Lecture Note
Chapter 7
Work and Energy

1 Kinetic energy and work |
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We consider the simplest case where the acceleration a is constant.

Newton’s second law

ma = F coséd or a=—cosd
Here we use
v,i—v’=2ad = 2L Fdcoso
m
where vz is the final velocity and v; is the initial velocity. Then we get
m. .o 2, .
E(Vf —-Vv,")=Fdcosé=F-d
(1) The kinetic energy is defined by
K= lmv
2

((Note)) Units
In SI units, the units of work is J (Joule)

1J (Joule) = kg m¥/s®> =N 'm
1 N = kg m/s®

In cgs units, the unit of work is erg.



1 erg = g cm?/s® = dyne cm
1 dyne = g cm/s?

(2) The work is defined by
W=F-d (work done by a constant force)
Then Eq.(1) can be rewritten as
AK =K, -K, =W,
This is called as work-kinetic energy theorem, simply, work-energy theorem:
2 Work: general case

2.1  Definition
We now consider the work in the general case,

dW=F.ci

The work along a path is given by
W =[F-dr

where the integral is made along a path (path integral).

dr



2.2  Work done by the gravitational force (an example of W)
Conservative force

Rising , .

h h
. ‘ Falling
Y
ma ma
Work done = -mugh Work done = migh

For the rising case, the work done by the gravitational force is —mgh (<0).
For the falling case, the work done by the gravitational force is mgh (>0).

When the particles goes up and then falls down, the work done by the gravitational force
IS
1 \

Work done wWork done
-mgh muagh

-mgh + mgh = 0.

¥ Y

2.3 Work done by the frictional force (an example of Wy)
Nonconservative force



the direction of moving

friction

dw_ =—f, -dr, work done by the frictional force. This work is always negative. That is
not dependent on the direction of the movement.

The frictional force is one of the non-conservative forces.

wthe direction of maoving

the direction of maving

friction

W, =—F -dr <0, which does not depend on the direction of motion.



3. Work-energy theorem

¥
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The work done in the displacement by the force is defined as
B
W(A—)B):jF-dr (1)
A

where the limits A and B stand for the positions ra and rg. The substitution of the force F
defined by

dv

F=m—
dt

into Eq.(1) leads to
B
W (A —> B):mjd—v-dr.
-,

Now
dr = Edt =vdt
dt
so that

B
W(A—> B):mjﬂ-vdt
) dt

where the limits A and B now stand for the times ta and tg when the particle is at the
positions ra and rg. Here we can rearrange the integrand



, d dv dv dv
= V) =—V+V:—=2—"V
dt dt dt dt dt

B B
me,d m 1 1
W(A—=>B)=—[(—=v))dt =— [d(v?) ==mv.> —=mv,>
(A~ B) =7 [(dt=7 [ =5 mvg -y,

where the limits A and B now stand for the velocities va and vg when the particle is at the
positions ra and rg. This expression is rewritten as

W(A—>B)=K;-K,
where K is the kinetic energy of the particle.

In summary, the work-energy theorem is given by

AK =W

where

4 Net work
The force F is the sum of F; and Fp,

F=F+F,

where F is the conserved force (such as a gravitational force) and F,. is the non-
conserved force (such as friction).

The net work W, is the sum of W, and W,
Wnet :WC +WFIC

where



W, =]§Fc-dr

A

W, = TFnc -dr

Then we have the work-energy theorem:
AK =W, =W _ +W,

5 Potential energy U
We define a potential energy. This is a scalar function associated with a conservative
force.

W, =-AU =-U, -U,)

where W, is the work done by the conservative force, U; is the potential energy at the
initial state and U is the potential energy at the final state.

(a) For the one dimensional system, we have

W, = JX‘ F (x")dx'=-U(x)+U(x;)

Here we take a derivative of both sides with respect to x, we get

du (x)

FC(X) == dX

((Example))
For the gravitational force (conservative force), the potential energy is given by

U(z) = mgz,
since

du(z)
dz

F(2) =~ -mg

(b) For the three dimensional system, we have



W, :ch~dr

The conservative force F is expressed by the potential energy as

F. =-VU =—gradU = (_Q,_y _U

x' oy oy

((Note))
In Chapter 8 we will give a proof of this expression using Stokes theorem.

6 Spring Force
6.1 Hooke’s law
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A particle is subject to a linear restoring force in the x direction. A linear restoring force
(spring force) is one that is directly proportional to the displacement (x) measured from

the equilibrium point. The spring force is defined by

F=-kx, or F = —kxi

where k is a positive constant. The unit of k is N/m. This is called a Hooke’s law. For
sufficiently small displacements, the spring force may be produced by a stretched or
compressed spring. The sign of the force is such that the particle is always attracted

toward the origin x = 0.




A plot of the spring force is shown as a function of x.
F

&

The spring force is a conservative force.

F -dr = (—kxi) - dxi = —kxdx

W(i— f)=[F.dr= I(—kxdx):—%k(xfz—xiz)

Note that
. N 1 2 2 1 2 2 _
W(i— f)+W(f —>|)_—Ek(xf - X )_Ek(x‘ -X;7)=0,

which means the spring force is a conservative force.
Then the potential energy U can be defined as

duU(x) _
dx

F.(X)=- —kx

or

U =_“kxdx:£kx2
2

0



kx

¥
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The energy conservation:

From the work-energy theorem

AK =W =-AU
we have
A(K+U)=0 or AE =0

where E is the total energy and is defined by

E=K+U = %mv2 +%kx2 (Energy conservation law)

and

E, :lmvf2 +1kxf2 :lmvi2 +1kxi2 =E,

2 2 2 2
Where
1 5., _—

K (:Emv ) is the kinetic energy

U (:% kx?) is a potential energy.
((Note)) Derivation of the energy conservation law for the simple harmonics.

Approach from the Newton's second law



We start from the Newton's second law for the simple harmonics

mv =F =—kx 1)
Multiplying both sides of Eq.(1) by v =X, we get

mw = F = —kxx
or

dmyey Lo
a2’ "2

Then we have the energy conservation law for the simple harmonics

Love+ i =€ = const (2)
2 2

6.2  Energy conservation in the spring system
Here we consider the energy conservation law for the spring,

E=K+U :lmvzjtikx2
2 2

Atx =0, E= 1mvmax2
2
At X = Xmax (@amplitude) E-= %kxmax2
or
E==mv,, = %kxmax2

or

Vmax = meax

From the energy conservation law, we have



or

2 2
(LJ " (LJ _1
Vmax Xmax
This is a circle in the X/Xmax VS V/Vmax plane. The center is at the origin
plane is called a phase space.

Wz
&
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Fig. Phase space (x, v) for the simple harmonics.

6.3  Determination of the spring constant k

. In general, the v-x



Free-body diagram

In equilibrium, we have
kx, =mg

or

g



In Sl units, the spring constant is in the units of N/m.

In dynamics, we set up an equation of motion,

d’x

mg
mF mg—kX:—k(X—T):—k(X—XO)

(simple harmonics, see Chapter 15 for detail)

The solution of the second order differential equation is

X — X, = Acos(at + @)

NN
NARRRN

The period T is given by

T=2—7[=27r\/E
W k

((Note))
The dimension of m/k




m._kg_ kg _ .
BN =T mT =°
m s°m
6.4  Example
Problem 7-67 (SP-7) (10-th edition)

A spring with a pointer attached is hanging next to a scale marked in millimeters.
Three different packages are hung from the spring, in turn, as shown in Fig. (a) Which
mark on the scale will the pointer indicate when no package is hung from the spring? (b)
What is the weight W of the third package?
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Spring canstant k

T R )]

mig = 110 N myg = 240 N
X1 = 40 mm Xo =60 mm
X3 =30 mm

Determination of the spring constant

mg = k(X —X%p)
or (m, —m,)g =k(x, —x,)
m,g = k(x, —%,) 2= 2 h
The we have

K = (m,-m)g  (240-110)N

= —— =6.5x10°N/m
X, — X (60—-40)x10~"m

(@) %:xl—xO and M9 _16.9mm

Then we have

Xo = X1-16.9 = 23.1 mm



since x; = 40.0 mm.

() W =Kk(x;—X,)=44.9N
where x3 = 30 mm and xo = 23.1 mm.
7 Power P

7.1 Average power
The power is the time rate of transfer energy. The average power is defined as

_ AW (average power)
avg At
where
B
W = [F-dr
rA
7.2 Instantaneous power

If the force F causes a particle to undergo a displacement dr, the work done is
dW =F -dr.
Since
dr = vdt
the instantaneous power (or simply power) provided by the force id

—dW—F dr

P-——"" —F.— =
dt dt

F-v (instantaneous power)

From this expression, W can be derived as

W (t, > t,) = j P(t)dt

4

((Units))
In SI units, the units of power is W (Watt)

1IW=11J/s
1 horsepower=1 hcp = 746 W
kWh =(10% J/s) 3600 s = 3.6 x 10° J



8. Example
8.1
Problem 7-42*** (SP-7) (10-th edition)

Figure shows a cord attached to a cart that can slide along a frictionless horizontal rail
aligned along an x axis. The left end of the cord is pulled over a pulley, of negligible
mass and friction and at cord height h = 1.20 m, so that the cart slides from x; = 3.00 m to
X2 = 1.00 m. During the move, the tension in the cord is a constant 25.0 N. What is the
change in the kinetic energy of the cart during the move?

B,

|
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((Solution))

L J

h1=1.20m. x;=3.0m
Xo=1.0 m. T=25.0N



X

Vx? +h?

cosd =

w =J'T -dr :—chosﬁdx=—ij2
x1

X
—dX
A x% +h?

=T(YX2 +h* = /%2 +h?)
= 41.7262]

8.2
Problem 7-52*** (SP-7) (10-th edition)

A funny car accelerates from rest through a measured track distance in time T with
the engine operating at a constant power P. If the track crew can increase the engine
power by a differential amount dP, what is the change in the time required for the run.

w(0)=0 v
—_— —
\ | _
| ]

H(l

((Solution))

o_dW
dt

When P is constant,

i 1 , 1 1 )
W =_([Pdt =Pt=AK :Em[v(t)] —Em[v(t =0)]° = 5 m[v(t)]

using the work-energy theorem.

Then we have

dx 2Pt
v(t)=—=.[——
®) dt m

or



.
x:_[dx: ‘/%J‘ﬁdt = ‘/%%Ts’z =L
0

or
3 9 2
PT =§mL = const
This can be rewritten as

IN(PT®)=InP +3InT = In(%mLz) = const

or
AP RAT 4
P T
or
LE_ GlU
P T
9. Advanced problem

Serway Problem 6-52 and 7-14

A particle is attached between the identical springs on a horizontal frictionless table.
Both springs have spring constant k and are initially unstressed.
(@) If the particle is pulled a distance x along a direction perpendicular to the initial
configuration of the springs, as shown in Fig., show that the force exerted by the springs
on the particle is

F= —2kx(1—;2)i“

X2+ L

(b) Determine the amount of work done by this force in moving the particle from x = A to
0.



-

(@)



F =-2k(s—L)cos@=-2k(vx* + L* = X) ——
\/x +12

(b)

0 0 A L
= J' F. dx :I— 2kx(1- Yax =J‘2kX(1—ﬁ)dx
A A 0

X°+L

L
NxE+ 12
or

W =K[A? +2L(L-VA® +1%)]

(c) The potential U
U =-[Fdx=k@L® + x* - 2LJx* + L*)
0

((Mathematica))

~2kx(L—

1
\/x2+L2)



F=-2kx|1-
x2 42
L

-2kx S —
L2 + %2

1-

Jl = SimplifyU-AoFdlx, {(A>0, L> 0}]
K (A2+2L (L—\/A2+L2 ))

rulel={L-1, k->1}
(L->1, k-1}

F1=F /. rulel
1

V14 x2

-2X|1-

Plot[F1, {x, -2, 2}, PlotStyle » {Red, Thick},
Background -» LightGray, AxesLabel -» {""x", "F"}]

F
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Potential energy

X

Ul=SimpIify[-J- Fdx, {(k>0, L>0, x>0}]
0

k(2L2+x2—2L\/L2+x2)

U2 =Ul/. rulel
2:x2-2+/1+x?

Plot[U2, {x, -2, 2}, PlotStyle » {Red, Thick},
Background -» LightGray, AxesLabel -» {""x', "U"}]
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10. Problems of HW-7, SP-7, and so on

10.1
Problem 7-20 (SP-07) (10-th edition)

A block is set up a frictionless ramp along which an x axis extends upward. Figure
gives the kinetic energy of the block as a function of position x; the scale of the figure’s
vertical axis is set by Ky = 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?



s
—
R
0 1 2
x (m)
((Solution))
Vi =4.00 m/s
Ks =40.0J.

The work-energy theorem

((Note)) One can apply directly the energy conservation law to this problem.
The slope of K vs x is —mg siné.



The normal force N is given by

N =mgcosé

10.2
Problem 7-38 (SP-07) (10-th edition)

A 1.5 kg block is initially at rest on a horizontal frictionless surface when a horizontal
force along an x axis is applied to the block. The force is given by

F(x) = (2.5- x?)iN,

where x is in meters and the initial position of the block is x = 0. (a) What is the Kinetic
energy of the block as it passes through x = 2.0 m? (b) What is the maximum Kkinetic
energy of the block between x =0 and x = 2.0 m?

((Solution))

m = 1.50 kg.
v; = 0.
The work energy theorem

AK =K, —K, =K, =W = jF(x)dx: j(2.5—x2)dx

Since
1
Ki=0,and K, :Emvf
W o5 x2=0
dx
ﬂ =—2X
dx
10.3
Problem 7-57 (SP-07) (10-th edition)

A 230 kg crate hangs from the end of a rope of length L = 12.0 m. You push
horizontally on the crate with a varying force F to move its distance d = 4.00 m to the
side (see Fig). (a) What is the magnitude of F when the crate is in this final position?



During the crate’s displacement, what are (b) the total work done on it, (c) the work done
by the gravitational force on the crate, and (d) the work done by the pull on the crate from
the rope? (e) Knowing that the crate is motionless before and after its displacement, use
the answers to (b), (c), and (d) to find the work your force F does on the crate. (f) Why is
the work of your force not equal to the product of the horizontal displacement and the
answer to (a)?

'
— F
——d—

m=230kg, L=120m, d=4.0m, 6= arcsin(d/L) = 19.5°
F varies with the angle 6.

—_—F

mg

(@)

Tcoséd—-mg =0
Tsind=F

F=mgtané.

(b) The total work



AK =W =0 (work-energy theorem)
(©) W, =-AU, =-mgL(1-cos,) work due to gravity.

(d)  AK =W, +W, +W, =0.W;=0

W, =-W, =mgL(1-cos&,)

((Note-1)
We calculate the work done by the force F, tension T, and gravitational force (mg)

separately.

dr

-

Q) Work done by the force F
F varies with the angle 6,

F=mgtané.
Since dr = Ld@, we have

dW; =F -dr = Fdrcosé& = FLcos&d 8 = mgL tan&cos&d @ = mgLsin&d 6 .

Then we get



0,
W, =mgL [sin 6o = mgL(1—cos ).
0

(i)  Work done by the force T
Since the tension T is always perpendicular to the displacement dr,

WT:O

(i)  Work done by the gravitational force (F4 = mg)
T .
dW, =mg -dr = mgdr cos(6 + E) =-mgLsin&dé
or

90
W, = —mngsin e =-mgL(1—-cosé,)
0

The total work done is

Wigtar =We +W; + W, =mgL(1-cosé,) - mgL(1-cosd,) =0
((Note-2))
The result W,,,, =0 is evident since

total
Wi = [dr-(F+T +F)=0

and

F+T+F, =0

along any point on the path.

10.4
Problem 7-33*** (from SP-7) (10-th edition)

The block in Fig. lies on a horizontal frictionless surface, and the spring constant is
50 N/m. Initially, the spring is at its relaxed length and the block is stationary at position
x = 0. Then an applied force with a constant magnitude of 3.0 N pulls the block in the
positive direction of the x axis, stretching the spring until the block stops. When that
stopping point is reached, what are



(@) the position of the block,
(b) the work that has been done in the block by the applied force, and
(c) the work that has been done on the block by the spring force?

During the block’s displacement, what are
(d) the block’s position when its kinetic energy is maximum and
(e) the value that maximum Kkinetic energy?

Spring

((Solution))

k=50 N/m

F=3.0N

x =0and v = 0 initially.

The work-energy theorem

AK =W, +W_ . =-AU +W
AE =AK +AU =W,

In the present case, we have

W_ = Fx

nc

AU =L —lkxo2 L
2 2 2

with xo = 0.

or
AK =W, —AU = Fx—%kxz

(a) When the stopping point is reached, AK =0



(b)
W _=Fx_ =0.12x3=0.36J
(©)
W, =-AU = —%kxmx2 = —Fx,, =-0.36J
(d)
AK = Fx—%kx2
d@K) _E kx=0
dx
F
=—=0.06m
T
(e)
(AK).. =Fx T —F—z—o 09J
max 1 2 1 2k '
10.5
Problem 7-79 (HW-7 Hint) (10-th edition)

A 2.0 kg lunchbox is sent sliding over a frictionless surface, in the positive direction
of an x axis along the surface. Beginning at time t = 0, a steady wind pushes on the
lunchbox in the negative direction of the x axis. Figure shows the position x of the
lunchbox as a function of time t as the wind pushes on the lunchbox. From the graph,
estimate the Kinetic energy of the lunchbox at (a) t = 1.0 s and (b) t = 5.0 s. (b) How
much work does the force from the wind do on the lunchbox fromt=1.0stot=5.0s.



\
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((Solution))
m = 2.0 kg

((Note))

Equation of motion

11. Summary

In physics, mechanical work is the amount of energy transferred by a force. Like
energy, it is a scalar quantity, with Sl units of joules. The term work was first coined in
the 1830s by the French mathematician Gaspard-Gustave Coriolis.




According to the work-energy theorem if an external force acts upon an object,
causing its Kinetic energy to change from Ex; to Eyp, then the mechanical work (W) is
given by

W =AE, =E,,-E, = A(%mvz)

where m is the mass of the object and v is the object's velocity.



