
Lecture Note 
Chapter 6 
 
1. Overview: friction force 
 

Friction forces are categorized as either static or kinetic. The coefficient of static 
friction μs characterizes friction when no movement exists between the two surfaces in 
question, and the kinetic coefficient μk characterizes friction where motion occurs. 
 

s  coefficient of static friction 
k  coefficient of kinetic friction 

 
 

 
 
2. Friction force 
 
2.1 Static friction 

The static friction force must be overcome by an applied force before an object can 
move. The maximum possible friction force between two surfaces before sliding begins 
is the product of the coefficient of static friction and the normal force: fmax = μsN. When 
there is no sliding occurring, the friction force can have any value from zero up to fmax. 
Any force smaller than fmax attempting to slide one surface over the other is opposed by a 
frictional force of equal magnitude and opposite direction.  
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2.2 Kinetic friction 

Any force larger than fmax overcomes the force of static friction and causes sliding to 
occur. The instant that sliding occurs, kinetic friction is applicable and static friction is no 
longer relevant. When one surface is sliding over the other, the friction force between 
them is always the same and is given by the product of the coefficient of kinetic friction 
and the normal force: fk = μkN.  
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2.3 Property of friction 
 



The coefficient of static friction is larger than the coefficient of kinetic friction, since 
it takes more force to make surfaces start sliding over each other than it does to keep 
them sliding once started. 
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The friction force is directed in the opposite direction of the resultant force acting on 

a body.  
 
 
3 Drag force and terminal speed 
 

In fluid dynamics, drag (sometimes called fluid resistance) is the force that resists the 
movement of a solid object through a fluid (a liquid or gas). The most familiar form of 
drag is made up of friction forces, which act parallel to the object's surface, plus pressure 
forces, which act in a direction perpendicular to the object's surface.  
 
Drag coefficient D 
 

2

2

1
AvCD   

 
where 
 
 is the air density, 
A is the effective cross-sectional area,  
C is the drag coefficient (typically, C = 0.4 – 1.0). 
 
 

 
 



Newton’s second law 
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What is the terminal velocity? 
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This is the first order differential equation 
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For m = 1, k = 1, g = 9.8, and v0 = 1. 
 
We have the time dependence of v(t). 
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((Mathematica)) 
Using Mathematica, you can easily solve the first-order differential equation and make a 
plot of the velocity as a function of t for typical numerical values of the initial velocity. 



eq1  m g  k vt2  m v't, v0  v0
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eq2  DSolveeq1, vt, t  Simplify
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rule1  m  1, k  1, g  9.8, v0  1
m  1, k  1, g  9.8, v0  1

v11  v1 . rule1

3.1305 Tanh0.331021  3.1305 t

Limitv11, t  
3.1305

Plotv11, t, 0, 4,

PlotRange  0, 4, 0, 4,

AxesLabel  "t s", "vt ms",

PlotStyle  Thick, Red,

Background  LightGray
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4 Uniform circular motion 
 

 
 
ar: centripetal acceleration 
 
Newton’s second law 
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5 Sample problems 
5.1 Friction 
5.1.1 Sample Problem 6-2 

In Fig.a, a block of mass m = 3.0 kg slides along a floor while a force F of magnitude 
12.0 N is applied to it at an upward angle . The coefficient of kinetic friction between 
the block and the floor is k = 0.40.. We can vary  from 0 to 90° (the block remains on 
the floor). What  gives the maximum value of the block’s acceleration magnitude a? 
 



 
 
Free-body diagram 

 
 
Newton’s second law 
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5.1.2 Sample Problem 6-3 

Although many ingenious schemes have been attributed to the building of the Great 
Pyramid, the stone blocks were probably hauled up the side of the pyramid by men 
pulling on ropes. Figure a represents a 2000 kg stone block in the process of being pulled 
up the finished (smooth) side of the Great Pyramid, which forms a plane inclined at 
angle . The block is secured to a wood sled and is pulled by multiple ropes (only one is 



shown). The sled’s track is lubricated with water to decrease the coefficient of static 
friction to 0.40. Assume negligible friction at the (lubricated) point where the ropes pass 
over the edge at the top of the side. If each man on top of the pyramid pulls with a 
(reasonable) force of 686 N, how many men are needed to put the block on the verge of 
moving? 
 

 
 
 
Free-body diagram 

 
 
Newton’s second law 
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5.2 Circular motion 



5.2.1 Sample Problem 6-7 
In a 1901 circus performance, Allo “Dare Devil” Diavolo introduced the stunt of 

riding a bicycle in a loop-the-loop (Fig. a). Assuming that the loop is a circle with radius 
R = 2.7 m, what is the least speed v Diavolo could have at the top of the loop to remain in 
contact with it there?  
 

 

 
 
 
R = 2.7 m 
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5.2.2 Sample Problem 6-8 

Even some seasoned roller-coaster riders blanch at the thought of riding the Rotor, 
which is essentially a large, hollow cylinder that is rotated rapidly around its central axis 
(Fig. 6-11). Before the ride begins, a rider enters the cylinder through a door on the side 
and stands on a floor, up against a canvas-covered wall. The door is closed, and as the 
cylinder begins to turn, the rider, wall, and floor move in unison. When the rider’s speed 
reaches some predetermined value, the floor abruptly and alarmingly falls away. The 
rider does not fall with it but instead is pinned to the wall while the cylinder rotates, as if 
an unseen (and somewhat unfriendly) agent is pressing the body to the wall. Later, the 
floor is eased back to the rider’s feet, the cylinder slows, and the rider sinks a few 
centimeters to regain footing on the floor. (Some riders consider all this to be fun.)   
 

 



 
 
m = 49 kg, s = 0.40 
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From these equation we obtain 
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5.2.3 Sample Problem 6-6 

Igor is a cosmonaut on the International Space Station, in a circular orbit around 
Earth, at an altitude h of 520 km and with a constant speed v of 7.6 km/s. Igor’s mass m 
is 79 kg. 

(a) What is his acceleration? 
(b) What force does Earth exert on Igor? 

 
((Gravitational constant)) 

The gravitational constant G is a key element in Newton's law of universal gravitation. 
The gravitational constant, denoted G, is a physical constant involved in the calculation 
of the gravitational attraction between objects with mass. It appears in Newton's law of 
universal gravitation and in Einstein's theory of general relativity. It is also known as the 



universal gravitational constant, Newton's constant, and colloquially G. It should not 
be confused with "little g" (g), which is the local gravitational field (equivalent to the 
local acceleration due to gravity), especially that at the Earth's surface; see Earth's gravity 
and standard gravity. 

According to the law of universal gravitation, the attractive force (F) between two 
bodies is proportional to the product of their masses (m1 and m2), and inversely 
proportional to the square of the distance (r) between them: 
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The constant of proportionality, G, is the gravitational constant. 
 

G = 6.67384 x 10-11 N m2/kg2 
 
((Note)) 

The gravitational constant, approximately 6.67×10−11 N·(m/kg)2 and denoted by 
letter G, is an empirical physical constant involved in the calculation(s) of gravitational 
force between two bodies. It usually appears in Sir Isaac Newton's law of universal 
gravitation, and in Albert Einstein's general theory of relativity. It is also known as the 
universal gravitational constant, Newton's constant, and colloquially as Big G.  
http://en.wikipedia.org/wiki/Gravitational_constant 
 
Motion of satellite 
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We assume that r = RE. In other words, h is much smaller than RE. 
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where 

RE is the radius of the Earth;  RE = 6.372 x 106 m 

MEis the mass of the Earth;  ME= 5.9736 x 1024 kg 
G is the gravitational constant; G = 6.6742867 x 10-11 N m2/kg2 

 
((Mathematica)) 



G=gravitational constant  (N m2/kg2), 

Mea = 5.9736 x 1024 kg; Mass of the earth,

Rea=6372.797 km, radius of the earth,
Msun=mass of sun (kg) =Solar mass

Rsun=radius of Sun (m)=Solar radius
Mmoon=Mass of moon (m)

Rmoon=radius of moon (m)

Physconst  G  6.6742867 1011, Mea  5.9736 1024,

Rea  6.372 106 , Msun  1.988435 1030, Rsun  6.9599 108,

Mmoon  7.3483 1022, Rmoon  1.738 106
G  6.674291011, Mea  5.9736 1024,

Rea  6.372106, Msun  1.98844 1030, Rsun  6.9599 108,

Mmoon  7.34831022, Rmoon  1.738 106
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5.2.4 Sample Problem 6-9 Negative lift 

Upside-down racing: A modern race car is designed so that the passing air pushes 
down on it, allowing the car to travel much faster through a flat turn in a Grand Prix 
without friction failing. This downward push is called negative lift. Can a race car have 
so much negative lift that it could be driven upside down on a long ceiling, as done 
fictionally by a sedan in the first Men in Black movie? Figure 6-12a represents a Grand 
Prix race car of mass m = 600 kg as it travels on a flat track in a circular arc of radius R = 
100 m. Because of the shape of the car and the wings on it, the passing air exerts a 
negative lift FL downward on the car. The coefficient of static friction between the tires 
and the track is 0.75. (Assume that the forces on the four tires are identical.) 

 



(a) If the car is on the verge of sliding out of the turn when its speed is 28.6 m/s, what 
is the magnitude of FL? 

 
(b) The magnitude FL of the negative lift on a car depends on the square of the car’s 

speed v2, just as the drag force does (Eq. 6-14). Thus, the negative lift on the car 
here is greater when the car travels faster, as it does on a straight section of track. 
What is the magnitude of the negative lift for a speed of 90 m/s? 

 

 
 
Free-body diagram 

 
v = 28.6 m/s 
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When Nf s , we have 
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5.2.5 Sample Problem 6-10 



Curved portions of highways are always banked (tilted) to prevent cars from sliding 
off the highway. When a highway is dry, the frictional force between the tires and the 
road surface may be enough to prevent sliding. When the highway is wet, however, the 
frictional force may be negligible, and banking is then essential. Figure 6-13a represents 
a car of mass m as it moves at a constant speed v of 20 m/s around a banked circular track 
of radius R = 190 m. (It is a normal car, rather than a race car, which means any vertical 
force from the passing air is negligible.) If the frictional force from the track is negligible, 
what bank angle  prevents sliding? 
 

 
 

 
 
R = 190 m 



 

r

v
mNF

mgNF

x

y

2

sin

0cos











 

 
or 
 

gR

v2

tan   

 
12  

 
6 Selected Problems and Homeworks 
 
6.1 
Problem 6-25 (SP-06)  (10-th edition) 
 

Block in Fig. weighs 711 N. The coefficient of static friction between block and table 
is 0.25; angle  is 30°; assume that the cord between B and the knot is horizontal. Find 
the maximum weight of block A for which the system will be stationary. 
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Free-body diagram 



 
 

Free body diagram 
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From these equations, we have 
 

gmf
gm

T Bs
A 



tan

 

 
or 
 

Ngmgm BsA 6.102tan   . 

 
6.2 
Problem 6-34 *** (SP-06)  (10-th edition) 
 

In Fig., a slab of mass m1 = 40 kg rests on a frictionless floor, and a block of mass m2 
= 10 kg rests on top of the slab. Between block and slab, the coefficient is 0.60, and the 
coefficient of kinetic friction is 0.40. The block is pulled by a horizontal force F of 
magnitude 100 N. In unit-vector notation, what are the resulting accelerations of (a) the 
block and (b) the slab? 
 
 

 
 



 
m1 = 40 kg m2 = 10 kg F = 100 N 
k = 0.4, s = 0.6 

 
Free-body diagram 

 
 
(a) Suppose that m2 does not move on the mass m1  a1 = a2 = a 
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which does not satisfy the condition obtained from the above equations, 
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So we can conclude that a1 is not equal to a2. In other words, the mass m2 moves on the 
mass m1. 
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6.3 
Problem 6-59*** (SP-06)  (10-th edition) 
 

In Fig., a 1.34 kg ball is connected by means of two massless strings, each of length L 
= 1.70 m, to a vertical rotating rod. The strings are tied to the rod with separation d = 1.70 
m and are taut. The tension in the upper string is 35 N. What are the (a) tension in the 
lower string, (b) magnitude of the net force Fnet on the ball, and (c) speed of the ball? (d) 
What is the direction of Fnet? 
 
 



 
 
Free-body diagram 
 

 
 
 = 30°, L = 1.70 m, d = 1.70 m 
T1 = 35 N, m = 1.34 kg 
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From these equations we have 
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6.4 
Problem 6-92 (HW-06, Hint) (10-th edition) 
 

A circular curve of highway is designed for traffic moving at 60 km/h. Assume the 
traffic consists of cars without negative lift. (a) If the radius of the curve is 150 m, what is 
the correct angle of banking of the road? (b) If the curve were not banked, what would be 
the minimum coefficient of friction between tires and road that would keep traffic from 
skidding out of the turn when travelling at 60 km/h? 
 
 
v = 60 km/h =16.7 m/s  r = 150 m 
 
Free-body diagram 
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7. Advanced Problems from other sources 
 
7.1 Serway Problem 5-44 
 

A 5.00 kg (m1) is placed on top of a 10.0-kg (m2) block. A horizontal force of 45.0 N 
(F) is applied to the 10-kg block, and the 5-kg block is tied to the wall. The coefficient of 
kinetic friction (k) between all moving surfaces is 0.2.  
(a) Draw a free-body diagram for each block and identify the action-reaction force 
between the bocks. 
(b) Determine the tension (T) in the string and the magnitude of the acceleration (a) of the 
10-kg block. 
 

 
 
 
 



 
 
((Solution)) 
m1 = 5.00 kg,  m2 = 10.00 kg 
k = 0.20  F = 45 N. 
 
For the block-1 which does not move, 
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For the block-2 which moves along the positive x direction with the acceleration a, 
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From Eqs.(1) and (2), we have 
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a = 0.58 m/s2 
f1 = T1 = 9.8 N, f2 = 29.4 N. 

 
 
 
7.2. Young and Freedman Problem 5-118 
 
Example for the uniform circular motion 
 
A small remote car with mass 1.60 kg moves at a constant velocity v = 12.0 m/s in a 
vertical circle inside a hollow metal cylinder that has a radius of 5.00 m. What is the 
magnitude of the normal force exerted on the car by the wall of the cylinder at (a) point A 
(at the bottom of the vertical circle) and (b) point B (at the top of the vertical circle). 
 

 
 
For the normal force at the bottom of the vertical circle, 
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For the normal force at the top of the vertical circle, 
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((Note)) 
We consider the general case. 
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When m = 1.6 kg, g = 9.80, v = 12.0 m/s, and R = 5.0 m 
 

N = 46.08 – 15.68 sin 
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((Appendix)) 
 
A.1 Terminal velocity  
 
The terminal velocity can be determined from 
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where r is the radius of the system. The critical velocity vcr is defined from the condition 
that 
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(a) For v<<vcr, the terminal velocity is obtained as 
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since m is proportional to r3. 
 
(b) For v>>vcr, the terminal velocity is obtained as 
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since m is proportional to r3. 
 
A.2 Experimental determination of s 

We put our system in the incline with an angle . We assume that the coefficient of 
static friction ms between our system and the incline. The coefficient of static friction ms 
is determined from the tangent of the maximum angle above which the system starts to 
slide on the incline. 
 
 

 
 
We apply the Newton’s second law; 
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From these equations, we have an inequality, 
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where max  is the maximum angle above which the system starts to slide on the incline. 

max  can be determined experimentally. 


