
Lecture Note 
Chapter 8 
Potential energy and conservation of energy 
 
1 Conservative force 
 
1.1 Path integral 
The work done by a conservative force on a particle moving between any two points is 
independent of the path taken by the particle. 
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for any path connecting two points A and B. 
 
1.2 Path integral along the closed path 

The work done by a conservative force on a particle moving through any closed path 
is zero. (A closed path is one for which the beginning point and the endpoint are 
identical). 
 

 



 

0 rF dc ,  for any closed path 

 
2 Potential energy U 

The quantity rF dc   can be expressed in the form of a perfect differential 

 
rF dWdU cc   

 
where the function U(r) depends only on the position vector r and does not depend 
explicitly on the velocity and time. A force Fc is conservative and U is known as the 
potential energy.  
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which does not depend on the path of integration but only on the initial and final 
positions. It is clear that the integral over a closed path is zero 
 

0 rF dc  (1) 

 
which is a different way of saying that the force field is conservative 
 
Using Stoke’s theorem; 
 
For any vector A,   
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Since 
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we have  
 

0 cF , (2) 

 
where   is a differential operator called del or nabla. The operator can be written in n 
terms of the Cartesian components x, y, z in the form 
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In this case, Fc can be expressed by 
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which leads to the relation 
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This relation can be used to decide whether a force is conservative or not on physical 
grounds. 

We note that 
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3 Stoke’s theorem 

Stokes' theorem (or Stokes's theorem) in differential geometry is a statement about 
the integration of differential forms which generalizes several theorems from vector 
calculus. It is named after Sir George Gabriel Stokes (1819–1903), although the first 
known statement of the theorem is by William Thomson (Lord Kelvin) and appears in a 
letter of his to Stokes. The theorem acquired its name from Stokes' habit of including it in 
the Cambridge prize examinations. In 1854, he asked his students to prove the theorem 
on an examination. It is unknown if anyone was able to do so. 
 
Let’s start off with the following surface with the indicated orientation. 

 



 
  

Around the edge of this surface we have a curve C. This curve is called the boundary 
curve. The orientation of the surface S will induce the positive orientation of C. To get 
the positive orientation of C think of yourself as walking along the curve. While you are 
walking along the curve if your head is pointing in the same direction as the unit normal 
vectors while the surface is on the left then you are walking in the positive direction on C. 
Now that we have this curve definition out of the way we can give Stokes’ Theorem. 
 
Stokes’ Theorem  

Let S be an oriented smooth surface that is bounded by a simple, closed, smooth 
boundary curve C with positive orientation. Also let F be a vector field, then 
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In this theorem note that the surface S can actually be any surface so long as its boundary 
curve is given by C. This is something that can be used to our advantage to simplify the 
surface integral on occasion. 
 
4. Path integral and conservative force 
((Example)) Serway Problem 7-15 

A force acting on a particle moving in the x y plane is given by 
 

Njxiy )ˆˆ2( 2F ,  
 
where x and y are in meters. The particle moves from the origin to a final position having 
coordinates x = 5.00 m and y = 5.00 m as in Fig. Calculate the work done by F along (a) 
OAC, (b) OBC, (c) OC. (d) Is F conservative or nonconservative? Explain. 
 
 



 
 
((Solution)) 
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Path OAC 

On the path OA; x = 0 – 5, y = 0; jx ˆ2F  and dy = 0. 
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On the path AC; x = 5, y = 0 - 5; jj ˆ25ˆ52 F  
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Then we have 
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Path OBC 
On the path OB; x = 0, y = 0 - 5;  
 

ydxd 2 rF  and dx = 0 
 
or 
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On the path BC; x = 0 - 5, y = 5; dxydxd 102  rF  
 

 
5

0

5010dxd
C

B

rF  

 
Then we have 
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Path OC 
 
x = t, y = t for t = 0 – 5. 
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for the path OC line. Then the force is non-conservative.  
 
((Note)) 
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This implies that the force is not conservative. 
 
 
5 Energy conservation law 

The work-energy theorem 
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Since UWc  , 
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or 
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where 
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When Wnc = 0, the energy is conserved. 
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(Energy conservation law) 
 
6 Potential energy 
6.1 Pendulum 
 

 
 

The potential energy U for the pendulum is given by 
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((Mathematica)) 



Clear"Global`"; U  m g L 1  Cos;

rule1  L  1, m  1, g  9.8; U1  U . rule1 .  
 x

180
;

PlotU1, 8, 7, 6, 5, 4, 3, 2, 1, x, 90, 90,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10,

AxesLabel  "°", "U", Background  LightGray
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((Note)) 
 
The total energy for the simple pendulum is given by 
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leading to the differential equation for the simple pendulum. 
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In the limit of small angle, we have a simple harmonic with 
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When   = 0, we have  = max.  
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When  = 0, we have max   ; 
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6.2 Simple harmonics 

The potential energy U for the simple harmonics is given by 
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Note that Fc is given by  
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((Mathematica)) 
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U1  U . rule1;
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((Note)) 
Simple harmonics: 
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Using the relation given by 
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the expression for the total energy is given by 
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At 0x , x = xmax. 
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At x = 0, maxvx   
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Then we have 
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7 Physical meaning of the potential energy 
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E: mechanical energy 
K: kinetic energy 
 

 
 
The energy conservation 
For a given E (total energy), we have 
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At x = ±x0, U(x) = E and K = 0. 
At x = 0,  U(x) = 0 and F = 0. K = E. 
For x>0, 0F  
For x<0, 0F  

 
(a) x0 is a turning point 

K = 0. The particle changes  
(b) x = 0 is an equilibrium point 

The point at which U(x) has a local minimum 
 
8. Force and energy on a atomic scale: Lennard & Jones 
 
8.1 Model 

The potential energy associated with the force two neutral atoms in a molecule can be 
modeled by the Lennard-Jones potential energy function 
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The function U(x) contains two parameters  and  that are determined from 
experiments: typically  = 0.263 and  = 1.51 x 10-22 J. 
 
We use the scaling function. 
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u(x) has a local minimum at x = xeq = 1.122 . 
 



 
 
The force is given by 
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Turning points 
 

(a) U/4 = -0.1 
x/ = 1.02013,  1.43884 

 
(b) U/4 = -0.05 

x/ = 1.0091,  1.63272 
 
((Mathematica)) 



Lennard - Jones potential
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Plotu2, , 0.2, 0.15, 0.1, 0.05, 0, 0.05, 0.1,

x, 0.1, 6, PlotRange  0.1, 3, 0.3, 0.2,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10,

Background  LightGray, AxesLabel  "x", "U4"
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Turning points at U/4e = - 0.1

FindRootu2  0.1, x, 1.2, 1.7
x  1.43884

FindRootu2  0.1, x, 0.1, 1.2
x  1.02013

Turning points at U/4 e = - 0.05

FindRootu2  0.05, x, 1.2, 1.7
x  1.63272

FindRootu2  0.05, x, 0.1, 1.2
x  1.00908
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PlotRange  0.1, 3, 1, 5, PlotStyle  Red, Thick,

Background  LightGray, AxesLabel  "x", "f"
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8.2 Lennard-Jones potential (from Wikipedia) 
 

A pair of neutral atoms or molecules is subject to two distinct forces in the limit of 
large separation and small separation: an attractive force at long ranges (van der Waals 
force, or dispersion force) and a repulsive force at short ranges (the result of overlapping 
electron orbitals, referred to as Pauli repulsion from Pauli exclusion principle). The 



Lennard-Jones potential (also referred to as the L-J potential, 6-12 potential or, less 
commonly, 12-6 potential) is a simple mathematical model that represents this behavior. 
It was proposed in 1924 by John Lennard-Jones. 

The Lennard-Jones potential is an approximation. Its physical origin is related to the 
Pauli principle: when the electronic clouds surrounding the atoms start to overlap, the 
energy of the system increases abruptly. The exponent 12 was chosen exclusively 
because of ease of computation. 

The attractive long-range potential, however, is derived from dispersion interactions. 
The L-J potential is a relatively good approximation and due to its simplicity is often 
used to describe the properties of gases, and to model dispersion and overlap interactions 
in molecular models. It is particularly accurate for noble gas atoms and is a good 
approximation at long and short distances for neutral atoms and molecules.  
 
 
9. Selected problem 
9.1 
Problem 7-19**  (10-th edition) 
 

In Fig., a block of ice slides down a frictionless ramp at angle  = 50º while an ice 
worker pulls on the block (via a rope) with a force rF  that has a magnitude of 50 N and is 
directed up the ramp. As the block slides through distance d = 0.50 m along the ramp, its 
kinetic energy increases by 80 J. How much greater would its kinetic energy has been if 
the rope had not been attached to the block? 
 

 

d = 0.5 m,  = 50°, Fr = 50 N, K = 80 J. 
 
Free-body diagram 



 
 

ncif WEEE   

 
or 
 

dFmgdmvEEE rif  sin
2

1 2  

 
where 
 

dFW

mvE

mgdmghE

rnc

f

i







2

2

1

sin

 

 
(1) Fr = 0.  
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(2) Fr ≠ 0.  
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Then we have 
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9.2 
Problem 8-62*** (SP-08)  (10-th edition) 
 
 

In Fig. a block slides along a path that is without friction until the block reaches the 
section of length L = 0.75 m, which begins at height h = 0.2 m on a ramp of angle  = 30º. 
In that section, the coefficient of kinetic friction is 0.40. The block passes through point 
A with a speed of 8.0 m/s. If the block can reach point B (where the friction ends), what 
is its speed there, and if it cannot, what is its greatest height above A? 
 

 
 
((My solution)) 
h = 2.0 m, L = 0.75 m,  = 30°, vA = 8.0 m/s,  g = 9.8 m/s2 
K = 0.4 
 
Suppose that the block arrives at the point B at the velocity v. 
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Using the Mathematica (shown below), we have 
 

v = 3.5 m/s 
 
((Mathematica)) 
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 g L m k Cos  g m h  L Sin

rule1  h  2, L  0.75,   30, vA  8, m  1, g  9.8, k  0.4
h  2, L  0.75,   30 , vA  8, m  1, g  9.8, k  0.4

eq11  eq1 . rule1

6.17889 
v2

2

Solveeq11  0, v
v  3.51536, v  3.51536  

 
9.3  
Problem 8-36*** (SP-8)  (10-th edition) 
 

Two children are playing a game in which they try to hit a small box on the floor with 
a marble fired from a spring-loaded gun that is mounted on a table. The target box is 
horizontal distance D = 2.20 m from the edge of the table; see Fig. Bobby compresses the 
spring 1.10 cm, but the center of the marble falls 27.00 cm short of the center of the box. 
How far should Rhoda compress the spring to score a direct hit? Assume that neither the 
spring nor the ball encounters friction in the gun. 
 
 

 
((My solution)) 
D = 2.20m 
 
Energy conservation: 
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Motion of the free fall for the system 
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When y = 0, we have 
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In other words, it follows that d/x0 = constant. 
 
When x0 = 1.10 cm, d = D – 27 cm = 193 cm. Then we have the relation 
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When d = D = 220 cm, the value of x0 is obtained as 
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9.4 
Problem 8-34*** (SP-07)  (10-th edition) 
 

A boy is initially seated on the top of a hemispherical ice mound of radius R = 13.8 m. 
He begins to slide down the ice, with a negligible initial speed (Fig.). Approximate the 
ice as being frictionless. At what height does the boy lose contact with the ice? 
 



 
 
((Solution)) 

 
 
R = 13.8 m 
 
Newton’s second law 
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When N = 0, we have 
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Energy conservation 
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From Eqs.(1) and (2), we have 
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The height h is given by 
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10. Problems of Homework (Hint) and SP 
 
10.1  
Problem 8-26** (HW-08)  (10-th edition) 
 

A conservative NxF i)120.6(  , where x is in meters, acts on a particle moving 
along an x axis. The potential energy U associated with this force is assigned a value of 
27 J at x = 0. (a) Write an expression for U as a function of x, with U in joules and x in 
meters. (b)What is the maximum positive potential energy? At what (c) negative value 
and (d) positive value of x is the potential energy equal to zero? 
 
((Solution)) 
F = (6x-12) i. 
U(x=0) = 27 J. 
 
(a) 
 

27123
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(b) 
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10.2  
Problem 8-65 (SP-08)  (10-th edition) 
 

A particle can slide along a track with elevated ends and a flat central part, as shown 
in Fig. The flat part has length L = 40 cm. The curved portions of the track are frictionless, 
but for the flat part the coefficient of kinetic friction is k = 0.20. The particle is released 
from rest at point A, which is at height h = L/2. How far from the left edge of the flat part 
does the particle finally stop? 
 
 

 
 
((Solution)) 
L = 0.4 m, h = 0.2 m, k = 0.2 

 
 

mgmghEi 2.0  

 

TTk mgdmgdmgE 2.02.00    



 
when the particle passes through the total distance dT. 
 
10.3  
Problem 8-91 (HW-08)  (10-th edition) 
 

Two blocks, of mases M = 2.0 kg and 2M, are connected to a spring constant k = 200 
N/m that has one end fixed, as shown in Fig. The horizontal surface and the pulley are 
frictionless, and the pulley has negligible mass. The blocks are released from rest with the 
spring relaxed. (a) What is the combined kinetic energy if the two blocks when the 
hanging block has fallen 0.090m? (b) What is the kinetic energy of the hanging block 
when it has fallen that 0.090 m? (c) What maximum distance does the hanging block fall 
before momentarily stopping? 
 

 
 
((Solution)) 
k = 200 N/m. M = 2.0 kg. 
 
The energyconservation: Ef = Ei (= 0). 
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The kinetic energy KT is 
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The maximum distance dmax is obtained when v = 0. 



 
11. Advanced Problems 
 
11.1 Young Problem 7-69 

A Hooke’s law force –kx and a constant conservative force F in the x-direction act on 
an atomic ion. 
(a) Show that a possible potential-energy function for this combination of forces is  
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F
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Is this the only possible function? Explain. 

(b) Find the stable equilibrium position . 
(c) Graph U(x) (in units of F2/k) versus x (in units of F/k) for values of x between -

5F/k to 5F/k. 
(d) Are there any unstable equilibrium position? 
(e) If the total energy is E = F2/k, what are the maximum and minimum values of x 

that the ion reaches in its motion? 
(f) If the ion has mass m, find its maximum speed if the total energy is E = F2/k. For 

what value of x is the speed maximum? 
 
((Solution)) 
(a) 

We start with 
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where C is a constant.  
 

(b) We choose 
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F
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 . Then we have 
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Graph U(x) (in units of F2/k) versus x (in units of F/k) 
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(c) The stable equilibrium position is  = 1. 
 
Since 
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Fig. Plot of the normalized potential energy V() as a function of . The green line 

denotes V() = 1. 
 
(e) 
From 
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We have 
 

 = -1 and 3. 
 
(f) 
From the energy conservation law 
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
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d

dg
, we find that g() has a local maximum at  

 
1   or x = F/k. 
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Fig. Plot of [g()]1/2 (proportional to velocity) as a function of . 

 

 



11.2 Problem Serway 8-62 

A uniform chain of length 8.00 m initially lies stretched out on a horizontal 
table.  
(a) If the coefficient of static friction between chain and table is 0.60, show that 
the chain will begin to slide off the table if at least 3.00 m of it hangs over the 
edge of the table. 
(b) Determine the speed of the chain as all of it leaves the table, given that the 
coefficient of kinetic friction between the chain and the table is 0.400. 
 
(a) 
Free-body diagram 
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From these equations, we have 
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or 
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(b) 
We apply the work-energy theorem 
 

ncif WEEE   

 
where E is the sum of the kinetic energy and potential energy. The reference 
height for the potential energy is at the table line.  is the mass per unit length. 
(i) Initial state (x = 3.0 m) 
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Intermediate state (3<x<8) 



 
 
The friction force fk is given as follows. 
 

)8(4.0)8( xgxgf kk    

 
where 3≤x≤8. 
 
(iii) The final state 
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where v is the final velocity of the chain. 
 
Using the work-energy theorem, 
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v = 7.425 m/s 

 
((Mathematica)) 
 

eq1  4 v2  27.5 g  g 
3

8
0.4 8  x x

27.5 g  4 v2  5. g

Solveeq1 . g  9.8, v
v  7.42462, v  7.42462  

 
((Note)) 
The potential energy of a rod with mass having an uniform density 
 



 
 
The potential energy of a rod with length (L) and a mass per unit length (). The 
total mass of the rod is given by 
 

LM  . 
 
The potential energy of the rod arising from the length between y and y+ dy is 
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Then the resultant potential energy U is 
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12. Measurement of period of the simple pendulum as a function of the initial 

angle 



12.1 Energy conservation 
We consider the physics of simple pendulum, where the bob is freely released from 

the intial angle 0. When 0 is very small, the system indergoes an ideal simple 
harmonics. However, if 0 becomes large, the non-linearity of the system is enhanced, 
leading to the deviation of the period from the ideal value. 
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Fig. Free-body diagram for simple pendulum. No work is done by the tension T, since 

T is perpendicular to the circular path. L is the length of string (mass-less). 
 

The kinetic energy is given by 
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The potential energy is given by 
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The energy conservation 
 

)cos1(
2

1 22   mgLmLUKE  . 



 

Since 0
dt

dE
, we get the differential equation; 
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leading to the equation of motion as 
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with 
 

L

g
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The nonlinearity of the above equation arises from the term sin . 
 
12.2. Newton’s second law 
From the free-body diagram shown above, we have 
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The first equation is the same as derived from the energy conservation. 
 
12.3. Work-energy theorem and energy conservation 
 
We use the work-energy theorem, 
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)cos()(sin)(  mgLdLdmgdrFW  . 

 
There is no work from the tension T since the direction of the tension is perpendicular to 
the direction. Then we have 
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which is exactly the same as the result from the energy conservation law. 
 
12.4 The expression for the period 

We now discuss the period T for the energy conservation given by 
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From Eq.(1), we have 
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The period T is obtained as 
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when taking into account of the symmetry of the system. For simplicity we use 
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Then we get the final form of T as 
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We uase Mathematica for the calculation of T. 
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((Note)) EllipticK[k2] is the complete elliptic integral of the first kind; 
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We make a plot of p x 100 (%) as a function of the angle 0. 
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p . Plot of p   100 (%) as a function of the initial angle 0. 

 
Series expansion in the vicinity of k = 0 is given by 
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where 
 

2
sin 0k . 

 
12.5 Comment on the experiment on simple pendulum 



Suppose that we have a measurement of the period of the simple harmonics. The bob 
is freely released from the initial angle 0. The period is measured as a function of the 
angle 0. In the limit 00  , the system undergoes an ideal simple harmonic oscillation 

with the period glT /2 . However, if the angle 0 becomes large, the system shows 

nonlinear behavior. The period deviates from the ideal case. The theoretical deviation p 
(%) vs 0 is listed below the Table. The deviation percentage p increases with increasing 
0. We note that for 0 = 6°, we have p = 0.069 %. This implies that the deviation p is 
assumed to be negligibly small when 0 is smaller than 5°. 
 

Angle Deviation 
0 p (%) 
0 o 
2 0.007 
4 0.030 
6 0.069 
8 0.122 
10 0.191 
12 0.275 
14 0.374 
16 0.490 
18 0.620 
20 0.767 
22 0.929 
24 1.108 
26 1.302 
28 1.513 
30 1.741 
35 2.833 
40 3.134 
45 3.997 
50 4.978 
55 6.083 
60 7.318 
65 8.692 
70 10.215 
75 11.896 
80 13.749 
85 15.790 
90 18.034 

 
REFERENCES 
N. Wada Linear and Nonlinear Dynamics and Chaos [Mathematica 3.0] (Scientist, 

1998) in Japanese. 
 
APPENDIX 



A Roller-coaster physics 

 

Serway 8-73 
A roller coaster car is released from rest at the top of the first rise and then moves freely 
with negligible friction. The roller coaster shown in Fig. has a circular loop of radius R in 
a vertical plane.  
(a) Suppose first that the car barely makes it around the loop: at the top of the loop 

the riders are upside down and feel weightless. Find the required height of the 
release point above the bottom of the loop in terms of R. 

(b) Now assume that the release point is at or above the minimum required height. 
Show that the normal force on the car at the bottom of the loop by six times the 
weight of the car. The normal force on each rider follows the same rule. Such a 
large normal force is dangerous and very uncomfortable for the rider. Roller 
coasters are therefore not built with circular loops in vertical planes.  

 

 
((Solution)) 
(a) The energy conservation law: 
The total energy (consisting of the kinetic energy and potential energy) at the point A is 
equal to that at the point C, 
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where vC is the velocity at the point C. 
 

 



 
The condition that the car does not fall from the point C. 
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From the condition that N≥0, the minimum velocity at the point C is 
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From Eqs.(1) and (2), we have 
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(b) 
 



 
 
From the energy conservation law, we have 
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The normal force at the point B is calculated as 
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When h = 5R/2, we have 
 

N = 6 mg. 
 
((Note)) 
What is the normal force (N0) for the rider with mass m0? 
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The normal forces N (a roller-coaster and rider) and the normal force N0 (a rider) are 
obtained as 
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