Chapter 1
 Measurement

1. SI Units

Length, mass, and time play a fundamental role in describing nature. These are the three quantities on which we base our measurements. Length, mass, and time are called dimensions. We use the International System of Units (also called the metric system or the SI system, for the French term Système International). In mechanics, we need to define only three units,

```
unit of length meter (m)
unit of mass kilogram (kg)
unit of time second (s)
```

((Note))
MKS units: meter, kilogram, second
CGS units: centimeter, gram, second
(a) Meter

The meter is the length equal to the distance traveled by light in vacuum, in a time of

$$
\frac{1}{299,792,458} .
$$

Note that the velocity of light is $c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

(b) Kilogram (kg)

The SI standard of mass is a platinum-iridium cylinder shown in the figure. The cylinder is kept at the International Bureau of Weights and Measures near Paris and assigned a mass of 1 kilogram. Accurate copies have been sent to other countries.

(c) Second (s)

A cesium (-beam) atomic clock (or cesium-beam frequency standard) is a device that uses as a reference the exact frequency of the microwave spectral line emitted by atoms of the metallic element cesium, in particular its isotope of atomic weight 133 ("Cs-133"). The frequency, $f_{0}=9,192,631,770$ hertz ($\mathrm{Hz}=$ cycles/second), provides the fundamental unit of time, which may thus be measured by cesium clocks.

$$
\text { Period } T_{0}=1 / f_{0}=1 /(9,192,631,770) \mathrm{s}=1.0878 \times 10^{-11} \mathrm{~s}=0.11 \mathrm{~ns} .
$$

One second is the duration of $9,192,631,770$ periods
The time measurement accuracy is 2 nanoseconds per day or one second in $1,400,000$ years. It is the most accurate realization of a unit that mankind has yet achieved.

$0.1 \mathrm{~ns} /$ day $=3.65 \times 10^{-8} \mathrm{sec} / 1$ year $=1 \mathrm{sec} / 27.4$ million years

Link:

NIST-F1 Cesium Fountain Atomic Clock. The Primary Time and Frequency Standard for the United States
http://tf.nist.gov/cesium/fountain.htm
((Atomic clock))

NIST-F1, the nation's primary time and frequency standard, is a cesium fountain atomic clock developed at the NIST laboratories in Boulder, Colorado. NIST-F1 contributes to the international group of atomic clocks that define Coordinated Universal Time (UTC), the official world time. Because NIST-F1 is among the most accurate clocks in the world, it makes UTC more accurate than ever before.

The uncertainty of NIST-F1 is continually improving. In 2000 the uncertainty was about 1×10^{-15}, but as of the summer of 2005 , the uncertainty has been reduced to about $5 \times 10^{-}$ ${ }^{16}$, which means it would neither gain nor lose a second in more than 60 million years! The graph below shows how NIST-F1 compares to previous atomic clocks built by NIST. It is now approximately ten times more accurate than NIST-7, a cesium beam atomic
clock that served as the United State's primary time and frequency standard from 19931999.

Current time: if you want to know the current time of New York, go to the Web site $\underline{\text { http://www.timeanddate.com/worldclock/city.html? }} \mathrm{n}=179$
2. SI base units and SI derived units

There are two kinds of SI units; (a) the SI based units, and (b) the SI derived units
(a) The SI base units

Meter (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (cd).
(b) The SI derived units

Units for other quantities, such as velocity, acceleration, force, energy, and power, are derived from these basic units.

Area volume	m^{2}	
Velocity:	m^{3}	
Angular velocity	m / s	
Acceleration:	$\mathrm{rad} / \mathrm{s}$	
Force	$\mathrm{m} / \mathrm{s}^{2}$	
Energy	$\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$	$(=\mathrm{N}, \quad$ Newton $)$
Power	$\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$	$(=\mathrm{J}, \mathrm{Joule})$
Pressure	kg m	
	$\mathrm{N} / \mathrm{m}^{2}$	$(=\mathrm{W}$, Watt $)$
$(=\mathrm{Pa}$, Pascal $)$		

((Note))
The international system of units (from the NIST Web site)
http://physics.nist.gov/cuu/Units/units.html

Quantity	Name of unit	Symbol	
	SI base units		
length	meter	m	
mass	kilogram	kg	
time	second	s	
electric current	ampere	A	
thermodynamic temperature	kelvin	K	
amount of substance	mole	mol	
luminous intensity	candela	cd	
	SI derived units		Equivalent units
area	square meter	m^{2}	
volume	cubic meter	m^{3}	
frequency	hertz	Hz	s^{-1}
mass density (density)	kilogram per cubic meter	$\mathrm{kg} / \mathrm{m}^{3}$	
speed, velocity	meter per second	m / s	
angular velocity	radian per second	rad/s	
acceleration	meter per second squared	$\mathrm{m} / \mathrm{s}^{2}$	
angular acceleration	radian per second squared	$\mathrm{rad} / \mathrm{s}^{2}$	
force	newton		$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
pressure (mechanical stress)	pascal		$\mathrm{N} / \mathrm{m}^{2}$
kinematic viscosity	square meter per second	$\mathrm{m}^{2} / \mathrm{s}$	
dynamic viscosity	newton-second per square meter	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	
work, energy, quantity of heat	joule	J	$\mathrm{N} \cdot \mathrm{m}$
power	watt	W	J/s
quantity of electricity	coulomb	C	A $\cdot \mathrm{s}$
potential difference, electromotive force	volt	V	J/C, W/A
electric field strength	volt per meter	V/m	N/C
electric resistance	ohm	Ω	V/A
capacitance	farad	F	A $\cdot \mathrm{s} / \mathrm{V}$
magnetic flux	weber	Wb	$\mathrm{V} \cdot \mathrm{s}$
inductance	henry	H	$\mathrm{V} \cdot \mathrm{s} / \mathrm{A}$
magnetic flux density	tesla	T	$\mathrm{Wb} / \mathrm{m}^{2}$
magnetic field strength	ampere per meter	A/m	
magnetomotive force	ampere	A	
luminous flux	lumen	1 m	$\mathrm{cd} \cdot \mathrm{sr}$
luminance	candela per square meter	$\mathrm{cd} / \mathrm{m}^{2}$	
illuminance	lux	1 m	$1 \mathrm{~m} / \mathrm{m}^{2}$
wave number	1 per meter	m^{-1}	
entropy	joule per kelvin	J/K	
specific heat capacity	joule per kilogram-kelvin	$\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$	
thermal conductivity	watt per meter-kelvin	W/m $\cdot \mathrm{K}$	
radiant intensity	watt per steradian	W/sr	
activity (of a radioactive source)	becquerel	Bq	s^{-1}
radiation dose	gray	Gy	J/kg
radiation dose equivalent	sievert	Sv	J/kg
	$\underline{\text { S }}$ supplementary units		
plane angle	radian	rad	
solid angle	steradian	sr	

3. Conventional units

We frequently use prefixes to obtain units of a more convenient size. Here are examples of commonly encountered prefixes.

$$
\begin{aligned}
& 1 \text { nanometer }=1 \mathrm{~nm}=10^{-9} \mathrm{~m} \text { (a little bigger than an atom diameter) } \\
& 1 \text { micrometer }=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} \text { (a human blood cell is about } 7 \mu \mathrm{~m} \text {) } \\
& 1 \text { millimeter }=1 \mathrm{~mm}=10^{-3} \mathrm{~m} \text { (a pencil lead is about } 0.5 \mathrm{~mm} \text { in diameter) } \\
& 1 \text { centimeter }=1 \mathrm{~cm}=10^{-2} \mathrm{~m} \text { (the diameter of a ballpoint pen) } \\
& 1 \text { kilometer }=1 \mathrm{~km}=10^{3} \mathrm{~m} \text { (about } 0.6 \mathrm{mi} \text {) } \\
& 1 \text { microgram }=1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}=10^{-9} \mathrm{~kg} \text { (mass of a small dust particle) } \\
& 1 \text { milligram }=1 \mathrm{mg}=10^{-3} \mathrm{~g}=10^{-6} \mathrm{~kg} \text { (a raindrop is about } 2 \mathrm{mg} \text {) } \\
& 1 \text { gram } \\
& \\
& \\
& 1 \text { nanosecond }=1 \mathrm{~g}=10^{-3} \mathrm{~kg} \text { (the mass of a penny is about } 2.5 \mathrm{~g} \text {) } \\
& 1 \text { microsecond }=1 \mu \mathrm{~s}=10^{-9} \mathrm{~s} \text { (time for light to travel } 30 \mathrm{~cm} \text {) } \\
& 1 \text { millisecond }=1 \mathrm{~ms}=10^{-6} \mathrm{~s} \text { (time for a rifle bullet to travel about } 1 \mathrm{~mm} \text { (about } 14 \mathrm{~ms} \text { between human heart beats) }
\end{aligned}
$$

4. Unit Conversion

We sometimes encounter data in units other than those used in SI system. In this case we need to convert the units to the SI system, using conversion factors.

((Example))

We consider a speed of 65 miles/hour.
1 mile $=1610 \mathrm{~m}$.
1 hour $=60 \mathrm{~min}=60 \times 60=3600 \mathrm{~s}$.
Velocity

$$
\begin{aligned}
65(\text { miles } / \mathrm{h}) & = \\
& =65 \frac{1.609 \mathrm{~km}}{60 \mathrm{~min}}=65 \frac{1.609}{60} \frac{1000 \mathrm{~m}}{60 \mathrm{~s}}=\frac{65 \times 1.609 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s}=29(\mathrm{~m} / \mathrm{s}) \\
x(\text { miles } / \mathrm{h}) & = \\
& =x \frac{1.609 \mathrm{~km}}{60 \mathrm{~min}}=x \frac{1.609}{60} \frac{1000 \mathrm{~m}}{60 \mathrm{~s}} \\
& =\frac{x \times 1.609 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s}=0.4469 \times x(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Density

$$
\begin{aligned}
& \rho=\frac{\text { Mass }}{\text { Volume }} \text { in the units of } \mathrm{g} / \mathrm{cm}^{3} \text { or } \mathrm{kg} / \mathrm{m}^{3} \\
& \frac{g}{\mathrm{~cm}^{3}}=\frac{10^{-3} \mathrm{~kg}}{\left(10^{-2} \mathrm{~m}\right)^{3}}=10^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)
\end{aligned}
$$

((Table))

Length

1 inch (in) $=2.54$ centimenters (cm)
1 foot $(\mathrm{ft})=0.3048$ meter (m)
1 mile $(\mathrm{mi})=5280 \mathrm{ft}=1.609$ kilometers (km)
$1 \mathrm{~m}=3.28 \mathrm{ft}$
$1 \mathrm{~km}=0.6214 \mathrm{mi}$
1 angstrom $(\AA)=10^{-10} \mathrm{~m}$
1 light year $=9.461 \times 10^{15} \mathrm{~m}$
1 astronomical unit $(\mathrm{AU})=1.496 \times 10^{11} \mathrm{~m}$
1 parsec $(p c)=3.09 \times 10^{16} \mathrm{~m}$

```
Mass
    1 \text { slug = 14.59 kilograms (kg) Angle}
    1 atomic mass unit (amu)=1.6605 \times 10-27 kg
    (1 kg has a weight of 2.205 lb where the
    acceleration due to gravity is }32.174\textrm{f}/\mp@subsup{\textrm{s}}{}{2}\mathrm{ )
```

 \(1 \mathrm{~kg}=1000\) grams \(=6.852 \times 10^{-2}\) slug \(\quad 1 \mathrm{radian}(\mathrm{rad})=57.30^{\circ}\)
 Time
1 day $=24 \mathrm{~h}=1.44 \times 10^{3} \mathrm{~min}=8.64 \times 10^{4} \mathrm{~s}$
1 year $(\mathrm{yr})=365.24$ days $=3.156 \times 10^{7} \mathrm{~s}$
$1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
Speed
$1 \mathrm{mi} / \mathrm{h}=1.609 \mathrm{~km} / \mathrm{h}=1.467 \mathrm{ft} / \mathrm{s}=0.4470 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~km} / \mathrm{h}=0.6214 \mathrm{mi} / \mathrm{h}=0.2778 \mathrm{~m} / \mathrm{s}=0.9113 \mathrm{ft} / \mathrm{s}$
Volume
1 liter $(\mathrm{L})=10^{-3} \mathrm{~m}^{3}=1000 \mathrm{~cm}^{3}=0.03531 \mathrm{ft}^{3}$
$1 \mathrm{ft}^{3}=0.02832 \mathrm{~m}^{3}=7.481$ U.S. gallons (gal)
I U.S. gal $=3.785 \times 10^{-3} \mathrm{~m}^{3}=0.1337 \mathrm{ft}^{3}$

5. The use of Mathematica for the evaluation of physical quantities

It is very convenient to use the Mathematica for the evaluation of physical quantities. The numerical values can be obtained from the Web-site of NIST.

Link: Fundamental Physical constant
http://physics.nist.gov/cuu/
((Matematica))

Physconst $=\left\{u \rightarrow 1.6605388610^{-27}\right.$, cal $\rightarrow 4.19$, atm \rightarrow 101.3, $\mathrm{g} \rightarrow 9.80665, \mathrm{G} \rightarrow 6.674286710^{-11}, \mathrm{NA} \rightarrow 6.0221417910^{23}$, $\mathrm{R} \rightarrow 8.314472$, me $\rightarrow 9.109382154510^{-31}, \mathrm{u} \rightarrow 1.66053878210^{-27}$, $e V \rightarrow 1.60217648710^{-19}$, qe $\rightarrow 1.60217648710^{-19}$, $\mathrm{ge} \rightarrow 2.0023193043622, \mathrm{kB} \rightarrow 1.3806504 \mathrm{10}^{-23}$, $r B \rightarrow 0.5291772085910^{-10}, \mu B \rightarrow 927.4009152310^{-26}$, $\mu \mathrm{N} \rightarrow 5.0507832410^{-27}, \lambda c \rightarrow 2.426310217510^{-12}$, $\mathrm{C} \rightarrow 2.9979245810^{8}, \mu 0 \rightarrow 12.5663706141^{-7}$, $\epsilon 0 \rightarrow 8.85418781710^{-12}, \mathrm{mn} \rightarrow 1.6749272111^{-27}$, $\mathrm{mp} \rightarrow 1.67262163710^{-27}, \mathrm{~h} \rightarrow 6.6260689610^{-34}$, $\hbar \rightarrow 1.0545716285310^{-34}, \quad \sigma S B \rightarrow 5.67040010^{-8}$, $z 0 \rightarrow 376.730313461, \Phi 0 \rightarrow 2.0678336675210^{-15}$, Rk $\rightarrow 25$ 812.80755718, Mea $\rightarrow 5.973610^{24}$, Rea $\rightarrow 6.37210^{6}$, Msun $\rightarrow 1.98843510^{30}$, Rsun $\rightarrow 6.959910^{8}$, Mmoon $\rightarrow 7.348310^{22}$, Rmoon $\rightarrow 1.78310^{6}, \operatorname{ly} \rightarrow 9.460510^{15}, \mathrm{pc} \rightarrow 30.85710^{15}$, AU $\rightarrow 1.4959787010^{11}$, mile $\rightarrow 1.60934410^{3}$, hour $\rightarrow 3600$, min $\rightarrow 60$, gram $\left.\rightarrow 10^{-3}, \mathrm{~cm} \rightarrow 10^{-2}\right\}$
$\left\{u \rightarrow 1.66054 \times 10^{-27}\right.$, cal $\rightarrow 4.19$, atm $\rightarrow 101.3, \mathrm{~g} \rightarrow 9.80665$, $\mathrm{G} \rightarrow 6.67429 \times 10^{-11}, \mathrm{NA} \rightarrow 6.02214 \times 10^{23}, \mathrm{R} \rightarrow 8.31447$, $\mathrm{me} \rightarrow 9.10938 \times 10^{-31}, \mathrm{u} \rightarrow 1.66054 \times 10^{-27}, \mathrm{eV} \rightarrow 1.60218 \times 10^{-19}$, $\mathrm{qe} \rightarrow 1.60218 \times 10^{-19}, \mathrm{ge} \rightarrow 2.00232$, $\mathrm{kB} \rightarrow 1.38065 \times 10^{-23}$, $r B \rightarrow 5.29177 \times 10^{-11}, \mu \mathrm{~B} \rightarrow 9.27401 \times 10^{-24}, \mu \mathrm{~N} \rightarrow 5.05078 \times 10^{-27}$, $\lambda c \rightarrow 2.42631 \times 10^{-12}, c \rightarrow 2.99792 \times 10^{8}, \mu 0 \rightarrow 1.25664 \times 10^{-6}$, $\in 0 \rightarrow 8.85419 \times 10^{-12}, \mathrm{mn} \rightarrow 1.67493 \times 10^{-27}, \mathrm{mp} \rightarrow 1.67262 \times 10^{-27}$, $\mathrm{h} \rightarrow 6.62607 \times 10^{-34}, \hbar \rightarrow 1.05457 \times 10^{-34}, \sigma \mathrm{SB} \rightarrow 5.6704 \times 10^{-8}$, $z 0 \rightarrow 376.73, \Phi 0 \rightarrow 2.06783 \times 10^{-15}, R k \rightarrow 25812.8$, Mea $\rightarrow 5.9736 \times 10^{24}$, Rea $\rightarrow 6.372 \times 10^{6}$, Msun $\rightarrow 1.98844 \times 10^{30}$, Rsun $\rightarrow 6.9599 \times 10^{8}$, Mmoon $\rightarrow 7.3483 \times 10^{22}$, Rmoon $\rightarrow 1.783 \times 10^{6}$, $l y \rightarrow 9.4605 \times 10^{15}, \mathrm{pc} \rightarrow 3.0857 \times 10^{16}, \mathrm{AU} \rightarrow 1.49598 \times 10^{11}$, mile \rightarrow 1609.34, hour \rightarrow 3600, min $\rightarrow 60$, gram $\left.\rightarrow \frac{1}{1000}, \mathrm{~cm} \rightarrow \frac{1}{100}\right\}$
$\mathrm{u}=$ atomic mass unit
cal $=4.19 \mathrm{~J}, \quad 1 \mathrm{~atm}=101.3 \mathrm{kPa}, \quad \mathrm{g}=$ Acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{G}=$ gravitational constant ($\mathrm{N} \mathrm{m} / \mathrm{mg}^{2}$),
NA=Avogadro number
$\mathrm{R}=$ Gas constant ($\mathrm{J} / \mathrm{mol} \mathrm{K}$),
me=mass of electron (kg)
$\mathrm{qe}=$ Charge of electron (C),
$\mathrm{ge}=$ electron g factor
$\mathrm{kB}=$ Boltzmann constant (J / K)
$\mathrm{rB}=$ Bohr radius (m),
$\mu \mathrm{N}=$ Nuclear magneton (J / T)
$\lambda \mathrm{c}=$ Compton wavelength (m)
$\mathrm{c}=\mathrm{velocity}$ of light (m),
$\mu 0=$ Magnetic constant
$\epsilon 0=$ electric constant,
$\mathrm{mn}=$ mass of neutron (kg)
$\mathrm{mp}=$ mass of proton (kg),
$\mathrm{h}=\mathrm{Planck}$ constant
$\hbar=$ Dirac constant,
Planck mass $=\mathrm{mpl}=\sqrt{\frac{\hbar c}{G}}$,
Planck time $=\tau \mathrm{pl}=\left(\frac{\hbar \mathrm{G}}{\mathrm{c}^{5}}\right)^{1 / 2}$,
Planck length $=1 \mathrm{pl}=\left(\frac{\hbar \mathrm{G}}{\mathrm{c}^{3}}\right)^{1 / 2}$,
$\sigma \mathrm{SB}=$ Stefan-Boltzmann constant $\left(\mathrm{W} / m^{2} K^{4}\right)$,
z0 =impedance of free space (Ω),
$\Phi 0=$ magnetic flux quantum (m^{2})
$\mathrm{Rk}=$ von Klitzing constant (Ω),
Mea $=5.9736 \times 10^{24} \mathrm{~kg}$; Mass of the earth,
Rea $=6372.797 \mathrm{~km}$, radius of the earth,
Msun=mass of sun $(\mathrm{kg})=$ Solar mass
Rsun=radius of Sun (m)=Solar radius
Mmoon=Mass of moon
Rmoon=radius of moon
light year=a distance light travels in a vacuum in one year=9.4605 $\times 10^{15} \mathrm{~m}$,
$\operatorname{Parsec}(\mathrm{pc})=\mathrm{a}$ unit of distance $=3.26$ light yeras $=30.857 \times 10^{15} \mathrm{~m}$,
$\mathrm{AU}=$ astronomical unit $=$ average distance between the Earth and the $\operatorname{Sun}=1.49597870 \times 10^{11} \mathrm{~m}$
$\mathrm{u}=$ atomic mass constant
mile $=1.609344 \times 10^{3} \mathrm{~m}$
hour $=3600 \mathrm{sec}$

Gravity of Moon

G $\frac{\text { Mmoon }}{\text { Rmoon }^{2}} /$. Physconst
1.54273

Gravity of Earth
G $\frac{\text { Mea }}{\text { Rea }^{2}} /$. Physconst
9.8195

Gravity of Sun
G $\frac{\text { Msun }}{\text { Rsun² }}$ /. Physconst
273.975

Planck' s time

$$
\begin{aligned}
& \sqrt{\frac{\hbar G}{c^{5}}} / . \text { Physconst } \\
& 5.39124 \times 10^{-44}
\end{aligned}
$$

Escape velocity from the Earth

$$
\begin{aligned}
& \sqrt{\frac{2 \mathrm{GMea}}{\text { Rea }}} / . \text { Physconst } \\
& 11186.6
\end{aligned}
$$

Escape velocity from the Sun
$\sqrt{\frac{2 \text { G Msun }}{\text { Rsun }}}$ /. Physconst
617549 .

Escape velocity from the Moon
$\sqrt{\frac{2 \mathrm{GMmoon}}{\text { Rmoon }}}$ /. Physconst
2345.5

Velocity
Velocity
65 mile / hour /. Physconst 29.0576

80 mile / hour /. Physconst 35.7632

95 mile / hour /. Physconst
42.4688
$\mathrm{AU} / \mathrm{min}$
AU / min /. Physconst
2.4933×10^{9}
c / (AU / min) /. Physconst
0.120239

AU / (c min) /. Physconst
8.31675

Density
1 gram / cm ${ }^{3} /$. Physconst
1000

6. Uncertainty and significant figures

The uncertainty is indicated by the number of meaningful digits, or significant figures, in the measured value.

6.1. Definition of the number of significant figures

(a) The leftmost nonzero digit is the most significant digit.
(b) If there is no decimal point, the rightmost nonzero digit is the least significant digit.

123,400
123
470,000,000 130,000, $\quad 1500, \quad 30$
1001
10010

most significant digit
(c) If there is a decimal point, the rightmost digit is the least significant digit, even if it is a 0 .

1000	10.10	1.010	100.0

4.00	0.01	0.001

0.58
0.047
0.00590

(d) All digits between the least and most significant digits are counted as significant digits.
((Note))

1. The number 10010 is considered to only four significant digits even though the last digit might be physically significant.
2. If you are not sure whether a digit is significant, assume that it is not. For example, if the directions for an experimental read: add the sample to 400 mL of water," assume that volume of water is known to one significant digit.

6.2 Multiplication and division

When multiplying or dividing, or taking roots, the number of significant figures in the results should match the number of significant figures of the number with the fewest significant figures.
((Example))
$3.923 \times 2.34 \times 0.58=5.3 ; \quad$ round off 5.32
$3.149 \times 2.12 \times 0.12=0.80 ; \quad$ round off 0.801
$4.832 \div 2.5=1.9 \quad$ round off 1.933
((Note))
The number of significant figures is the number of digits when written in scientific notation.
$0.58=5.8 \times 10^{-1}$ (number of significant figures: 2)
$231.300=2.31300 \times 10^{2}$ (number of significant figures: 6)

6.3 Addition and subtraction

When we add and subtract numbers, it is the location of the decimal point that matters, not the number of significant figures.

When adding or subtracting, the number of decimal places in the result should equal the smallest number of decimal places in any term in the sum.
((Example))
$123.62+8.9=132.5$
$6.47+1.2=7.7$
$150.0+0.507=150.5$

6.4 Roundoff

When you reduce an answer to the appropriate number of significant figures, you must reduce, not truncate.
((Example))

$$
525 \div 311=1.688102894 \rightarrow 1.69, \text { not } 1.68
$$

6.5 Scientific notation

Scientists have developed a shorter method to express very large numbers. This method is called scientific notation. Scientific Notation is based on powers of the base number 10.

When you calculate with very large or very small numbers, you can show significant figures much more easily by using scientific notation.

The number $123,000,000,000$ in scientific notation is written as 1.23×10^{11}. The first number 1.23 is called the coefficient. It must be greater than or equal to 1 and less than 10. The second number is called the base. It must always be 10 in scientific notation. The base number 10 is always written in exponent form. In the number 1.23×10^{11}, the number 11 is referred to as the exponent or power of 10 .

The number of significant figures is the number of digits when written in scientific notation.

$123,000,000,000=\stackrel{\longrightarrow}{1.23} \times 10^{11}$
((Example))
$384,000,000=3.84 \times 10^{8}: \quad$ the number of significant figures is 3.
$0.00620=6.20 \times 10^{-3}: \quad$ the number of significant figures is 3.
4.00×10^{7} : the number of significant figures is 3 , even though two of them are zeros.
$\left(4.44 \times 10^{-4}\right) \times\left(2.7 \times 10^{3}\right)=1.1988$
1.2: the number of significant figures is 2 .

0.0001305 // ScientificForm

1.305×10^{-4}

7. Integer, fraction, and π

 We treat that number as having no uncertainty at all.((Example))
In the equation

$$
v^{2}-v_{0}{ }^{2}=2 a\left(x-x_{0}\right),
$$

The coefficient 2 is exactly 2 . We can consider this coefficient as having an infinite number of significant figures (2.00000000 \ldots..).

```
\pi
3.1415926535897932384626433832795028841971693993751058209749
44592307816406286208998628034825342117068
```

