
Chapter 1 
Measurement 
 
1. SI Units 
 

Length, mass, and time play a fundamental role in describing nature. These are the 
three quantities on which we base our measurements. Length, mass, and time are called 
dimensions. We use the International System of Units (also called the metric system or 
the SI system, for the French term Système International). In mechanics, we need to 
define only three units, 
 

unit of length meter (m) 
unit of mass kilogram (kg) 
unit of time second (s) 

 
((Note)) 

MKS units: meter, kilogram, second 
CGS units: centimeter, gram, second 

 
(a) Meter 

The meter is the length equal to the distance traveled by light in vacuum, in a time of  
 

458,792,299

1
. 

 
Note that the velocity of light is c = 2.99792458 x 108 m/s. 
 
(b) Kilogram (kg) 

The SI standard of mass is a platinum-iridium cylinder shown in the figure. The 
cylinder is kept at the International Bureau of Weights and Measures near Paris and 
assigned a mass of 1 kilogram. Accurate copies have been sent to other countries.  
 



 
 
(c) Second (s) 

A cesium (-beam) atomic clock (or cesium-beam frequency standard) is a device that 
uses as a reference the exact frequency of the microwave spectral line emitted by atoms 
of the metallic element cesium, in particular its isotope of atomic weight 133 ("Cs-133"). 
The frequency, f0= 9,192,631,770 hertz (Hz = cycles/second), provides the fundamental 
unit of time, which may thus be measured by cesium clocks. 
 

Period T0= 1/f0 = 1/(9,192,631,770) s = 1.0878 x 10-11 s = 0.11 ns. 
 

One second is the duration of 9,192,631,770 periods  
 
The time measurement accuracy is 2 nanoseconds per day or one second in 1,400,000 
years. It is the most accurate realization of a unit that mankind has yet achieved.  
 

 



 
 
0.1 ns/day = 3.65 x 10-8 sec/1 year = 1 sec/27.4 million years 
 
Link:  
 
NIST-F1 Cesium Fountain Atomic Clock. The Primary Time and Frequency 
Standard for the United States 
 

http://tf.nist.gov/cesium/fountain.htm 
 
((Atomic clock)) 
 

 
 

NIST-F1, the nation's primary time and frequency standard, is a cesium fountain atomic 
clock developed at the NIST laboratories in Boulder, Colorado. NIST-F1 contributes to 
the international group of atomic clocks that define Coordinated Universal Time (UTC), 
the official world time. Because NIST-F1 is among the most accurate clocks in the world, 
it makes UTC more accurate than ever before. 

The uncertainty of NIST-F1 is continually improving. In 2000 the uncertainty was about 
1 x 10-15, but as of the summer of 2005, the uncertainty has been reduced to about 5 x 10-

16, which means it would neither gain nor lose a second in more than 60 million years! 
The graph below shows how NIST-F1 compares to previous atomic clocks built by NIST. 
It is now approximately ten times more accurate than NIST-7, a cesium beam atomic 



clock that served as the United State's primary time and frequency standard from 1993-
1999. 

 

Current time: if you want to know the current time of New York, go to the Web site 

http://www.timeanddate.com/worldclock/city.html?n=179 

 
2. SI base units and SI derived units 
 

There are two kinds of SI units; (a) the SI based units, and (b) the SI derived units 
 
(a) The SI base units 
 

Meter (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and 
candela (cd). 

 
(b) The SI derived units 

Units for other quantities, such as velocity, acceleration, force, energy, and power, are 
derived from these basic units. 

 
Area   m2 
volume  m3 
Velocity:  m/s 
Angular velocity rad/s 
Acceleration:  m/s2 
Force   kg m/s2 (=N, Newton) 
Energy   kg m2/s2 (= J, Joule) 
Power   kg m2/s3 (= W, Watt) 
Pressure  N/m2  (= Pa, Pascal) 

 
((Note)) 
The international system of units (from the NIST Web site) 

http://physics.nist.gov/cuu/Units/units.html 
 



 

 
 
 
3. Conventional units 

We frequently use prefixes to obtain units of a more convenient size. Here are 
examples of commonly encountered prefixes. 

 



 
 
 
4. Unit Conversion 
 

We sometimes encounter data in units other than those used in SI system. In this case 
we need to convert the units to the SI system, using conversion factors. 
 
((Example)) 

We consider a speed of 65 miles/hour. 
 
1 mile = 1610 m. 
1 hour = 60 min = 60 x 60=3600 s. 
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Density 
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((Table)) 



 
 
5. The use of Mathematica for the evaluation of physical quantities 
 
It is very convenient to use the Mathematica for the evaluation of physical quantities. The 
numerical values can be obtained from the Web-site of NIST. 
 
Link: Fundamental Physical constant 

http://physics.nist.gov/cuu/ 
 
((Matematica)) 



Physconst  u  1.66053886 1027, cal  4.19, atm  101.3,

g  9.80665, G  6.6742867 1011, NA  6.02214179 1023,

R  8.314472, me  9.1093821545 1031, u  1.660538782 1027,

eV  1.602176487 1019, qe  1.602176487 1019,

ge  2.0023193043622, kB  1.3806504 1023,

rB  0.52917720859 1010, B  927.40091523 1026,

N  5.05078324 1027, c  2.4263102175 1012,

c  2.99792458 108, 0  12.566370614 107,

0  8.854187817 1012, mn  1.674927211 1027,

mp  1.672621637 1027, h  6.62606896 1034,

—  1.05457162853 1034, SB  5.670400 108,

z0  376.730313461, 0  2.06783366752 1015,

Rk  25 812.80755718, Mea  5.9736 1024, Rea  6.372 106 ,

Msun  1.988435 1030, Rsun  6.9599 108, Mmoon  7.3483 1022,

Rmoon  1.783 106, ly  9.4605 1015, pc  30.857 1015,

AU  1.49597870 1011, mile  1.609344 103, hour  3600,

min  60, gram  103, cm  102
u  1.660541027, cal  4.19, atm  101.3, g  9.80665,

G  6.674291011, NA  6.02214 1023, R  8.31447,

me  9.109381031, u  1.66054 1027, eV  1.60218 1019,

qe  1.602181019, ge  2.00232, kB  1.38065 1023,

rB  5.291771011, B  9.27401 1024, N  5.05078 1027,

c  2.426311012, c  2.99792 108, 0  1.25664 106,

0  8.854191012, mn  1.67493 1027, mp  1.67262 1027,

h  6.626071034, —  1.05457 1034, SB  5.6704 108,

z0  376.73, 0  2.06783 1015, Rk  25 812.8,

Mea  5.97361024, Rea  6.372 106, Msun  1.98844 1030,

Rsun  6.9599108, Mmoon  7.3483 1022, Rmoon  1.783 106,

ly  9.46051015, pc  3.0857 1016, AU  1.49598 1011,

mile  1609.34, hour  3600, min  60, gram 
1

1000
, cm 

1
100


 



u=atomic mass unit

cal=4.19 J, 1 atm=101.3 kPa, g=Acceleration due to gravity (m/s2) 

G=gravitational constant  (N m2/kg2), 
 NA=Avogadro number
 R=Gas constant  (J/mol K),
 me=mass of electron  kg
 qe=Charge of electron (C), 
 ge=electron g factor
kB=Boltzmann constant (J/K)
rB=Bohr radius (m), 
mN=Nuclear magneton (J/T)
lc=Compton wavelength (m)
c=velocity of light (m), 
m0=Magnetic constant

e0=electric constant, 
mn=mass of neutron (kg)

 mp=mass of proton (kg),
 h=Planck constant
 Ñ=Dirac constant,

Planck mass=mpl  — c
G

,

Planck time = tpl =  ÑG
c5 12

,

Planck length=lpl   — G
c3 

12
,

sSB=Stefan-Boltzmann constant (W/m2 K 4),
z0 =impedance of free space (W),

F0=magnetic flux quantum (T m2)
Rk=von Klitzing constant (W),

Mea = 5.9736 x 1024 kg; Mass of the earth,
Rea=6372.797 km, radius of the earth,
Msun=mass of sun (kg) =Solar mass
Rsun=radius of Sun (m)=Solar radius
Mmoon=Mass of moon
Rmoon=radius of moon

light year=a distance light travels in a vacuum in one year=9.4605 x 1015 m,

Parsec pc = a unit of distance = 3.26 light yeras = 30.857 x 1015 m,
AU = astronomical unit = average distance between the Earth and the Sun = 1.49597870 x1011 m
u=atomic mass constant

mile=1.609344 x 103 m
hour=3600 sec
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6. Uncertainty and significant figures 
 

The uncertainty is indicated by the number of meaningful digits, or significant figures, 
in the measured value. 
 
6.1. Definition of the number of significant figures 

(a) The leftmost nonzero digit is the most significant digit. 
(b) If there is no decimal point, the rightmost nonzero digit is the least significant 

digit. 
 

1234  123,400 123 
 
470,000,000 130,000, 1500,  30 
 
1001  10010  

 

 
 
 
(c) If there is a decimal point, the rightmost digit is the least significant digit, even if 

it is a 0. 
 

1000.  10.10  1.010  100.0 
 
4.00  0.01  0.001 
 
0.58  0.047  0.00590 

 



 
 
 
(d) All digits between the least and most significant digits are counted as significant 

digits. 
 
((Note)) 
1. The number 10010 is considered to only four significant digits even though the 

last digit might be physically significant. 
 
2. If you are not sure whether a digit is significant, assume that it is not. For example, 

if the directions for an experimental read: add the sample to 400 mL of water,” 
assume that volume of water is known to one significant digit. 

 
6.2 Multiplication and division 

When multiplying or dividing, or taking roots, the number of significant figures in the 
results should match the number of significant figures of the number with the fewest 
significant figures. 
 
((Example)) 
 

3.923 x 2.34 x 0.58 = 5.3; round off 5.32 
 

3.149 x 2.12 x 0.12 = 0.80; round off 0.801 
 

4.832 ÷ 2.5 = 1.9  round off 1.933 
 
((Note)) 

The number of significant figures is the number of digits when written in scientific 
notation. 
 
 

0.58 = 5.8 x 10-1 (number of significant figures: 2) 
 

231.300 = 2.31300 x 102 (number of significant figures: 6) 



 
6.3 Addition and subtraction 
 

When we add and subtract numbers, it is the location of the decimal point that matters, 
not the number of significant figures. 
 

When adding or subtracting, the number of decimal places in the result should equal 
the smallest number of decimal places in any term in the sum. 
 
((Example)) 
 

123.62 + 8.9 = 132.5 
 
6.47 + 1.2 = 7.7 
 
150.0 + 0.507 = 150.5 

 

 
 
 
6.4 Roundoff 
 

When you reduce an answer to the appropriate number of significant figures, you 
must reduce, not truncate. 
 
((Example)) 
 

525 ÷ 311  = 1.688102894→1.69, not 1.68. 
 
 
6.5 Scientific notation 

Scientists have developed a shorter method to express very large numbers. This method is 
called scientific notation. Scientific Notation is based on powers of the base number 10.  



When you calculate with very large or very small numbers, you can show significant 
figures much more easily by using scientific notation. 

The number 123,000,000,000 in scientific notation is written as 1.23 x 1011. The first 
number 1.23 is called the coefficient. It must be greater than or equal to 1 and less than 
10. The second number is called the base. It must always be 10 in scientific notation. The 
base number 10 is always written in exponent form. In the number 1.23 x 1011, the 
number 11 is referred to as the exponent or power of 10.  

 
 
 
The number of significant figures is the number of digits when written in scientific 
notation. 
 

 
((Example)) 
 

384,000,000 = 3.84 x 108: the number of significant figures is 3. 
 
0.00620 = 6.20 x 10-3:  the number of significant figures is 3. 
 
4.00 x 107: the number of significant figures is 3, even though 

two of them are zeros. 
 
(4.44 x 10-4) x (2.7 x 103) = 1.1988  

1.2: the number of significant figures is 2. 
 
((Mathematica)) 
 



0.0001305  ScientificForm

1.305104
 

 
 
7. Integer, fraction, and   

We treat that number as having no uncertainty at all. 
 
((Example)) 
In the equation 
 

)(2 0
2

0
2 xxavv  , 

 
The coefficient 2 is exactly 2. We can consider this coefficient as having an infinite 
number of significant figures (2.00000000….). 
 
  
3.1415926535897932384626433832795028841971693993751058209749
44592307816406286208998628034825342117068 
 


