Lecture Note

Chapter 3 Vectors

1. Definition of vectors

Vectors are usually indicated by boldface letters, such as A, and we will follow this most common convention. Alternative notation is a small arrow over the letters such as \vec{A}. The magnitude of a vector is also often expressed by $A=|\boldsymbol{A}|$. The displacement vector serves as a prototype for all other vectors. Any quantity that has magnitude and direction and that behaves mathematically like he displacement vector is a vector.
((Example))
velocity, acceleration, force,
linear momentum, angular momentum, torque
electric field, magnetic field, current density, magnetization, polarization
electric dipole moment, magnetic moment
By contrast, any quantity that has a magnitude but no direction is called a scalar.
((Example))
length, time, mass, area, volume, density, temperature, energy
A unit vector is a vector of unit length; a unit vector in the direction of \boldsymbol{A} is written with a caret as $\hat{\boldsymbol{A}}$, which we read as "A hat."

$$
\boldsymbol{A}=A \hat{\boldsymbol{A}}=\hat{\boldsymbol{A}} A
$$

(a) A vector \boldsymbol{r}

Fig. The vector \boldsymbol{r} represents the position of a point P relative to another point O as origin.
(b) Negative vector: - r

The negative of a given vector \boldsymbol{r} is a vector of the same magnitude, but opposite direction.

Fig. The vector $-\boldsymbol{r}$ is equal in magnitude but opposite in direction to \boldsymbol{r}.
(c) The multiplication of the vector by a scalar

Fig. The vector $k \boldsymbol{r}$ is in the direction of \boldsymbol{r} and is of magnitude $k r$, where $k=0.6$.
(d) A unit vector

Fig. The vector $\hat{\boldsymbol{r}}$ is the unit vector in the direction of \boldsymbol{r}. Note that $\boldsymbol{r}=r \hat{\boldsymbol{r}} . \hat{\boldsymbol{r}}=\boldsymbol{e}_{r}$

2. Vector addition

$$
\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A} \text { (commutative) }
$$

The sum of two vectors is defined by the geometrical construction shown below. This construction is often called the parallelogram of addition of vectors.

3. Vector subtraction

$$
\boldsymbol{C}=\boldsymbol{A}-\boldsymbol{B}
$$

The subtraction of two vectors is also defined by the geometrical construction shown below.

4. Sum of three vectors

5. Sum of many vectors

6. Imporrtant theorem for the geometry

6.1 Theorem

When the point P is between the point Q and P on the line connecting the two points P and Q , the vector $\overrightarrow{O P}$ is expressed in terms of the vectors \boldsymbol{A} and \boldsymbol{B} by

$$
\overrightarrow{O P}=\alpha \mathbf{A}+\beta \mathbf{B}
$$

where $\alpha+\beta=1(\alpha>0$ and $\beta>0)$.

Fig. $\quad \overrightarrow{O P}=\alpha \boldsymbol{A}+\beta \boldsymbol{B}$ where $\alpha+\beta=1 . \alpha$ is changed between $\alpha=$ 0.1 and 0.9 with $\Delta \alpha=0.1$.

6.2 Example

We now consider the following case.

$$
\begin{aligned}
& \overrightarrow{O A}=\boldsymbol{a} \\
& \overrightarrow{O B}=\boldsymbol{b} \\
& \overrightarrow{O A_{1}}=p \boldsymbol{a} \\
& \overrightarrow{O B_{1}}=q \boldsymbol{b}
\end{aligned}
$$

where p and q are between 0 and 1 . From the above theorem, the vector $\overrightarrow{O P}$ is expressed by

$$
\overrightarrow{O P}=\alpha(\boldsymbol{a})+\beta(q \boldsymbol{b})=\frac{\alpha}{p}(p \boldsymbol{a})+\beta q(\boldsymbol{b})
$$

where

$$
\begin{aligned}
& \alpha+\beta=1 \\
& \frac{\alpha}{p}+\beta q=1
\end{aligned}
$$

From these Eqs., we have

$$
\begin{aligned}
& \alpha=\frac{p(1-p)}{1-p q} \\
& \beta=\frac{1-p}{1-p q}
\end{aligned}
$$

Then $\overrightarrow{O P}$ is expressed by

$$
\overrightarrow{O P}=\frac{p(1-p)}{1-p q} \boldsymbol{a}+\frac{q(1-p)}{1-p q} \boldsymbol{b}
$$

6.3 Example: bisecting vector

In a triangle of this figure, the angle POR is equal to the angle QOR. The point R is on the line PQ. What is the expression of $\overrightarrow{O R}$ in terms of the vectors \boldsymbol{A} and \boldsymbol{B} ?. Since R is on the line $\mathrm{AB}, \overrightarrow{O R}$ is described by

$$
\begin{equation*}
\overrightarrow{O R}=\alpha \mathbf{A}+\beta \boldsymbol{B} \tag{1}
\end{equation*}
$$

where $\alpha+\beta=1(\alpha>0$ and $\beta>0)$.

The vector $\overrightarrow{O R}$ is also described by

$$
\begin{equation*}
\overrightarrow{O R}=k(\hat{\boldsymbol{A}}+\hat{\boldsymbol{B}})=k\left(\frac{\boldsymbol{A}}{A}+\frac{\boldsymbol{B}}{B}\right) \tag{2}
\end{equation*}
$$

where A and B are the magnitudes of \boldsymbol{A} and $\boldsymbol{B} ., \hat{\boldsymbol{A}}$ and $\hat{\boldsymbol{B}}$ are the unit vectors for \boldsymbol{A} and \boldsymbol{B}. From Eqs.(1) and (2), we have

$$
\begin{aligned}
& \alpha=\frac{k}{A} \\
& \beta=\frac{k}{B}
\end{aligned}
$$

or

$$
\begin{equation*}
\beta=\frac{A}{B} \alpha \tag{3}
\end{equation*}
$$

Then we get

$$
\begin{aligned}
& \alpha=\frac{B}{A+B} \\
& \beta=\frac{A}{A+B}
\end{aligned}
$$

7. Cartesian components of vectors

7.1 2D system

Let \boldsymbol{I} and \boldsymbol{j}, and \boldsymbol{k} denote a set of mutually perpendicular unit vectors. Let \boldsymbol{i} and \boldsymbol{j} drawn from a common origin O, give the positive directions along the system of rectangular axes Oxy.

We consider a vector A lying in the $x y$ plane and making an angle θ with the positive x axis. The vector \boldsymbol{A} can be expressed by

$$
\boldsymbol{A}=\left(A_{x}, A_{y}\right)=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}=A(\cos \theta \mathbf{i}+\sin \theta \boldsymbol{j})
$$

where

$$
A=|\boldsymbol{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}} \quad \text { and } \quad \tan \theta=\frac{A_{y}}{A_{x}}
$$

When the vector \boldsymbol{B} is expressed by

$$
\boldsymbol{B}=\left(B_{x}, B_{y_{z}}\right)=B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}
$$

the sum of \boldsymbol{A} and \boldsymbol{B} is

$$
\boldsymbol{A}+\boldsymbol{B}=\left(A_{x}+B_{x}\right) \boldsymbol{i}+\left(A_{y}+B_{y}\right) \boldsymbol{j}
$$

7.2 3D system

Let $\boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k} denote a set of mutually perpendicular unit vectors. Let $\boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k} drawn from a common origin O, give the positive directions along the system of rectangular axes Oxyz.

An arbitrary vector \boldsymbol{A} can be expressed by

$$
\boldsymbol{A}=\left(A_{x}, A_{y}, A_{z}\right)=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}
$$

where $A_{\mathrm{x}}, A_{\mathrm{y}}$, and A_{z} are called the Cartesian components of the vector \boldsymbol{A}. When the vector \boldsymbol{B} is expressed by

$$
\boldsymbol{B}=\left(B_{x}, B_{y}, B_{z}\right)=B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \boldsymbol{k}
$$

the sum of \boldsymbol{A} and \boldsymbol{B} is

$$
\boldsymbol{A}+\boldsymbol{B}=\left(A_{x}+B_{x}\right) \boldsymbol{i}+\left(A_{y}+B_{y}\right) \boldsymbol{j}+\left(A_{z}+B_{z}\right) \boldsymbol{k}
$$

8. Scalar product of vectors

8.1 Definition

The scalar product (or dot product) of the vectors \boldsymbol{A} and \boldsymbol{B} is defined as
$\boldsymbol{A} \cdot \boldsymbol{B}=|\boldsymbol{A} \| \boldsymbol{B}| \cos \theta=A B \cos \theta$
where θ is the angle between \boldsymbol{A} and \boldsymbol{B} and is between 0 and π. The scalar product is a scalar and is commutative,
$\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$

Magnitude:
When $\boldsymbol{B}=\boldsymbol{A}$, we have

$$
\boldsymbol{A} \cdot \boldsymbol{A}=|\boldsymbol{A}|^{2}=A^{2}
$$

since $\theta=0$.
(ii) Orthogonal $(A \perp B)$:

If
$\boldsymbol{A} \cdot \boldsymbol{B}=0(A \neq 0$ and $B \neq 0)$,
we say that \boldsymbol{A} is orthogonal to B or perpendicular to \boldsymbol{B}.
(iii) Projection:

The magnitude of the projection of \boldsymbol{A} on \boldsymbol{B} is $A \cos \theta$. So $\mathbf{A} \cdot \mathbf{B}$ is the product of the projection of \boldsymbol{A} on \boldsymbol{B} with the magnitude of \boldsymbol{A}. We also consider that the magnitude of $\boldsymbol{A} \cdot \boldsymbol{B}$ is the product of the projection of on \boldsymbol{B} on \boldsymbol{A} with the magnitude of \boldsymbol{B}.
$\boldsymbol{A} \cdot \boldsymbol{B}=|\boldsymbol{A} \| \boldsymbol{B}| \cos \theta=B(A \cos \theta)=A(B \cos \theta)$

8.2 The expression of the scalar product using Cartesian components of vectors
Inner product of A and B

We now consider two vectors given by

$$
\begin{aligned}
& \boldsymbol{A}=\left(A_{x}, A_{y}, A_{z}\right)=A_{x} \mathbf{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k} \\
& \boldsymbol{B}=\left(B_{x}, B_{y}, B_{z}\right)=B_{x} \mathbf{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}
\end{aligned}
$$

The scalar product of these two vectors \boldsymbol{A} and \boldsymbol{B} can be expressed in terms of the components

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{B} & =\left(A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \mathbf{k}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right) \\
& =\left(A_{x} B_{x} \boldsymbol{i} \cdot \mathbf{i}+A_{x} B_{y} \mathbf{i} \cdot \boldsymbol{j}+A_{x} B_{z} \mathbf{i} \cdot \boldsymbol{k}\right)+\left(A_{y} B_{x} \boldsymbol{j} \cdot \boldsymbol{i}+A_{y} B_{y} \boldsymbol{j} \cdot \boldsymbol{j}+A_{y} B_{z} \boldsymbol{j} \cdot \boldsymbol{k}\right) \\
& +\left(A_{z} B_{x} \boldsymbol{k} \cdot \mathbf{i}+A_{z} B_{y} \boldsymbol{k} \cdot \boldsymbol{j}+A_{z} B_{z} \mathbf{k} \cdot \boldsymbol{k}\right)
\end{aligned}
$$

or

$$
\boldsymbol{A} \cdot \boldsymbol{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Here we use the above relations for the inner products of the unit vectors. where

$$
\begin{array}{lll}
\boldsymbol{i} \cdot \boldsymbol{i}=1 & \boldsymbol{j} \cdot \boldsymbol{i}=0 & \boldsymbol{k} \cdot \boldsymbol{i}=0 \\
\boldsymbol{i} \cdot \boldsymbol{j}=0 & \boldsymbol{j} \cdot \boldsymbol{j}=1 & \boldsymbol{k} \cdot \boldsymbol{j}=0 \\
\boldsymbol{i} \cdot \boldsymbol{k}=0 & \boldsymbol{j} \cdot \boldsymbol{k}=0 & \boldsymbol{k} \cdot \boldsymbol{k}=1
\end{array}
$$

In special cases, the components of \boldsymbol{A} are given by

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{i}=A_{x} \boldsymbol{i} \cdot \mathbf{i}+A_{y} \boldsymbol{j} \cdot \mathbf{i}+A_{z} \boldsymbol{k} \cdot \boldsymbol{i}=A_{x} \\
& \boldsymbol{A} \cdot \boldsymbol{j}=A_{x} \boldsymbol{i} \cdot \boldsymbol{j}+A_{y} \mathbf{j} \cdot \boldsymbol{j}+A_{z} \boldsymbol{k} \cdot \boldsymbol{j}=A_{y} \\
& \boldsymbol{A} \cdot \mathbf{i}=A_{x} \boldsymbol{i} \cdot \boldsymbol{k}+A_{y} \boldsymbol{j} \cdot \boldsymbol{k}+A_{z} \boldsymbol{k} \cdot \boldsymbol{k}=A_{z}
\end{aligned}
$$

The unit vector $\hat{\mathbf{A}}$ of the vector A is expressed by

$$
\begin{aligned}
\hat{\boldsymbol{A}} & =\frac{1}{A}\left(A_{x}, A_{y}, A_{z}\right)=\frac{A_{x}}{A} \boldsymbol{i}+\frac{A_{y}}{A} \boldsymbol{j}+\frac{A_{z}}{A} \boldsymbol{k} \\
& =\frac{\boldsymbol{A} \cdot \boldsymbol{i}}{A} \boldsymbol{i}+\frac{\boldsymbol{A} \cdot \boldsymbol{j}}{A} \boldsymbol{j}+\frac{\boldsymbol{A} \cdot \boldsymbol{k}}{A} \boldsymbol{k}
\end{aligned}
$$

8.3 Law of cosine

This is the famous trigonometric relation (law of cosine).

9. Vector product

9.1 Definition

This product is a vector rather than scalar in character, but it is a vector in a somewhat restricted sense. The vector product of \boldsymbol{A} and \boldsymbol{B} is defined as

$$
\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}=|\boldsymbol{A}| \boldsymbol{B} \mid \sin \theta \hat{\boldsymbol{n}}=A B \sin \theta \hat{\boldsymbol{n}}
$$

where $|\boldsymbol{A}|$ is the magnitude of $\boldsymbol{A} .|\mathbf{B}|$ is the magnitude of $\boldsymbol{B} . \theta$ is the angle between \boldsymbol{A} and \boldsymbol{B}. $\hat{\mathbf{n}}$ is a unit vector, perpendicular to both \boldsymbol{A} and \boldsymbol{B} in a sense defined by the right hand thread rule.

We read $\boldsymbol{A} \times \boldsymbol{B}$ as " \boldsymbol{A} cross \boldsymbol{B}."

The vector \boldsymbol{A} is rotated by the smallest angle that will bring it into coincidence with the direction of \boldsymbol{B}. The sense of \boldsymbol{C} is that of the direction of motion of a screw with a righthand thread when the screw is rotated in the same as was the vector \boldsymbol{A}.

Right-hand-thread rule.
((Note))
The vector \boldsymbol{C} is perpendicular to both A and B . Rotate \boldsymbol{A} into \boldsymbol{B} through the lesser of the two possible angles - curl the fingers of the right hand in the direction in which \boldsymbol{A} is rotated, and the thumb will point in the direction of $\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}$.
(i)

Because of the sign convention, $\boldsymbol{B} \times \boldsymbol{A}$ is a vector opposite sign to $\boldsymbol{A} \times \boldsymbol{B}$. In other words, the vector product is not commutative,

$$
\boldsymbol{B} \times \boldsymbol{A}=-\boldsymbol{A} \times \boldsymbol{B} .
$$

(ii)

It follows from the definition of the vector product that

$$
\boldsymbol{A} \times \boldsymbol{A}=0
$$

(iii)

The vector product obey the distributive law.

$$
A \times(B+C)=A \times B+A \times C
$$

9.2 Cartesian components.

The vectors \boldsymbol{A} and \mathbf{B} are expressed by

$$
\begin{aligned}
& \boldsymbol{A}=\left(A_{x}, A_{y}, A_{z}\right)=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k} \\
& \boldsymbol{B}=\left(B_{x}, B_{y}, B_{z}\right)=B_{x} \mathbf{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}
\end{aligned}
$$

Then the vector product $\boldsymbol{A} \times \boldsymbol{B}$ is expressed in terms of the Cartesian components

$$
\begin{aligned}
\boldsymbol{A} \times \boldsymbol{B} & =\left(A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}\right) \times\left(B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right) \\
& =(\boldsymbol{i} \times \mathbf{i}) A_{x} B_{x}+(\mathbf{i} \times \boldsymbol{j}) A_{x} B_{y}+(\boldsymbol{i} \times \boldsymbol{k}) A_{x} B_{z} \\
& +(\mathbf{j} \times \mathbf{i}) A_{y} B_{x}+(\boldsymbol{j} \times \boldsymbol{j}) A_{y} B_{y}+(\boldsymbol{j} \times \boldsymbol{k}) A_{y} B_{z} \\
& +(\boldsymbol{k} \times \mathbf{i}) A_{z} B_{x}+(\boldsymbol{k} \times \boldsymbol{j}) A_{z} B_{y}+(\boldsymbol{k} \times \boldsymbol{k}) A_{z} B_{z}
\end{aligned}
$$

Here we use the relations,

$$
\begin{array}{lll}
\boldsymbol{i} \times \boldsymbol{i}=0 & \boldsymbol{j} \times \boldsymbol{i}=-\boldsymbol{k} & \boldsymbol{k} \times \boldsymbol{i}=\boldsymbol{j} \\
\boldsymbol{i} \times \boldsymbol{j}=\boldsymbol{k} & \boldsymbol{j} \times \boldsymbol{j}=0 & \boldsymbol{k} \times \boldsymbol{j}=-\boldsymbol{i} \\
\boldsymbol{i} \times \boldsymbol{k}=-\boldsymbol{j} & \boldsymbol{j} \times \boldsymbol{k}=\boldsymbol{i} & \boldsymbol{k} \times \boldsymbol{k}=0
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{A} \times \boldsymbol{B} & =\boldsymbol{k} A_{x} B_{y}-\boldsymbol{j} A_{x} B_{z}-\boldsymbol{k} A_{y} B_{x}+\mathbf{i} A_{y} B_{z}+\boldsymbol{j} A_{z} B_{x}-\mathbf{i} A_{z} B_{y} \\
& =\boldsymbol{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\boldsymbol{j}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\boldsymbol{k}\left(A_{x} B_{y}-A_{y} B_{x}\right) \\
& =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
\end{aligned}
$$

It is easier for one to remember if the determinant is used.
Using the cofactor, $\boldsymbol{A} \times \boldsymbol{B}$ can be simplified as

where a 2×2 determinant is given by $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
Note

$$
\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})=\left|\begin{array}{lll}
C_{x} & C_{y} & C_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

((Mathematica))

$$
\begin{aligned}
& A=\{A 1, A 2, A 3\} \\
& \{A 1, A 2, A 3\} \\
& B=\{B 1, B 2, B 3\} \\
& \{B 1, B 2, B 3\} \\
& C C=\{C 1, C 2, C 3\} \\
& \{C 1, C 2, C 3\} \\
& D D=\{D 1, D 2, D 3\} \\
& \{D 1, D 2, D 3\}
\end{aligned}
$$

$$
\operatorname{Cross}[A, B]
$$

$$
\{-\mathrm{A} 3 \mathrm{~B} 2+\mathrm{A} 2 \mathrm{~B} 3, \mathrm{~A} 3 \mathrm{~B} 1-\mathrm{A} 1 \mathrm{~B} 3,-\mathrm{A} 2 \mathrm{~B} 1+\mathrm{A} 1 \mathrm{~B} 2\}
$$

A.B

$A 1 B 1+A 2 B 2+A 3 B 3$

Cross [CC, Cross[A, B]] / / Simplify

\{ - A2 B1 C2 + A1 B2 C2 - A3 B1 C3 + A1 B3 C3,
$-\mathrm{B} 2(\mathrm{~A} 1 \mathrm{C} 1+\mathrm{A} 3 \mathrm{C} 3)+\mathrm{A} 2(\mathrm{~B} 1 \mathrm{C} 1+\mathrm{B} 3 \mathrm{C} 3)$,
$-\mathrm{B} 3(\mathrm{~A} 1 \mathrm{C} 1+\mathrm{A} 2 \mathrm{C} 2)+\mathrm{A} 3(\mathrm{~B} 1 \mathrm{C} 1+\mathrm{B} 2 \mathrm{C} 2)\}$

Cross [Cross [CC, DD], Cross[A, B]] //
Simplify

```
{A3 B1 (C2 D1 - C1 D2) +
    A2 B1 (-C3 D1 + C1 D3) + A1
    (-B3 C2 D1 + B2 C3 D1 + B3 C1 D2 - B2 C1 D3),
    A3 B2 (C2 D1 - C1 D2) +
    A1 B2 (C3 D2 - C2 D3) + A2
        (-B3 C2 D1 + B3 C1 D2 - B1 C3 D2 + B1 C2 D3),
    B3 (-A2 C3 D1 + A1 C3 D2 + A2 C1 D3 - A1 C2 D3) +
        A3 (B2 C3 D1 - B1 C3 D2 - B2 C1 D3 + B1 C2 D3) }
```


9.3 Application of the vector product

9.3.1 Area of parallelogram

The magnitude of $\boldsymbol{A} \times \boldsymbol{B}$ is the area of the parallelogram.

$$
|\boldsymbol{A} \times \boldsymbol{B}|=A B \sin \theta \mid
$$

9.3.2 Volume of a parallelepiped

The scalar given by

$$
|(\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{C}|=V
$$

is the volume of parallelepiped

9.3.3 Law of sine

We consider the triangle defined by $\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$, and take the vector product

$$
A \times C=A \times(A+B)=A \times A+A \times B=A \times B
$$

The magnitude of both sides must be equal so that

$$
A C \sin (A, C)=A B \sin (A, B)=A B \sin (\pi-(A, B))
$$

or

(Law of sine).
where $\sin (\boldsymbol{A}, \boldsymbol{B})$ denotes the sine of the angle between \boldsymbol{A} and \boldsymbol{B}.

10. Example

10.1

Problem 3-42
Problem 3-44

(8-th edition)

(9-th, 10-th edition)
In the product $\mathbf{F}=q(\mathbf{v} \times \mathbf{B})$, take $q=2$,
$\mathbf{v}=2.0 \mathbf{i}+4.0 \mathbf{j}+6.0 \mathbf{k}$, and $\quad \mathbf{F}=4.0 \mathbf{i}-20 \mathbf{j}+12 \mathbf{k}$,
What then is \boldsymbol{B} in unit-vector notation if $B_{\mathrm{x}}=B_{\mathrm{y}}$?
((Solution))
$\mathbf{F}=q(\mathbf{v} \times \mathbf{B})=2\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & 6 \\ B_{x} & B_{x} & B_{z}\end{array}\right|=2\left(4 B_{z}-6 B_{x}, 6 B_{x}-2 B_{z},-2 B_{x}\right)=(4,-20,12)$
or

$$
\begin{aligned}
& 2 B_{z}-3 B_{x}=1 \\
& 3 B_{x}-B_{z}=-5 \\
& B_{x}=-3
\end{aligned}
$$

or

$$
\begin{aligned}
& B_{z}=-4 \\
& B_{x}=-3
\end{aligned}
$$

((Mathematica))

$$
\begin{aligned}
& v=\{2,4,6\} \\
& \{2,4,6\}
\end{aligned}
$$

$$
B=\{B x, B x, B z\}
$$

$$
\{B x, B x, B z\}
$$

$$
F=\{4,-20,12\}
$$

$$
\{4,-20,12\}
$$

$$
\text { eq1 = F - } 2 \text { Cross [} v, B] / / \text { Simplify }
$$

$$
\{4+12 B x-8 B z,-4(5+3 B x-B z), 4(3+B x)\}
$$

$$
\mathrm{eq} 11 \text { = eq1 }[[1]]=0
$$

$$
4+12 B x-8 B z==0
$$

$$
\mathrm{eq12}=\mathrm{eq1}[[2]]=0
$$

$$
-4(5+3 B x-B z)==0
$$

Solve [$\{\mathrm{eq} 11, \mathrm{eq} 12\}, \quad\{B x, B z\}]$

$$
\{\{B x \rightarrow-3, B z \rightarrow-4\}\}
$$

Problem 3-32*** (form SP-3) (9-th, 10-th edition)

In Fig., a cube of edge length a sits with one corner at the origin of an $x y z$ coordinate system. A body diagonal is a line that extends from one corner to another through the center. In unit-vector notation, what is the body diagonal that extends from the corner at (a) coordinates $(0,0,0)$, (b) coordinates ($a, 0,0$), (c) coordinates $(0, a, 0)$, and (d) coordinates ($\mathrm{a}, \mathrm{a}, 0$)? (e) Determine the angles that the body diagonals make with the adjacent edges. (f) Determine the length of the body diagonals in terms of a.

((Solution))

$$
\begin{aligned}
& B 1=\{a, 0,0\} ; C 1=\{0, a, a\} ; E 1=\{a, 0, a\} ; \\
& A 1=\{a, a, a\} ; D 1=\{0, a, 0\} ; F 1=\{a, a, 0\} ; \\
& G 1=\{0,0, a\} \\
& \{0,0, a\} \\
& B C 1=C 1-B 1 \\
& \{-a, a, a\} \\
& D E 1=E 1-D 1 \\
& \{a,-a, a\} \\
& F G=G 1-F 1 \\
& \{-a,-a, a\} \\
& \{A 1=A 1-E 1 \\
& \{0, a, 0\}
\end{aligned}
$$

A1.EA
a^{2}
$\sqrt{\text { EA1.EA1 }} / /$ Simplify $[\#, a>0] \&$
a
$\sqrt{\text { A1.A1 }} / /$ Simplify $[\#, a>0] \&$
$\sqrt{3} \mathrm{a}$
$\frac{180}{\pi} \operatorname{ArcCos}\left[\frac{E A 1 \cdot A 1}{\sqrt{A 1 \cdot A 1} \sqrt{E A 1 \cdot E A 1}}\right] / / N$
54.7356

10.3

Problem 3-32 (from SP-3)
Problem 3-31 (from SP-3)

(8-th edition)

In Fig., a vector \boldsymbol{a} with a magnitude of 17.0 m is directed at angle $\theta=56.0^{\circ}$ counterclockwise from the $+x$ axis. What are the components (a) a_{x} and (b) a_{y} of the vector? A second coordinate system is inclined by angle $\theta^{\circ}=18.0^{\circ}$ with respect to the first. What are the components (c) $a^{\prime}{ }_{\mathrm{x}}$ and (d) $a^{\prime}{ }_{\mathrm{y}}$ in this primed coordinate system?

Instead of solving this problem, here we consider the more general case shown below.

We assume that

$$
\mathbf{a}=a_{x} \hat{e}_{x}+a_{y} \hat{e}_{y}=a_{X} \hat{e}_{X}+a_{Y} \hat{e}_{Y}
$$

where the unit vectors are related through a relation

$$
\begin{aligned}
& \hat{e}_{X}=(\cos \theta) \hat{e}_{x}+(\sin \theta) \hat{e}_{y} \\
& \hat{e}_{Y}=(-\sin \theta) \hat{e}_{x}+(\cos \theta) \hat{e}_{y}
\end{aligned}
$$

where θ is the angle between the x axis and X axis.

or

$$
\begin{aligned}
& \hat{e}_{x}=(\cos \theta) \hat{e}_{X}+(-\sin \theta) \hat{e}_{Y} \\
& \hat{e}_{y}=(\sin \theta) \hat{e}_{X}+(\cos \theta) \hat{e}_{Y}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
a_{X} \hat{e}_{X}+a_{Y} \hat{e}_{Y} & =a_{x} \hat{e}_{x}+a_{y} \hat{e}_{y} \\
& =a_{x}\left(\cos \theta \hat{e}_{X}-\sin \theta \hat{e}_{Y}\right)+a_{y}\left(\sin \theta \hat{e}_{X}+\cos \theta \hat{e}_{Y}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
a_{X} \hat{e}_{X}+a_{Y} \hat{e}_{Y} & = \\
& =\left(a_{x} \cos \theta+a_{y} \sin \theta\right) \hat{e}_{X}+\left(-a_{x} \sin \theta+a_{y} \cos \theta\right) \hat{e}_{Y}
\end{aligned}
$$

or

$$
\begin{aligned}
& a_{X}=a_{x} \cos \theta+a_{y} \sin \theta \\
& a_{Y}=-a_{x} \sin \theta+a_{y} \cos \theta
\end{aligned}
$$

or

$$
\binom{a_{X}}{a_{Y}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{a_{x}}{a_{y}}
$$

or
$\binom{a_{x}}{a_{y}}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{a_{X}}{a_{Y}}$

11. Problem

3-59 (Serway and Jewett)

A person going for a walk, follows the path shown in Fig. The total trip consists of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point.

A1 $=\{100,0\}$;
$B 1=\{0,-300\} ;$
$C 1=\left\{150 \operatorname{Cos}\left[-150{ }^{\circ}\right], 150 \operatorname{Sin}\left[-150{ }^{\circ}\right]\right\}$;
D1 $=\left\{200 \operatorname{Cos}\left[120^{\circ}\right], 200 \operatorname{Sin}\left[120^{\circ}\right]\right\} ;$
$E 1=A 1+B 1+C 1+D 1 / / N$
\{-129.904, -201.795\}
$\sqrt{E 1 . E 1} / / N$
239.992
eq1 $=\operatorname{ArcTan}[E 1[[2]] / E 1[[1]]] / / N$
0.998833
eq1 ($180 / \pi$) // N
57.2289
$\left(\right.$ Angle $=180+57.2=237.2^{\circ}$

```
Graphics[{Red, Thick, Arrow[{{0, 0}, A1}], Arrow[{A1, A1 + B1}],
    Arrow[{A1 + B1, A1 + B1 + C1}], Arrow[{A1 + B1 +C1, A1 + B1 +C1 + D1}],
    Black, Thin, Arrow[{{0, -500}, {0, 150}}],
    Arrow[{{-200, 0}, {200, 0}}], Green, Thick, Arrow[{{0, 0}, E1}],
    Black, Text[Style["x", 12], {210, 0}],
    Text[Style["y", 12], {0, 160}], Blue, Thick,
    Text[Style["A", Bold, 12], {50, 10}],
    Text[Style["B", Bold, 12], {110, -150}],
    Text[Style["C", Bold, 12], {50, -350}],
    Text[Style["D", Bold, 12], {-80, -330}]}]
```


