
Unix, Standard I/O and command line arguments

For any programming assignments I give you, I expect a program that reads and writes
to standard input and output, taking any extra parameters from the command line. This
handout explains how to do that. I have also appended a small appendix of useful Unix
commands.

I recommend that you go to a Unix terminal and type in and run all of the examples in
the gray boxes. You can do this from the Terminal application on a MacIntosh, or from a
terminal window in GNU/Linux or any Unix-like operating system, from Cygwin in
Windows maybe, or by connecting to bingsuns using SSH.

Overview
Most programming languages feature “standard,” or default, input and output channels
where I/O goes unless otherwise specified. In C, the functions scanf(), gets() and
getchar() read from standard input, while printf(), puts() and putchar() write
to standard output. In Tcl, the gets and puts commands read and write standard input
and output. In awk and perl, you just sort of use the force and your program receives a
line of input from somewhere. Letʼs stick with C for the time being.1

When a program runs from a terminal, standard input is usually the userʼs keyboard
input, while standard output is displayed as text on-screen. Unix and Unix-like
operating systems allow you to intercept the standard I/O channels of a program to
redirect them into files or other programs. This gives you the ability to chain many
simple programs to do something genuinely useful.

Redirection
In a terminal shell, the redirection operators > and < use a file for standard input or
output in place of the keyboard and screen. To see this, try typing this tr command,
which flops the case of anything you type in:

bash-3.2$ tr A-Za-z a-ZA-Z

Hello World!
hELLO wORLD!
[Ctrl-D to quit]

1 In both C and Tcl, these channels are actually named stdin and stdout. So instead of writing
printf(“Hello”) you can equivalently write fprintf(stdout,“Hello”).

Now, create a text file called foo.txt in your home directory and redirect it into tr:

First, we dump the contents of foo.txt into standard input; then, we pour the standard
output into a file that we can read later (using the cat command.)

Piping
The vertical pipe operator | (shift-backslash on most keyboards) tells your terminal to
take the standard output of one program and patch it into the standard input of a second
program. Letʼs use tr to replace every space in a file with a newline character2:

bash-3.2$ cat foo.txt
I am the mother of all things, and all things should wear a
sweater.
bash-3.2$ tr A-Za-z a-ZA-Z < foo.txt
i AM THE MOTHER OF ALL THINGS, AND ALL THINGS SHOULD WEAR A
SWEATER.
bash-3.2$ tr A-Za-z a-ZA-Z < foo.txt > output.txt
bash-3.2$ cat output.txt
i AM THE MOTHER OF ALL THINGS, AND ALL THINGS SHOULD WEAR A
SWEATER.

bash-3.2$ tr "[:space:]" "\n" < foo.txt
I
am
the
mother
of [... etc etc]
bash-3.2$ tr "[:space:]" "\n" < foo.txt | sort
I
a
all
all [... etc etc]
bash-3.2$ tr "[:space:]" "\n" < foo.txt | sort | tail -1
wear

2 In some Unix shell environments, you have to surround everything in quotes to prevent confusion. On
MacOS X, no quotes are needed around the [:space:] argument, but they are necessary on bingsuns.

The final tr | sort | tail command outputs the one word in the file that appears
last in the dictionary. Make special note of what we didnʼt do in this example: we didnʼt
write a computer program to do this. Many data processing tasks can be achieved
simply by piping an input file through a series of rudimentary Unix commands. For
another example, try this command chain to get a frequency count of words in a file:

Command line arguments
Notice that some of our commands have arguments to them, like the -c in uniq -c.
These provide input parameters to your program separate from the input and output
streams. This will be particularly useful to us, because ciphers require two inputs: the
stuff to encrypt (the plaintext), and a key. It will make sense to provide the key as a
command line argument, and process the plaintext as standard input.

To handle command line arguments in C, declare your main function to have two
arguments, int argc and char ** argv. The variable argv is an array of
character strings holding the command line, with argv[0] holding the name of the
command. The value argc tells you how many arguments are waiting for you (to be
more precise, it tells you the array length of argv). Type in and run this program:

bash-3.2$ tr -s "[:space:]" "\n" < foo.txt | sort | uniq -c

#include<stdio.h>

int main(int argc, char ** argv) {
 	 int i;
	 for(i=0; i<argc; i++)
 	 printf(“Argument %d is %s\n”, i, argv[i]);
	 return 0;
}

bash-3.2$ gcc -o foo foo.c
bash-3.2$./foo -r -x 333
Argument 0 is ./a.out
Argument 1 is -r
Argument 2 is -x
Argument 3 is 333

Note that argument 3 is not a number, but he string “333”. If you need to get a number
into your program, use the atoi() function (“array to integer”) to convert the string.

In Tcl, there is also an array called argv that can be used in the same way.

Our two channels are stdin, stdout and stderr---three,
three channels

There is also a third standard I/O channel called stderr, or standard error, to which
you can print error messages. In C, use fprintf(stderr, “stuff”) to print to standard error.

Like standard output, stderr dumps to the screen, but it is a distinct channel. This is
nice because you can write output to stdout and error messages to stderr, and if a
user redirects your programʼs output to a file, only the output will go to the file while the
error messages will spill onto the screen. This prevents a programʼs useful output from
becoming contaminated with wacky status messages.

Please do it this way
Unless it is absolutely necessary, write your programs to get input data from stdin and
write output to stdout, and to get all configuration info, such as keys, from command
line arguments. This maximizes your programʼs utility, allowing us to feed it input from
other commands, and to process its output using other commands.

Bear in mind, however, that it is a security risk to type in key data on the command line.
The commands you type in the terminal are saved to a history file, and whoever reads
that file can get your key. Also, if multiple people are logged in to a single computer,
one can often see what commands other people are executing (try typing ps -fa on
bingsuns, for example.)

#!/usr/bin/tclsh
foreach a $argv {puts "Argument $a"}

bash-3.2$ chmod u+x args.tcl
bash-3.2$./args.tcl one two
Argument one
Argument two

Command summary

Here is a short list of useful Unix commands, in no particular order:

Command Description

cat file1 file2 file3... Concatenates a bunch of files and outputs them. The
command cat file will print out the file to stdout.

ls

cd directory

pwd

Lists the files in your directory. The command ls -l will
also dump out file sizes, permissions, and creation dates.

Changes to a directory. Typing cd without an argument
will change you to your home directory.

Print Working Directory: tells you where you are.

chmod pattern file Changes permissions. This command is useful to make
a computer program executable (chmod u+x program).
The pattern consists of some combination of u, g and o
(user, group and other), then a plus or minus to add or
revoke permissions, and then r, w and x (read write and
execute.) So chmod ugo+r * will let everyone in the
world read all of your stuff---never do this.

Note that if a program is executable, you execute it by
typing its name as a command---however, you may have
to provide a path name, such as ./foo instead of foo

sort file Sorts a file line-by-line. You can also call sort without any
filename and pipe in standard input instead. The sort
command sorts lexicographically, but sort -n will sort the
output numerically instead.

tr pattern pattern The tr command translates characters in the first pattern
to characters in the second pattern. Youʼre better off
looking at the tr manual page (type man tr) to see
examples of this in use.

grep pattern The grep command scans input for all lines that match a
given pattern. The patterns are expressed in a hilariously
complex language that deserve their own lecture or
sequence of lectures. Again, check out the manual page
(type man grep) to see some examples.

Command Description

man command Displays the manual page for this command.
Manual pages are mildly informative, but not useful as
tutorials. If you want to know how to use a Unix
command you are often better off Googling for examples
(or in the case of some commands, like awk, buying the
book.)

whoami Tells you who you are.

cp file1 file2

mv file1 file2

rm file

Copies file1 to file2.

Moves (renames) file1 to file2.

Erases file. Be careful with this command. Unix makes it
easy to erase everything in a directory (rm *) or to erase
everything in all subdirectories (rm -r *) or to erase
everything on the entire system that you have permission
to erase (rm -r /).

mkdir directory
rmdir directory

Creates and deletes a directory (folder.)

pico textfile Pico is a user-friendly text editor. It has an interface
similar to most PC text editors, and it always shows you a
list of commands and their hotkeys at the bottom of the
screen: most useful are the keys to save (Ctrl-O) and
exit (Ctrl-X).

vi textfile Vi is a non-friendly text editor. It shows you nothing, and
the commands are obscure and modal. To start typing,
first enter an editing mode by hitting the a key or the i key
or the A key or the I key or the S key or the s key. Do not
use the arrow keys on your keyboard at this time, or
something horrible will happen. To quit vi, type the
imperative quit sequence :q (or :q! to override
warnings.) To save and quit, type :wq, or type an
uppercase Z twice (ZZ is an abbreviation for “save and
quit.”) You can only type these commands haver hitting
ESC to break out of editing mode.

Vi is the “visual” version of a program called ed. Ed is
basically vi except you canʼt see anything.

Command Description

more file Displays a long file one screen at a time, allowing you to
page through it by typing the Space bar. Hitting <enter>
will scroll through the file one line at a time. There is also
a more sophisticated version of more, called less.

head -Number file
tail -Number file

Head displays the first Number lines from the file, while
tail displays the last. If no number argument is provided,
these commands default to 10.

tclsh Enters the Tcl shell, from which you can run Tcl scripts.
For more information about Tcl, consult the handout on
Tcl programming

gcc file.c
gcc -o file file.c

Compiles a C program. If you do not provide an output
file name with the -o output, the executable is usually
named a.out.

Gcc automatically creates executable files, so chmod is
not needed to prepare them for execution.

