) Vigen`ere encryption

Closed
Length of equivalent key $=\operatorname{LCM}\left(\mathrm{l}_{1}, \mathrm{l}_{2}\right)$
$K E Y_{e q}=K E Y 1$ KEY1 ... KEY1 + KEY2 KEY2 ... KEY2 (mod 26)
Example: KEY1 = "BAD" KEY2="TO"
Length of equivalent key $=\operatorname{LCM}\left(\mathrm{l}_{1}=3, \mathrm{l}_{2}=2\right)=6$
KEY ${ }_{\text {eq }}=$ BADBAD + TOTOTO $(\bmod 26)=V P X T U S$
(b) The affine cipher

Closed

$$
\begin{aligned}
& y=a_{1} x+b_{1}(\bmod 26), \quad \operatorname{gcd}\left(a_{1}, 26\right)=1 \\
& y=a_{2} x+b_{2}(\bmod 26), \quad \operatorname{gcd}\left(a_{2}, 26\right)=1
\end{aligned}
$$

If we plug in second equation in first one:
$y=a_{1}\left(a_{2} x+b_{2}(\bmod 26)\right)+b_{1}(\bmod 26)$
$y=\left(a_{1} a_{2}\right) x+\left(a_{1} b_{2}+b_{1}\right)(\bmod 26)$
Then

$$
\begin{gathered}
y=a_{e q} x+b_{e q}(\bmod 26), \operatorname{gcd}\left(a_{e q}, 26\right)=1 \\
a_{e q}=a_{1} a_{2} \\
b_{e q}=a_{1} b_{2}+b_{1}
\end{gathered}
$$

(c) Playfair cipher

Not closed
Playfair cipher is a permutation of pairs, but it never permutes a pair of a character to itself. However, if Playfair cipher is used twice with different keys, it is possible that a pair or a character maps to itself. Therefore, there is no equivalent Playfair cipher for this combination. Thus, it is not closed.
(d) The Vatsyayana cipher from art 45 of the Kama Sutra

Not closed

Same as (c).
2. Is it a good thing or a bad thing for a cipher to be closed?

It is not a good thing that cipher to be closed, because deciphering of 2 times ciphered text will be easier by brute force to find an equivalent key instead of 2 separate keys.
3. Consider the following permutations:

$$
\begin{aligned}
& f=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
B & A & D & C & F & E & H & G
\end{array}\right) \\
& g=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
D & E & F & G & H & A & B & C
\end{array}\right)
\end{aligned}
$$

Write the following permutations as a product of disjoint cycles:
(a) f
(AB) (CD) (EF) (GH)
(b) g

(ADGBEHCF)

(c) fg

$$
f g=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
C & F & E & H & G & B & A & D
\end{array}\right)=\left(\begin{array}{llll}
A & C & E & G
\end{array}\right)(B \quad F)(D H)
$$

(d) $g f$

$$
g f=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
E & D & G & F & A & H & C & B
\end{array}\right)=(A E)(B \quad D \quad F \quad H)(C \quad G)
$$

(e) $f^{2} g$

$$
f^{2} g=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
D & E & F & G & H & A & B & C
\end{array}\right)=g=\left(\begin{array}{lllllll}
A & D & G & B & E & H & C
\end{array}\right)
$$

f^{2} is swapping 2 times, so it will be identical permutation.
(f) f^{-1}

$$
f^{-1}=f=(A B)(C D)(E F)(G H)
$$

Swapping and its reveres are the same.
(g) $f^{-1} g f$

$$
f^{-1} g f=f g f=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
F & C & H & E & B & G & D & C
\end{array}\right)=g=\left(\begin{array}{llllll}
A & F & G & D & E & B
\end{array} C H\right)
$$

4. Suppose we are permuting the set $S=\{1,2,3, \cdots N\}$. If $1<m \leq N$, Let $f=(1,2, \cdots m-1)$ and $g=(1,2$, $\cdot \mathrm{m})$. What permutation is fg^{-1} ?

$$
\begin{aligned}
& f=\left(\begin{array}{ccccccc}
1 & 2 & \ldots . & m-2 & m-1 & m & \ldots \\
2 & 3 & \ldots & m-1 & 1 & m & \ldots
\end{array}\right) \\
& g^{-1}=\left(\begin{array}{ccccccc}
2 & 3 & \ldots & m-1 & m & 1 & m+1 \ldots \\
1 & 2 & \ldots & m-2 & m-1 & m & m+1 \ldots
\end{array}\right) \\
& f g^{-1}=\left(\begin{array}{ccccccccc}
2 & 3 & \ldots & m-1 & m & 1 & m+1 & \ldots & N \\
2 & 3 & \ldots & m-1 & 1 & m & m+1 & \ldots . & N
\end{array}\right)=\left(\begin{array}{ll}
1 & m
\end{array}\right)
\end{aligned}
$$

Supplementary 560 Questions

1. Let f and g be permutations of $\mathrm{S}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$. We will say that $f \equiv g$ if the permutation fg^{-1} maps D to D and E to E . That is to say, $f \equiv g$ if the permutation fg^{-1} leaves the last two elements alone.

Prove:
(a) $f \equiv f$
$f f^{-1}=I$ then this permutation leaves all elements including last two. Therefore $f \equiv f$
(b) If $f \equiv g$ then $g \equiv f$
$f g^{-1} . g f^{-1}=I$ so $g f^{-1}$ is inverse of $f g^{-1}$. If a permutation leaves last two elements, the inverse of that will do the same. Therefore, if $f \equiv g$ then $g \equiv f$
(c) If $a \equiv b$ and $b \equiv c$ then $a \equiv c$

If $a b^{-1}$ leaves last two elements, and $b c^{-1}$ leaves the last two elements, $a b^{-1} b c^{-1}=a c^{-1}$ leaves the last two elements either. Therefore, if $a \equiv b$ and $b \equiv c$ then $a \equiv c$
2. Let f and g be permutations of $S=\{A, B, C, D, E\}$. Determine if the following are equivalence relations. If not, provide a counterexample.
(a) $f \equiv g$ if $f g=g f$.
I) $f \equiv f$

$$
f=f \rightarrow f f=f f \rightarrow f \equiv f \text { Satisfied }
$$

II) If $f \equiv g$ then $g \equiv f$

$$
f g=g f \rightarrow g f=f g \rightarrow g \equiv f \text { Satisfied }
$$

III) If $a \equiv b$ and $b \equiv c$ then $a \equiv c$

$$
\begin{aligned}
& \left\{\begin{array}{l}
a b=b a \\
b c=c b
\end{array} \quad \rightarrow a c=c a \quad\right. \text { Not satisfied } \\
& \begin{array}{l}
a=(A B) \\
b=(C D) \rightarrow a b=b a=(A B)(C D), ~
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } \left.\begin{array}{rl}
a c & =\left(\begin{array}{ll}
A B & E
\end{array}\right) \\
c a & =(A E B
\end{array}\right) \rightarrow a c \neq c a
\end{aligned}
$$

NOT an equivalence relation.
(b) $f \equiv g$ if $f=g^{k}$ for some integer k.
I) $f \equiv f$

$$
f=f^{k} \rightarrow f \equiv f \text { Satisfied }
$$

II) If $f \equiv g$ then $g \equiv f$

$$
f=g^{k} \nrightarrow g=f^{k} \text { NOT Satisfied }
$$

Counter example:

$g=(A B)(C D E), f=g^{2}=(C E D), f^{k}=(C D E)$ or $(C E D)$ or $I \rightarrow g \neq f^{k}$
NOT an equivalence relation.
(c) $f \equiv g$ if some h exists with $f=h g h^{-1}$.
I) $f \equiv f$

$$
f=f \rightarrow f=I f I^{-1} \rightarrow f \equiv f \text { Satisfied }
$$

II) If $f \equiv g$ then $g \equiv f$

$$
f=h g h^{-1} \rightarrow h^{-1} f h=h^{-1} h g h^{-1} h \rightarrow g=\left(h^{-1}\right) f\left(h^{-1}\right)^{-1} \rightarrow g \equiv f \text { Satisfied }
$$

III) If $a \equiv b$ and $b \equiv c$ then $a \equiv c$

$$
\left\{\begin{array} { l }
{ a = h b h ^ { - 1 } } \\
{ b = k c k ^ { - 1 } }
\end{array} \rightarrow \left\{\begin{array}{l}
b=h^{-1} a h \\
c=k^{-1} b k
\end{array} \rightarrow c=k^{-1} h^{-1} a h k \rightarrow c=(h k)^{-1} a(h k) \quad\right.\right. \text { Satisfied }
$$

An equivalence relation
3. If \equiv is an equivalence relation, and x is a thing, the equivalence class of x is the set of all things equivalent to x (and also to each other). For example, under coterminality of angles, the equivalence class of 45° is the set $\left\{\cdots-675^{\circ},-315^{\circ}, 45^{\circ}, 405^{\circ}, 765^{\circ}, 1125^{\circ} \cdots\right\}$ For the equivalence relation of problem 1, describe the equivalence class of the cycle $f=(A B C D E)$. How big is it?

Any g that $f g^{-1}$ maps D to D and E to E is equivalence for f :

$$
f=\left(\begin{array}{ccccc}
A & B & C & D & E \\
B & C & D & E & A
\end{array}\right), \quad f g^{-1}=\left(\begin{array}{ccc}
\ldots & D & E \\
\ldots & D & E
\end{array}\right)
$$

Then

$$
g^{-1}=\left(\begin{array}{lll}
\ldots & D & E \\
\ldots & C & D
\end{array}\right)
$$

And in g^{-1} all permutations for 3 first elements will be $3!=6$
All 6 conditions of g will be equivalence for f

