
Lecture Note 
Chapter 7 
Work and Energy 
 
 
1 Kinetic energy and work I 
 

 
 
We consider the simplest case where the acceleration a is constant. 
 
Newton’s second law 
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where vf is the final velocity and vi is the initial velocity. Then we get 
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(1) The kinetic energy is defined by 
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((Note)) Units 
In SI units, the units of work is J (Joule) 
 

1 J (Joule) = kg m2/s2 = N m 
1 N = kg m/s2 

 
In cgs units, the unit of work is erg. 
 



1 erg = g cm2/s2 = dyne cm 
1 dyne = g cm/s2 

 
(2) The work is defined by 
 

dF W  (work done by a constant force) 
 
Then Eq.(1) can be rewritten as 
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This is called as work-kinetic energy theorem, simply, work-energy theorem: 
 
2 Work: general case 
2.1 Definition 

We now consider the work in the general case, 
 

 
 
The work along a path is given by 
 

  rF dW  

 
where the integral is made along a path (path integral). 
 

 
 



2.2 Work done by the gravitational force (an example of Wc) 
Conservative force 

 

 
 
For the rising case, the work done by the gravitational force is –mgh (<0). 
For the falling case, the work done by the gravitational force is mgh (>0). 
 
When the particles goes up and then falls down, the work done by the gravitational force 
is 
 

-mgh + mgh = 0. 
 

 
 
2.3 Work done by the frictional force (an example of Wnc) 

Nonconservative force 
 



 
 

rf ddW knc  , work done by the frictional force. This work is always negative. That is 

not dependent on the direction of the movement. 
 
The frictional force is one of the non-conservative forces. 
 

 
 

0 rF dWnc , which does not depend on the direction of motion. 

 
 



3. Work-energy theorem 
 

 
 

The work done in the displacement by the force is defined as 
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where the limits A and B stand for the positions rA and rB. The substitution of the force F 
defined by 
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into Eq.(1) leads to 
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so that 
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where the limits A and B now stand for the times tA and tB when the particle is at the 
positions rA and rB. Here we can rearrange the integrand 
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So that 
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where the limits A and B now stand for the velocities vA and vB when the particle is at the 
positions rA and rB. This expression is rewritten as 
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where K is the kinetic energy of the particle.  
 
In summary, the work-energy theorem is given by 
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4 Net work 

The force F is the sum of Fc and Fnc, 
 

ncc FFF   

 
where Fc is the conserved force (such as a gravitational force) and Fnc is the non-
conserved force (such as friction). 
 

The net work Wnet is the sum of Wc and Wnc 
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Then we have the work-energy theorem: 
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5 Potential energy U 

We define a potential energy. This is a scalar function associated with a conservative 
force.  
 

)( ifc UUUW   

 
where Wc is the work done by the conservative force, Ui is the potential energy at the 
initial state and Uf is the potential energy at the final state. 
 
(a) For the one dimensional system, we have 
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Here we take a derivative of both sides with respect to x, we get 
 

dx

xdU
xFc

)(
)(   

 
((Example)) 
For the gravitational force (conservative force), the potential energy is given by 
 

U(z) = mgz, 
 
since 
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(b) For the three dimensional system, we have 
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The conservative force Fc is expressed by the potential energy as 
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((Note)) 
In Chapter 8 we will give a proof of this expression using Stokes theorem. 
 
6 Spring Force 
6.1 Hooke’s law 
 

  
 
A particle is subject to a linear restoring force in the x direction. A linear restoring force 
(spring force) is one that is directly proportional to the displacement (x) measured from 
the equilibrium point. The spring force is defined by 
 

F=-kx,  or iF kx  
 
where k is a positive constant. The unit of k is N/m. This is called a Hooke’s law. For 
sufficiently small displacements, the spring force may be produced by a stretched or 
compressed spring. The sign of the force is such that the particle is always attracted 
toward the origin x = 0. 
 

 
 
 



A plot of the spring force is shown as a function of x. 

 
 
 
The spring force is a conservative force. 
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which means the spring force is a conservative force. 
 
Then the potential energy U can be defined as 
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The energy conservation: 
 

From the work-energy theorem 
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we have 
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where E is the total energy and is defined by 
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Where 
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mv ) is the kinetic energy  

U (= 2
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kx ) is a potential energy.  

 
((Note)) Derivation of the energy conservation law for the simple harmonics. 

Approach from the Newton's second law 



 
We start from the Newton's second law for the simple harmonics 
 

kxFvm   (1) 
 
Multiplying both sides of Eq.(1) by xv  , we get 
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Then we have the energy conservation law for the simple harmonics 
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6.2 Energy conservation in the spring system 

Here we consider the energy conservation law for the spring, 
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maxmax xv   

 
From the energy conservation law, we have 
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This is a circle in the x/xmax vs v/vmax plane. The center is at the origin. In general, the v-x 
plane is called a phase space. 
 

 
Fig. Phase space (x, v) for the simple harmonics. 

 
6.3 Determination of the spring constant k 
 



 
 
Free-body diagram 

 
 
In equilibrium, we have 
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or 
 

k

mg
x 0  



 
In SI units, the spring constant is in the units of N/m. 
 
In dynamics, we set up an equation of motion, 
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(simple harmonics, see Chapter 15 for detail) 
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where  is the angular frequency 
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The solution of the second order differential equation is 
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The period T is given by 
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((Note)) 
The dimension of m/k 
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6.4 Example 
 
Problem 7-67 (SP-7)  (10-th edition) 
 

A spring with a pointer attached is hanging next to a scale marked in millimeters. 
Three different packages are hung from the spring, in turn, as shown in Fig. (a) Which 
mark on the scale will the pointer indicate when no package is hung from the spring? (b) 
What is the weight W of the third package? 

 
 



 
 
 
m1g = 110 N  m2g = 240 N 
x1 =  40 mm  x2 = 60 mm 
x3 = 30 mm 
 
Determination of the spring constant 
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Then we have 
 

x0 = x1-16.9 = 23.1 mm 



 
since x1 = 40.0 mm. 
 
(b) NxxkW 9.44)( 03   

 
where x3 = 30 mm and x0 = 23.1 mm. 
 
7 Power P 
7.1 Average power 

The power is the time rate of transfer energy. The average power is defined as 
 

t
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7.2 Instantaneous power 

If the force F causes a particle to undergo a displacement dr, the work done is 
 

rF ddW  . 
 
Since 
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the instantaneous power (or simply power) provided by the force id 
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From this expression, W can be derived as 
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((Units)) 
In SI units, the units of power is W (Watt) 
 

1W = 1 J/s 
1 horsepower=1 hcp = 746 W 
kWh =(103 J/s) 3600 s = 3.6 x 106 J 



 
8. Example 
8.1 
Problem 7-42*** (SP-7) (10-th edition) 
 

Figure shows a cord attached to a cart that can slide along a frictionless horizontal rail 
aligned along an x axis. The left end of the cord is pulled over a pulley, of negligible 
mass and friction and at cord height h = 1.20 m, so that the cart slides from x1 = 3.00 m to 
x2 = 1.00 m. During the move, the tension in the cord is a constant 25.0 N. What is the 
change in the kinetic energy of the cart during the move? 
 

 
 
((Solution)) 

 
 
h1 = 1.20 m. x1 = 3.0 m 
x2 = 1.0 m. T = 25.0 N 
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8.2 
Problem 7-52*** (SP-7)  (10-th edition) 
 

A funny car accelerates from rest through a measured track distance in time T with 
the engine operating at a constant power P. If the track crew can increase the engine 
power by a differential amount dP, what is the change in the time required for the run. 
 

 
((Solution)) 
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using the work-energy theorem. 
 
Then we have 
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This can be rewritten as 
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9. Advanced problem 
 
Serway Problem 6-52 and 7-14 
 

A particle is attached between the identical springs on a horizontal frictionless table. 
Both springs have spring constant k and are initially unstressed.  
(a) If the particle is pulled a distance x along a direction perpendicular to the initial 
configuration of the springs, as shown in Fig., show that the force exerted by the springs 
on the particle is 
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(b) Determine the amount of work done by this force in moving the particle from x = A to 
0. 
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(c) The potential U 
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((Mathematica)) 
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Background  LightGray, AxesLabel  "x", "F"
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Potential energy

U1  Simplify 
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10. Problems of HW-7, SP-7, and so on 
 
10.1  
Problem 7-20 (SP-07)  (10-th edition) 
 

A block is set up a frictionless ramp along which an x axis extends upward. Figure 
gives the kinetic energy of the block as a function of position x; the scale of the figure’s 
vertical axis is set by Ks = 40.0 J. If the block’s initial speed is 4.00 m/s, what is the 
normal force on the block? 



 
 

 
((Solution)) 
vi = 4.00 m/s 
Ks = 40.0 J. 
 
 

 
 
 
The work-energy theorem 
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((Note)) One can apply directly the energy conservation law to this problem. 
The slope of K vs x is –mg sin. 
 



The normal force N is given by 
 

cosmgN   
____________________________________________________________________ 
 
10.2  
Problem 7-38 (SP-07)  (10-th edition) 
 
A 1.5 kg block is initially at rest on a horizontal frictionless surface when a horizontal 
force along an x axis is applied to the block. The force is given by 
 

NxxF i)5.2()( 2 , 
 
where x is in meters and the initial position of the block is x = 0. (a) What is the kinetic 
energy of the block as it passes through x = 2.0 m? (b) What is the maximum kinetic 
energy of the block between x = 0 and x = 2.0 m? 
 
 
((Solution)) 
m = 1.50 kg.  
vi = 0. 
 
The work energy theorem 
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Ki = 0,  and 2

2

1
ff mvK   

 

x
dx

Wd

x
dx

dW

2

05.2

2

2

2




 

 
10.3 
 
Problem 7-57 (SP-07)  (10-th edition) 
 

A 230 kg crate hangs from the end of a rope of length L = 12.0 m. You push 
horizontally on the crate with a varying force F to move its distance d = 4.00 m to the 
side (see Fig). (a) What is the magnitude of F when the crate is in this final position? 



During the crate’s displacement, what are (b) the total work done on it, (c) the work done 
by the gravitational force on the crate, and (d) the work done by the pull on the crate from 
the rope? (e) Knowing that the crate is motionless before and after its displacement, use 
the answers to (b), (c), and (d) to find the work your force F does on the crate. (f) Why is 
the work of your force not equal to the product of the horizontal displacement and the 
answer to (a)? 
 

 
 
 
m = 230 kg, L = 12.0 m, d = 4.0 m,  0= arcsin(d/L) = 19.5° 
F varies with the angle . 
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(b) The total work 



 
0 WK    (work-energy theorem) 

 
(c) )cos1( 0 mgLUW gg   work due to gravity. 

 
(d) 0 TFg WWWK . WT = 0 

 
)cos1( 0 mgLWW gF  

______________________________________________________________________ 
((Note-1) 

We calculate the work done by the force F, tension T, and gravitational force (mg) 
separately. 
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(i) Work done by the force F 

F varies with the angle , 
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(ii) Work done by the force T 

Since the tension T is always perpendicular to the displacement dr, 
 

WT = 0 
 
(iii) Work done by the gravitational force (Fg = mg) 
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The total work done is 
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((Note-2)) 

The result 0totalW  is evident since 
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and 
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along any point on the path. 
  
10.4  
Problem 7-33*** (from SP-7)  (10-th edition) 
 

The block in Fig. lies on a horizontal frictionless surface, and the spring constant is 
50 N/m. Initially, the spring is at its relaxed length and the block is stationary at position 
x = 0. Then an applied force with a constant magnitude of 3.0 N pulls the block in the 
positive direction of the x axis, stretching the spring until the block stops. When that 
stopping point is reached, what are  



(a) the position of the block,  
(b) the work that has been done in the block by the applied force, and 
(c) the work that has been done on the block by the spring force? 
 

During the block’s displacement, what are  
(d) the block’s position when its kinetic energy is maximum and 
(e) the value that maximum kinetic energy? 
 

 
 
((Solution)) 
k = 50 N/m 
F = 3.0 N 
x = 0 and v = 0 initially. 
 
The work-energy theorem 
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In the present case, we have 
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with x0 = 0. 
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(a) When the stopping point is reached, K = 0 
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(b) 
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(c) 
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(e) 
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10.5 
Problem 7-79 (HW-7 Hint)  (10-th edition) 
 

A 2.0 kg lunchbox is sent sliding over a frictionless surface, in the positive direction 
of an x axis along the surface. Beginning at time t = 0, a steady wind pushes on the 
lunchbox in the negative direction of the x axis. Figure shows the position x of the 
lunchbox as a function of time t as the wind pushes on the lunchbox. From the graph, 
estimate the kinetic energy of the lunchbox at (a) t = 1.0 s and (b) t = 5.0 s. (b) How 
much work does the force from the wind do on the lunchbox from t = 1.0 s to t = 5.0 s. 
 



 
((Solution)) 
m = 2.0 kg 
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((Note)) 
 
Equation of motion 
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11. Summary 
 
Work-energy thorem ((from Wikipedia)) 
 

In physics, mechanical work is the amount of energy transferred by a force. Like 
energy, it is a scalar quantity, with SI units of joules. The term work was first coined in 
the 1830s by the French mathematician Gaspard-Gustave Coriolis. 



According to the work-energy theorem if an external force acts upon an object, 
causing its kinetic energy to change from Ek1 to Ek2, then the mechanical work (W) is 
given by 
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where m is the mass of the object and v is the object's velocity. 
 


