
Lecture Note (Chapter 4) 
 
 
1. Position, velocity, and acceleration for a particle moving in the xy plane 
 
The position vector r is defined by 
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The average velocity is defined by 
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((Note)) 

The average velocity is the ratio of the displacement to the time interval for the 
displacement. The direction of the average velocity is the direction of the 
displacement vector. 

 



 
 
The (instantaneous) velocity vector is defined by 
 

),(lim
0

yxyx
t

vvvv
dt

dy

dt

dx

tdt

d








jiji
rr

v . 

 
The average acceleration vector is defined by 
 

),()(
t

v

t

v

t

v

t

v

t

v yxyx
avg 

















 jia . 

 
The (instantaneous) acceleration vector: 
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The magnitudes of these vectors are 
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((Note)) 
The slope of the tangential line is equal to vy/vx since 
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2. Constant acceleration 
 
We now consider a simple case that a = constant. Then we have the vector form 
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Using x and y components, we have 
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3. Projectiles 
 
3.1 Formulation 



 
Old Faithful Geyser in Yellowstone National Park, Wyoming (July, 2007, picture taken 
by the author). Old Faithful was named by the first official expedition to Yellowstone, the 
Washburn Expedition of 1870. They were impressed by its size and frequency. Old 
Faithful erupts 90 minutes for 1 1/2 to 5 minutes. Its maximum height is up to 184 feet (≈ 
56 m). 
 
We now consider a projectile motion 
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Then we have 
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A key feature of projectile motion is that the horizontal motion is independent of the 
vertical motion.  



 

 
 
3.2 The equation of the path 
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Here we assume that x0 = 0 and y0 = 0. 
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This figure shows the path of a projectile that starts at (or path through) the origin at time 
t = 0. The position and velocity components are shown at equal time intervals. The x 
component of acceleration is zero, so vx is constant. The y component of the acceleration 
is constant an not zero, so vy changes by equal amounts in equal times, just the same as if 
the projectile were launched vertically with the same initial velocity. At the highest point 
in the trajectory, vy = 0.  
 

 
 
3.3 The maximum height 

We start with the two equations, 
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At the highest point, we have vy = 0 and y = H at t = tmax-height. 
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3.4 The horizontal range 

We start with the two equations 
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When y = 0, x = R and t = tflight. Then we get 
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4. Horizontal flight 
 
We consider the case when the initial velocity is directed along the positive x direction. 
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We set up the following equations 
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When y = 0, we have 
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 . Then the flight distance along the x direction, d, is 
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5. Uniform circular motion 
 
5.1 Polar coordinates 

We define the polar coordinate in the x-y plane; 
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The position vector OP  is expressed by 
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The two unit vectors (radial component and tangential component) are given by 
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5.2 Velocity and acceleration for the uniform circular motion 

We consider a case when a particle rotates around a center at the constant velocity v 
(uniform circular motion) 
 
We define the angular velocity given by 
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The period T is given by 
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where r is the radius of the circle and v is the velocity around the circumference of the 
circle, 
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The angle  is expressed by 
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Then we can calculate the velocity and acceleration in terms of the polar coordinates, 
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The acceleration a is called a centripetal acceleration. The direction of a is directed 
toward the center of the circle: the (-er) direction. 
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Uniform circular motion 
 

5.3 Geometrical consideration 
 
5.3.1 Tangential velocity 

We now consider the uniform circular motion from a view point of geometry. 
 

OP = OQ = r. 
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((Note)) 
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Then we have 
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((Note)) In the limit of small , we have 
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5.3.2 Centripetal acceleration 
 
In the limit of 0 , the difference vector rv  is directed toward the center of the 
circle. 
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The magnitude of rv  is given by 
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The centripetal acceleration ar is defined by 
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The vector ar is directed toward the center of the circle. 
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((Note)) 
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Then we have 
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5.3.3 The small angle approximation 

Suppose that car rotates uniformly on the circular track. As shown in the Fig below, 
the direction of the velocity of car is clearly changing as a function of time, even though 
the magnitude of the velocity remains constant. This means that the acceleration of the 
car is non-zero. The velocity vector changes in time because its direction changes in time. 

 



 
 

 
 
 



Fig. A car (here denoted by small green circle) moves with constant velocity around a 
circular track. Since the direction of the velocity vector is constantly changing, the 
acceleration of the car is not zero. In fact, the acceleration’s magnitude is constant 
and its direction is always toward the center of the circle. 
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Fig. We use the small angle approximation to determine the magnitude of the 

centripetal acceleration. 
 
In the above figure, we define the angle d between the two velocity vectors during the 
infinitesimal time dt to be equal to d. We can use the small angle approximation to 
obtain the magnitude of dv, the change in velocity vector during the time dt. 
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Then the magnitude of the acceleration is 
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The direction of the acceleration vector is perpendicular to the velocity vector on each 
point of the circle.  
 
6. Non-uniform circular motion 



We assume that the particle rotates around the center of circle with time dependent 
velocity. This problem will be discussed later (Chapter 10). Here we just show that result. 
The acceleration vector consists of the centripetal acceleration and tangential acceleration. 
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Non-uniform circular motion 
 

We consider a more general motion. A particle moves to the right along a circle, Its 
velocity changes both in direction and in magnitude. The total acceleration is the sum of 
the tangential component and the centripetal acceleration (radial acceleration). 
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((Example-1))  Serway 3-29 



A train slows down as it rounds a sharp horizontal turn, going from 90.0 km/h to 50.0 
km/h in the 15.0 s it takes to round the bend. The radius of the curve is 150 m. Compute 
the acceleration at the moment the train speed reaches 50.0 km/h. Assume the train 
continues to slow down at this time at the same rate. 
 
((Solution)) 

r = 150 m. 0.15t s.  
v = (90 – 50) km/h = 11.11 m/s. 

v = 50 km/h= 13.88 m/s. 
 
The tangential acceleration:  
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Then the magnitude of the acceleration is 
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The angle  is obtained as 
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((Example-2))  Serway 3-31 

The same Figure (above described) represents the total acceleration of a particle 
moving clockwise in a circle of radius r = 2.50 m at a certain instant of time. For that 
instant, find 
(a) the radial acceleration of the particle, 
(b) the speed of the particle, 
and 
(c) its tangential acceleration. 
 
((Solution)) 
 

r = 2.50 m,  0.30 , 0.15a  m/s2. 
 
(a) radial (centripetal) acceleration: 
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(b) 
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(c) Tangential acceleration: 
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6. Relative motion in two dimension 

When two frames of reference A and B are moving relative to each other at constant 
velocity, the velocity of a particle as measured by an observer in the frame A (vPA) 
usually differs from that measured from the frame B (vPB).  
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In this figure we have the following relations 
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since aBA = 0. 
 
((Note)) 
The vector rPA is the position vector of P relative to the origin of the reference frame A. 
 
((Example)) 

We explore this phenomenon by considering two observers watching a man walking 
on a moving beltway at an airport in Fig. shown below. The woman standing on the 
moving beltway (in blue dress) sees the man moving at a normal walking speed. The 
woman observing from the stationary floor (in pink dress) sees the man moving with a 
higher speed because the beltway speed combines with his walking speed. Both observers 
look at the same man and arrive at different values for his speed. Both are correct; the 
difference in their measurements results from the relative velocity of their frames of 
reference 
 

 
 

BGMBMG v vv  

 
where M is the man, B is the beltway, and G is the ground. The velocity of the walking 
man on the belway, against the ground is the sum of the velocity of the moving beltway 
and the velocity of the walking man against the moving beltway. 
 
((Example)) 
 
Problem 4-75 (SP-4)  (8-th edition) 
Problem 4-77 (SP-4)  (9-th, 10-th edition) 
 

Snow is falling vertically at a consant speed of 8.00 m/s. At what angle from the 
vertical do the snow flakes appear to be falling as viewed by the driver of a car travelling 
on a straight, level road with a speed of 50 km/h? 



 
((Solution)) 
 
((Note)) We use the following abbreviation 

s: snow, G: ground, and c: car. 
 
50 km/h = 50 x 1000m/3600s = 13.89 m/s 
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vcG = (13.89, 0) m/s 
 
Then we have 
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7. Examples 
________________________________________________________________________ 
7.1 Projectile 
 
Problem 4-43** (SP-4) (8-th edition) 
Problem 4-45** (SP-4) (9-th, 10-th edition) 



 
In Fig. a ball is launched with a velocity of magnitude 10.0 m/s, at an angle of 50° to the 
horizontal. The launch point is at the base of a ramp of horizontal length d1 = 6.00 m and 
height d2 = 3.60 m. A plateau is located at the top of the ramp. (a) Does the ball land on 
the ramp or the plateau? When it lands, what are the (b) magnitude and (c) angle of its 
displacement from the launch point? 
 

 

 

 
 
d1 = 6.0 m.  d2 = 3.6 m. 
v0 = 10.0 m/s.   = 50º from the horizontal  
tan = d2/d1 = 0.6, or  = 30.96 º. 
 
The x and y positions of the particle: 
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The ramp is described by  
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Find the intersection of the two curves. 
________________________________________________________________________ 
7.2 Projectile 
 
Problem 4-50 (SP-4)*** (8-th edition) 
Problem 4-52 (SP-4)*** (9-th, 10-th edition) 
 



A ball is to be shot from level ground toward a wall at distance x (Fig.a). Figure (b) 
shows the y component vy of the ball’s velocity just as it would reach the wall, as a 
function of the distance x. What is the launch angle? 
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vy is proportional to x. (The curve of v vs x is a straight line). 
 
At x = 0, 
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At x = 10m, 
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Then we have two equations to determine  and v0, 
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From these we get 
 

v0 = 20.2 m/s,   = 14.3º 
 
________________________________________________________________________ 
7.3 Projectile 
 
Problem 4-53 (SP-4)*** (8-th edition) 
Problem 4-55 (SP-4)*** (9-th, 10-th edition) 
 



A ball rolls horizontally off the top of a stairway with a speed of 1.52 m/s. The steps 
are 20.3 cm high and 20.3 cm wide. Which step does the ball hit first? 
 
((Solution)) 
a = 0.203 m.  v0 = 1.52 m/s. 
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The condition that the ball hits the n-th step first is as follows. 
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(2) At x = (n-1)a, the value of y should be larger than –(n-1) a. 
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Then we have two inequalities 
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Then we have n = 3. 



In[1]:= rule1  a  0.203, v0  1.52, g  9.8;

f1  If0  x  a, a, 0 
Ifa  x  2a, 2 a, 0 
If2 a  x  3a, 3 a, 0 
If3 a  x  4a, 4 a, 0;

p11  Plotf1 . rule1, x, 0, 0.812,

PlotStyle  Thick, Red,

PlotRange  0, 1, 0, 1;

f2  
g

2

x2

v02
; f21  f2 . rule1;

p22  Plotf21, x, 0, 0.812,

PlotRange  0, 1, 0, 1,

PlotStyle  Thick, Blue;

Showp11, p22

Out[1]=
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________________________________________________________________________ 
7.4 Uniform circular motion 
 
Problem 4-68*** (SP-4) (8-th edition) 
Problem 4-68*** (SP-4) (9-th, 10-th edition) 
 
A cat rides a merry-go-round turning with uniform circular motion. At time t1 = 2.00 s, 
the cat’s velocity is  
 



jiv )/00.4()/00.3(1 smsm  , 
 
measured on a horizontal xy coordinate system. At t2 = 5.00 s, its velocity is 
 

jiv )/00.4()/00.3(2 smsm  . 
 
What are (a) the magnitude of the cat’s centripetal acceleration and (b) the cat’s average 
acceleration during the time interval 12 tt  , which is less than one period? 

 
 
((Solution)) 
Uniform circular motion 
t1 = 2 s, v1 = (3, 4) m/s.   v1 = 5 m/s 
t2 = 5 s, v2 = (-3, -4) m/s.  v2 = 5 m/s 
 

 
 
The circular motion is counterclockwise. 
v1 and v2 are antiparallel. 
 

543 22 v  m/s 
 
The period T 
 

sT

T
tt

6

3
212




 

 
The radius r,  



 

m
vT

r

v

r
T

77.4
15
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


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(a) The acceleration a, 
 

2
2

/24.5
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25
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r

v
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(b) The average acceleration 
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________________________________________________________________________ 
7.5 Uniform circular motion 
 
Problem 4-95 (HW Hint)  (8-th edition) 
Problem 4-107   (9-th, 10-th edition) 
 

A particle P travels with constant speed on a circle of radius r = 3.00 m (Fig.) and 
completes one revolution in 20.0 s. The partricle passes through O at time t = 0. State the 
following vectors in magnitude-angle notation (angle relative to the positive direction of 
x). With respect to O, find the particle’s position vector at the times t of (a) 5.00 s, (b) 
7.50 s, and (c) 10.0 s. (d) 10.0 s. (d) For the 5.00 s interval from the end of the fifth 
second to the end of the tenth second, find the particle’s displacement. For that interval, 
find (e) its average velocity and its velocity at the (f) beginning and (g) end. Next, find 
the acceleration at the (h) beginning and (i) end of that interval. 
 

 
((Solution)) 
Uniform circular motion 
r = 3.00 m 
T = 20 s 
 



The center of the circle is O1. The position vector of P is r. The position vector of O1 is (0, 
r). The angle between PO1and the positive x axis is . At t = 0, the point P is at O.  
 

))cos(),sin(()sin(),cos((),0(11 trrtrrrrPOOOOP   r  
 

 
 
The angular velocity  is given by  
 

T

 2
  

 
The angle  vs t 
 

2

  t  

 
The x and y coordinates for the position of the particle 
 

),( yxr  
 
with 



)cos(

)sin(

trry

trx







 

 
The velocity of the particle is 
 

))sin(),cos((),( trtr
dt

dy

dt

dx
v   

 
The acceleration vector of the particle; 
 

))cos(),sin((),( 22
2
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2

2

trtr
dt

yd

dt

xd
a   

 
______________________________________________________________________ 
7.6 Relative motion 
 
Problem 4-74** (SP-4)  (8-th edition) 
Problem 4-76** (SP-4)  (9-th, 10-th edition) 
 

A light plane attains an airspeed of 500 km/h. The pilot sets out for a destination 800 
km due north but discovers that the plane must be headed 20.0° east of due north to fly 
there directly. The plane arrives in 2.00 h. What were the (a) magnitude and (b) direction 
of the wind velocity? 
 
((Solution)) 
 



 
 
((Note)) We use the following abbreviation 

a: airplane, G: ground, and w: wind. 
 
t = 2 hours 
Airspeed of the plane: 500 km/h 
 

wGawaG vvv   

 
where 
 

hkm

hkm

aw

aG

/)8.469,171())20cos(500),20sin(500(

/)400,0(




v

v
 

 
 
Then we have 
 

aGawaGwawG vvvvv  =(-171,-69.8) km/h 

 

hkmvwG /185

2.22

408.0
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8.69
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








 



 
_______________________________________________________________________ 
7.7 Relative motion 
 
Problem 4-82***  (8-th edition) 
Problem 4-82***  (9-th, 10-th edition) 
 

A 200-m-wide river has a uniform flow speed of 1.1 m/s through a jungle and toward 
the east. An explorer wishes to leave a small clearing on the south bank and cross the 
river in powerboat that moves at a constant speed of a 4.0 m/s with respect to the water. 
There is a clearing on the north bank 82 m from a point directly opposite the clearing on 
the south bank. (a) In what direction must the boat be pointed in order to travel in a 
straight line and land in the clearing on the north bank? (b) How long will the boat take to 
cross the river and land in the clearing? 
 
((Solution)) 

 
BC = 82.0 m 
 
The vector with the red arrow is parallel to vbG. 

 
((Note)) We use the following abbreviation 



b: boat, G: ground, and w: water. 
 
 





3.22
200
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tan
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
 

 

wGbwbG vvv   
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v

v
 

 
where 
 

0.422  yxbw vvv  

 
For bGv , 

 
),1.1( yxbG vv v  

 
with 
 

200

82
tan

1.1


 
y

x

v

v
 

 
Then we have 
 

vx = -2.41 m/s 
 

vy = 3.19 m/s 
 
The time required for crossing the river is 
 

s
v

t
y

84.62
200

  

 
 
((Mathematica)) 



eq1  vx2  vy2  16

vx2  vy2  16

eq2  200 1.1  vx  82 vy

200 1.1  vx  82 vy

eq3  Solveeq1, eq2, vx, vy
vx  2.40917, vy  3.1931, vx  0.525771, vy  3.9653

 
180


ArcTan 82

200
  N

22.2936

t1 
200

vy
. eq31

62.635  
 
8. Advanced problem 
8.1 
Problem 4-62 (Serway and Jewett) (Advanced problem) 
 
A person standing at the top of a hemisphere rock of radius R kicks a ball (initially at rest 
on the top of the rock) to give it horizontal velocity v0 as shown in Fig.  
(a) What must be its minimum initial speed if the ball is never to hit the rock after it is 
kicked?  
(b) With its initial speed, how far from the base of the rock does the ball hit the ground? 
 
((Solution)) 
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The coordinate (x, y) should be outside the hemisphere with radius R. 
 





sincos
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R
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

 

 
for any  (0<</2) 
 
Then we have 
 

)sin1(
2

cos
2

)sin1( 2
2

0

2
2

2
0

2

 
v

gR

v

gR
R  

 
or 
 

)sin1(
2 2

0

2


v

gR
R  

 

The right-hand side of the inequality has a maximum 2
0

2

v

gR
 at  = /2. Then it is 

concluded that 
 



2
0

2

v

gR
R   

 
or 
 

gRv 0  

(b) 

When gRv 0 , 

 

R

x
R

gR

gx
R

v

gx
Ry

2)(22

22

2
0

2

  

 
When y = 0, we have 
 

Rx 2  
 
((Mathematica)) 



Clear"Global`"

y1  R 
1

2

g x2

v02
;

rule1  R  1, g  9.8
R  1, g  9.8

y11  y1 . rule1

1 
4.9 x2

v02

y2  R2  x2 ;

y22  y2 . rule1

1  x2

p1  PlotEvaluateTabley11, v0, 2.5, 3.5, 0.1, x, 0, 1,

AspectRatio  1, PlotStyle  TableThick, Hue0.1 i, i, 0, 10,

Background  LightGray,

Epilog  Hue0.5, Thick, TextStyle"v03.0", 12, 0.95, 0.5;

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

v0=3.0

p2  Ploty22, x, 0, 1, AspectRatio  1, PlotStyle  Thick, Black,

Background  LightGray, AxesLabel  "xR", "y";

Showp1, p2



8.2 
Problem 4-55 (Serway and Jewett) 
 
When baseball players throw the ball in from the outfield, they usually allow it to take 
one bounce before it reaches the infield, on the theory that the ball arrives sooner that 
way. Suppose that the angle at which a bounced ball leaves the ground is the same as the 
angle at which the outfielder threw it, as in Fig., but that the ball's speed after the bounce 
is one half of what it was before the bounce. 
(a) Assuming the ball is always thrown with the same initial speed, at what angle  

should the fielder throw the ball to make it go the same distance D with one 
bounce (blue path) as a ball thrown upward at 45.0º with no bounce (green path)? 

(b) Determine the ratio of the times for the one-bounce and no-bounce throws. 
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D  , (the distance where the ball flies) 

sin
2 0

g

v
T    (total times when the ball arrives at the ground again) 



 
(a) 
For no bounce throw, the total distance D1 along the x axis is 
 

g

v

g

v
D

2
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2
0

1 )452sin(   

 
For one bounce throw, the total distance along the x axis is 
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When D1 = D2, we have 
 

5

4
)2sin(    or  = 25.6º 

 
(b) 
For no bounce throw, the total time T1 is 
 

)45sin(
2 0

1 
g

v
T  

 
For one bounce throw, the total time T2 is 
 

)6.26sin(
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The ratio is 
 

949.0
)45sin(2

)6.26sin(3

1

2 




T

T
 

 
 
APPENDIX-I 
((Example)) Relative motion  
Ball shot upward from moving cart (Howitzer cart) 
 

The trajectory of a ball thrown straight up by a man (at the initial velocity v0) at rest 
on a train moving at constant velocity 1v  with respect to an observer on the ground. In the 
time t it takes the ball to go straight up and down with respect to the man on the train, 



the train has traveled a distance tvx  1 . the ball is always directly above the man on 
the train and therefore appears to have the trajectory shown to the observer on the ground. 
 

 
 
We consider using the superposition for the relative motion. 
 

tgbtbg vvv  , 

 
or 
 

)
2

1
,( 2

01 gttvtvtgbtbg  rrr , 

 
where b: ball, t: train, and g: ground. Thus we have 
 

tvx 1 , 2
0 2

1
gttvy  . 

 
The motion is equivalent the motion of ball with the horizontal velocity (v1) and vertical 
velocity (initial velocity v0). 
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x
t  , 

 

2
2

11

0

2

11
0

2
0 2

1

2

1

2

1
x

v

g
x

v

v

v

x
g

v

x
vgttvy 

















 , 

 



which is the motion of the ball observed from the ground. When y = 0, we have 
 

101

2
vv

g
tvx   and  

g

v

v

x
t 0

1

2
 . 

 
He sees the train moving so that the horizontal positions of the ball when it leaves the 
man’s hamd and when it returns are separated by the distance the train travels during the 
flight time of the ball. In fact, what he sees is the combined motions of constant 
acceleration in the vertical direction and constant velocity in the horizontal direction. 
 
________________________________________________________________________
APPENDIX II Huygen’s formula for the centripetal acceleration 
 

v1

v1v2

v2v

r

r

r

 
 
We calculate the centripetal acceleration of a particle rotating on a circle of radius r, with 
constant speed. During a short time interval 12 ttt   from t1 to t2, the particle moves 
along the circle by a small distance r , where   is the rotation angle during the time 
interval t . The magnitude of the velocity is 
 


r

t
r

t
v

tt
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
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




 00

limlim
r
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Velocities of a particle moving on a red circle (with radius r) at two times, separated by a 
short time interval t . The particle undergoes a rotation at the constant angular velocity 
. The velocity vector v is always tangent to the circle. So it is perpendicular to the radial 
vector r. The v1 and v2 in the blue circle of Fig., are brought together into a triangle. For 
convenience, we draw the velocity space and position space in the same figure. The short 
side is the change of velocity in this interval, v . 
 

)()sin(   vvv , 
 
where 
 

rv  . 
 
Then the centripetal acceleration is obtained as 
 

r

v
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v
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 
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This is Huygen’s formula for the centripetal acceleration. In the limit of 0t , 
 

t



v

a . 

 
is perpendicular to the velocity v1 and is directed toward the center of the circle (called 
the centripetal acceleration). 
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