
Chapter 9 
 
1 Center of mass 

Newton’s laws of motion are formulated for single particle. However, they can be 
extended without difficulty to systems of particles and bodies of finite dimensions.  

We now consider two particles located on the x axis. 
 

 
The position of the center of mass is defined by 
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where m1 and m2 are the masses of particle 1 and particle 2. 

For the system with many particles,  
 

 
the position of center of mass is given by 
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where 

i
imM  is the total mass of the system. Physically, the center of mass can be 

interpreted as a weighted average position of the system of the particles. In the special 
case of a uniform gravitational field the center of mass coincides with the center of 
gravity. 

For the continuous distribution of particles, the position of center of mass is given by 
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2. Calculation of center of mass 
2.1. Center of the mass for the uniform rod 
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where  is the line density (mass/length):  = M/L 
 
2.2 Center of the mass for the uniform triangle 
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where  is the area density (mass/area). 
 
((Geometry)) 
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2.3 Center of mass for the half circle with radius a 
 

 
 
((Solution)) 
 

0cmx  from the symmetry. 
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3 Linear momentum 
 
3.1 Definition of linear momentum 
 

The linear momentum of the particle with a mass m and a velocity v, is defined by 
 

p = mv 
 
The general statement of Newton’s second law 
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For a constant mass m, we have 
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m    (conventional law) 

 
3.2 System consisting of many particles 



Now we apply the Newton’s second law to the motion of many particles shown in Fig.  
 

 
 
Newton’s second law: 
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where jiF  is the internal force applied on the i-th particle from the j-th particle (i ≠ j)  and 

)(e
iF  is the external force applied on the i-th particle.  

________________________________________________________________________ 
We note that 
 

ijji FF    (Newton’s third law) 

 
The forces two particles exert on each other are equal and opposite.  
 
(a) Weak law of action and reaction 



 
 
(b) Definition for the strong law of action and reaction. 
 

 
 
From the above equation, we have 
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or 
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since ijji FF  , where )(eF  is the total external force. The center of mass RCM is the 

average of the radii vectors, weighed in proportion to their mass, 
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where M is the total mass defined by 
 


i

imM . 

 
Then we have 
 

)(
2

2

)( e
CMM

dt

d
FRP 

, 

 
or 
 

)(
2

2
eCM

dt

d
M F

R
P 

. 
 

Motion of center of mass

x

y

O
1 2 3 4

1

2

3

4

 
 



Fig. Typical motion of two bodies (with the same mass, red and blue circles) 
connecting by a uniform rod. The center of the mass is the midpoint of the two 
bodies. It shows a parabola-motion in the x-y plane. 
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Fig. Typical motion of two bodies (mass 2m for the red circles and mass m for blue 

circles) connecting by a uniform rod. The center of the mass is deviated from the 
midpoint of the two bodies. It shows a parabola-motion in the x-y plane. 

 
4. Conservation law of linear momentum 
 
If F(e) = 0, we have 
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This means that  
 

0 if PPP  (Momentum conservation law) 

 
where Pi and Pf are the linear momentum in the initial state and the final state. 
 
((Note)) 
 

When 
dt

d CMR
= 0 at t = 0, RCM is independent of t. 

 
 
5. Sample problems 
5.1 Sample problem 9-2 
A uniform metal plate (radius 2R) from which a disk of radius R is stamped out 

   
 
We consider two circles (linear combination) 
Circle (radius 2R and the area density ) centered at the origin (0, 0) 
Circle (radius R and the area density -) centered at (-R,0). 
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5.2 Typical problem 
Problem 9-16*** (SP-09)  (10-th edition) 
 

Ricardo, of mass 80 kg, and Carmelita, who is lighter, are enjoying Lake Merced at 
dusk in a 30 kg canoe. When the canoe is at rest in the placid water, they exchange seats, 



which are 3.0 m apart and symmetrically located with respect to the canoe’s center. If the 
canoe moves 40 cm horizontally relative to a pier post, what is Carmelita’s mass. 
 
((Solution)) 
 

 
 
mR = 80 kg 
l = 2a = 3.0 m. 
M = 30 kg 
 
The position of the center of mass xcm does not change since there is no external force. 
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or 
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We put 
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When y = 0.4m, we have mC = 57.6 kg. 
 



5.3 Problem from Serway 8-39 
 

Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing his guitar from the rear of their 
boat at rest in still water, 2.70 m away from Juliet who is in the front of the boat. After 
the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a 
kiss on Romeo’s cheek. How far does the 80.0-kg boat move toward the shore it is 
facing? 
 
((Solution)) 
 

 
 
 

mR = 77.0 kg: weight of Romeo 
mJ = 55.0 kg: weight of Juliet 
M = 80.0 kg: mass of the canoe 
l =2a = 2.70 m 
 
The position of the center of mass xcm does not change since there is no external force. 
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We put 
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6 Elastic collision (head-on collision): one-dimensional 

In the absence of the external force, the total linear momentum is conserved before 
and after the collision of two particles with mass m1 and m2. We consider the elastic 
collision where the total energy is conserved before and after the collision. 
 

 
 
Momentum conservation law 
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Energy conservation law (elastic collision) 
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((Mathematica)) 



Clear"Global`";

eq1  m1 v1  m2 v2  m1 u1  m2 u2;

eq2 
1

2
m1 v12 

1

2
m2 v22 

1

2
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1

2
m2 u22;

eq3  Solveeq1, eq2, u1, u2  Simplify

u1  v1, u2  v2, u1 
m1 v1  m2 v1  2 m2 v2

m1  m2
,

u2 
2 m1 v1  m1 v2  m2 v2

m1  m2
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7 Perfectly inelastic collision 
 

 
 
Momentum conservation law; 
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The energy is not conserved in this case. 
 
8 2D collisions 
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From the above figure 
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The solution is 
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Here we assume the case of elastic collision (the energy conservation law) 
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When m1 = m2, this condition is rewritten as 
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((Note)) 
In the general case (including the case of inelastic collision), the energy is not conserved. 
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When m1 = m2, 
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Figure Plot of E/Ei as a function of 2, where m1 = m2. 1 is changed as a 

parameter:1 = 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. E/Ei becomes 
zero for 1 + 2 = /2 (elastic scattering). 

 
((Mathematica)) 



 



f  eq5 . 1 
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180
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PlotEvaluateTablef, x1, 10, 80, 10, x2, 0, 90,

PlotStyle  TableHue0.12 i, Thick, i, 0, 7,

AxesLabel  "2 degrees", "EEi",

PlotRange  0, 90, 0.6, 0
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9 Elastic collision of particles with the same mass 
 
Problem 9-75** (SP-09)  (10-th edition) 
 

A projectile proton with a speed of 500 m/s collides elastically with a target proton 
initially at rest. The two protons then move along perpendicular paths, with the projectile 
path at 60° from the original direction. After the collisions, what are the speeds of (a) the 
target proton and (b) the projectile proton? 
 
((Solution)) 
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In other words,  
 
v1f and v2f are perpendicular to each other. 
 



 
 
10 Impulse-linear momentum theorem 
10.1 Theorem 
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Definition of impulse J 
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The average force avF  can be evaluated from the values of pJ   and the time interval  

 
((Impulse-momentum theorem)) 
 

The change in the momentum of a particle is equal to the impulse of the net force 
acting on the particle. 
 
((Note)) 



A moving particle has momentum and kinetic energy, but it does not carry with it a 
force. The force required to cause a particle to stop depends on how big the momentum 
change is and on how quickly the momentum change occurs. 
 
((Example)) 
Impulse example 
 
The change in momentum of an object during a collision is equal to the product 
of the average force acting on an object and the time over which it acts. 
 
((Example)) SmartPhysics p.144-146 
A ball with a mass of m = 1 kg is released from rest from an initial height of (hi = 
1 m) above the floor. It bounces back to half its original height (hf = 0.5 m). If we 
assume the ball is in contact with the floor for a time of t = 10 ms, what is the 
average force on the ball during the collision? 
 



 
 
((Solution)) 
 

1ih  m. 5.0fh  m. m = 1 kg. 10t  ms. 

 
(i) v1 is the velocity of the ball which falls from the height hi and touchs on 
the floor 
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(ii) v2 is the velocity of the ball which bounces back from the floor 
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Impulse 
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The average force avF  is obtained as 
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10.2 Example 
Problem 9-38**  (10-th edition) 
 

In the overhead view of Fig., a 300 g ball with a speed v of 6.0 m/s strikes a wall at an 
angle  of 30° and then rebounds with the same speed and angle. It is in contact with the 
wall for 10 ms. In unit-vector notation, what are (a) the impulse on the ball from the wall 
and (b) the average force on the wall from the ball? 
 

 
 
m = 0.3 kg,  v = 6.0 m/s,  = 30,  t = 10 ms 
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11 Systems with varying mass: A rocket 
11.1 Formulation 

We assume that we are at rest relative to an inertial reference frame (the Earth), 
watching a rocket accelerate through deep space with no gravitational or atmospheric 
drag force acting on it. 

We consider a rocket plus fuel that is initially at rest. When fuel is ejected out the 
back of the rocket, it acquires momentum, and so the rocket must move forward to 
acquire opposite momentum to cancel the fuel’s momentum, since the total momentum of 
the system remains constant. 

Suppose that a rocket of mass M is moving at the velocity v with respect to the Earth. 
Now a mass of fuel (- dM) is ejected with the velocity u with respect to the Earth. The 
rocket now moves forward with mass (M+dM) and velocity (v+dv) 
 

 
 
Momentum conservation law: 
 

))(()( dvvdMMudMMv  . (1) 

 
Note that  
 

Vrocket-Earth = Vrocket-fuel + Vfuel-Earth 
 
where  
 

Vrocket-Earth  (= v + d v) is the velocity of rocket relative to the Earth. 
Vrocket-fuel (= vrel) is the velocity of rocket relative to the exhaust fuel. 
Vfuel-Earth (= u) is the velocity of the exhaust fuel relative to the Earth. 

 



We get the relation 
 

u = v + dv - vrel. (2) 
 
Substituting Eq.(2) for u into Eq.(1), we get 
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where 
 

vrel:  the fuel’s exhaust velocity relative to the rocket. 

relRvT   the thrust of the rocket engine (N) 

R (=-dM/dt) the rate of fuel consumption 
 
Here we assume that vrel is constant. Then we have 
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11.2 The case for constant R (=-dM/dt) and vrel. 
 

Here we assume that R (= -dM/dt) and vrel are independent of t. Then we have 
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From the second equation, M is obtained as 
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where M0 is the initial mass at t = 0 and t<M0/R. Then we have 
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(a) Plot of (v-v0)/vrel vs  = Rt/M0.  
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Note that in the limit of →0 (or t→0) 
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(b) Plot of M/M0 vs  = Rt/M0.  
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In conclusion: 

The velocity of the rocket is proportional to the time in early stage. As the mass of 
rocket decreases in the late stage, the velocity of the rocket rapidly increases. 
 
((Note)) The velocity of rocket 
 

102 miles/h = 47.7 m/s 
103 miles/h=0.447 km/s = 447 m/s 
104 miles/h = 4.4704 km/s 

 
The velocity for the orbit on the earth 
 

91.7
E

E
orbit R

GM
v  km/s = 1.77 x 104 miles/h 

 
The escape velocity form the earth: 
 

19.11
2


E

E
escape R

GM
v  km/s = 2.50 x 104 miles/h. 

 
11.3 
 
Problem 9-78  (10-th edition) 
 

Consider a rocket that is in deep space and at rest relative to an inertial reference 
frame. The rocket’s engine is to be fired for a certain interval. What must be the rocket’s 
mass ratio (ratio of initial to final mass) over that interval if the rocket’s original speed 
relative to the inertial frame is to be equal to (a) the exhaust speed (speed of the exhaust 
products relative to the rocket) and (b) 2.0 times the exhaust speed? 
 
((Solution)) 
Second rocket equation with vi = 0 and vf = v; 

 



)exp(

)ln(0

relf

i

f

i
relif

v

v

M

M

M

M
vvvv





 

 

(a) If v = vrel, we obtain 72.21  e
M

M

f

i  

(b) If v = 2 vrel,, we obtain 39.72  e
M

M

f

i  

 
11.4 
 
Problem 9-79  (10-th edition) 
 

A rocket that is in deep space and initially at rest relative to an inertial reference 
frame has a mass of 2.55 x 105 kg, of which 1.81 x 105 kg is fuel. The rocket engine is 
then fired for 250 s while fuel is consumed at the rate of 480 kg/s. The speed of the 
exhaust products relative to the rocket is 3.27 km/s. 
(a) What is the rocket’s thrust? After the 250 s firing, what are (b) the mass and (c) the 
speed of the rocket? 
 
((Solution)) 
 
(a) The thrust of the rocket is given by T = Rvrel where R (=- dM/dt) is the rate of fuel 
consumption and vrel is the speed of the exhaust gas relative to the rocket. For this 
problem R = 480 kg/s and vrel = 3.27  103 m/s, so 
 

T = R vrel =1.57 x 106 N 
 
(b) 
The mass of fuel ejected is given by Mfuel = R t ,  where t  is the time interval of the 
burn. Thus, Mfuel = (480 kg/s)(250 s) = 1.20  105 kg. The mass of the rocket after the 
burn is  
 

Mf = Mi – Mfuel = (2.55 – 1.20) x 105 kg = 1.35 x 105 kg. 
 
(c) 
Since the initial speed is zero, the final speed is given by the second rocket equation 
 

)ln(
f

i
relf M

M
vv   = 2.08 x 103 m/s 

______________________________________________________________________ 
11.5  



 
Problem 9-76  (10-th edition) 
 
A 6090 kg space probe moving nose-first toward Jupiter at 105 m/s relative to the Sun 
fires its rocket engine, ejecting 80.0 kg of exhaust at a speed of 253 m/s relative to the 
space probe. What is the final velocity of the probe? 
 
((Solution)) 
Second rocket equation; 

 

)ln(
f

i
relif M

M
vvv 

 
 

 
vf = 105 m/s + (253 m/s) ln(6090 kg/6010 kg) = 108 m/s. 

 
12. Homework and SP-09 
12.1 
Problem 9-14 (SP-09)  (10-th edition) 
 

In Fig., two particles are launched from the origin of the coordinate system at time t = 
0. Particle 1 of mass m1 = 5.00 g is shot directly along the x axis on a frictionless floor, 
with constant speed 10.0 m/s. Particle of mass m2 = 3.00 g is shot with a velocity of 
magnitude 20.0 m/s, at an upward angle such that it always directly above particle 1. (a) 
What is the maximum height Hmax reached by the c.o.m. of the two-particle system? In 
unit-vector notation, what are the (b) velocity and (b) acceleration of the c.o.m. when the 
c.o.m. reaches Hmax? 

 
 
((Solution)) 
m1 = 5.00g,  m2 = 3.00 g,   v1 = 10.0 m/s,   v2 = 20 m/s 
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12.2 
Problem 9-37 (SP-09)  (10-th edition) 
 

A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The 
player’s foot is in contact with the ball for 3.0 x 10-3 s, and the force of the kick is given 
by 
 

NtttF ])100.2()100.6[()( 296   
 
for st 3100.30  , where t is in seconds. Find the magnitudes of (a) the impulse on 
the ball due to the kick, (b) the average force on the ball from the player’s foot during the 
period of contact, (c) the maximum force on the ball from the player’s foot during the 
period of contact, and (d) the ball’s velocity immediately after it loses contact with 
player’s foot. 



 
((Solution)) 

0.5 1.0 1.5 2.0 2.5 3.0
t ms

1000

2000

3000

4000

F N

 
 
a = 6.0 x 106, b = 2.0 x 109 
t0 = 3.0 x 10-3 s,  
m = 0.45 kg 
 
The force is given by 
 

2)( btattF   
 
The impulse J: 
 


0

0

)(
t

dttFJ   

 
The average force Fav: 
 

0t

J
Fav    

 
 
12.3 
Problem 9-70*** (SP-09)  (10-th edition) 
 

In Fig., puck 1 of mass m1 = 0.20 kg is sent sliding across a frictionless lab bench, to 
undergo a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off 
the bench and lands a distance d from the base of the bench. Puck 1 rebounds from the 
collision and slides off the opposite edges of the bench, landing a distance 2d from the 
base of the bench. What is the mass of puck2? (Hint: Be careful with signs). 
 



 
 
((Solution)) 
m1 = 0.2 kg 
 

 
 
The momentum conservation law: 
 

2211211 0 umummvm   (1) 
 
For the mass m1, 
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For the mass m2, 
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Then we have 
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From Eqs.(1) and (2), we have 
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The energy conservation law: 
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The substitution of Eq.(3) into the energy conservation law leads to 
 

0
2

)5(

21
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Thus we get 
 

12 5mm   
 
12.4 
Problem 9-64** (SP-09)  (10-th edition) 
 
A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far 
end. The ball is then released when the cord is horizontal (Fig.) At the bottom of its path, 
the ball strikes a 2.50 kg steel block initially at rest on a frictionless surface. The collision 
is elastic, find (a) the speed of the ball and (b) the speed of the block, both just after the 
collision. 
 
((Solution)) 



 
 
M = 2.50 kg, m = 0.5 kg, R = 0.7 m. 
 
Energy conservation law 
 

2

2

1
mvmgR    or smgRv /70.32   

 
Momentum conservation law 
 

mVMUmv   
 
The collision is elastic. 
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13. Problems from Sewway 
13.1 Serway Problem 8-51 

A small block of mass m = 0.500 kg is released from rest at the top of a curve-shaped 
frictionless wedge of mass M = 3.00 kg, which sits on a frictionless, horizontal surface. 
When the block leaves the wedge, the velocity is measured to be v = 4.00 m/s to the right. 
(a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) 
What is the height h of the wedge? 
 
((Solution)) 
 

 
 
((Solution)) 
M = 3.00 kg 
m = 0.500 kg 
v = 4.00 m/s 
 
(a)  
The initial momentum of the system is zero, which remains constant through the motion 
(the momentum conservation). When the block of mass m leaves the wedge, we have 
 

0 MVmv  
 
or 



 
V = 0.667 m/s 

 
(b) Energy conservation 
 

Ei = Ef 
 
where  
 

22

2

1

2

1
MVmvE

mghE

f

i




 

 
Then we have  h = 0.952 m. 
 
13.2 Serway Problem 8-58 

A cannon is rigidly attached to a carriage, which can move along horizontal rails but 
is connected to a post by a large spring, initially stretched and with force constant k = 
2.00 x 104 N/m. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 
45.0° above the horizontal.  
(a) Assuming that the mass of the cannon and its carriage is 5000 kg, find the recoil 

speed of the cannon. 
(b) Determine the maximum extension of the string. 
(c) Find the maximum force the spring exerts on the carriage. 
(d) Consider the system consisting of the cannon, carriage, and projectile. Is the 

momentum of this system conserved during the firing? Why or why not? 
 

 
 
((Solution)) 
k = 2.00 x 104 N/m 
mp = 200 kg; mass for the projectile 
vp = 125 m/s; velocity for the projectile 
 = 45.0°. 
M = 5000 kg for the cannon and carriage  
 



 
(a) Use conservation of the horizontal component of momentum for the system of the 

shell, the cannon, and the carriage, from just before to just after the cannon firing. 
 

045cos  recoilpp Mvvm  

 
or 
 

vrecoil = -3.54 m/s 
 
(b) Use conservation of energy for the system of the cannon, the carriage, and the 

spring from right after the cannon is fired to the instant when the cannon comes to 
rest. 

 
Ef = Ei. 

 
where 
 

2
max

2

2

1
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kxE

mvE

f

recoili


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Then we have 
 
 

mv
k

m
x recoil 77.1max   

 
(c) NkxF 4

maxmax 1054.3   

 
 
(d) 
No. The rail exerts a vertical external force (the normal force) on the cannon and prevents 
it from recoiling vertically. Momentum is not conserved in the vertical direction. The 
spring does not have time to stretch during the cannon firing. Thus, no external horizontal 
force is exerted on the system (cannon, carriage, and shell) from just before to just after 
firing. Momentum of this system is conserved in the horizontal direction during this 
interval. 
 
________________________________________________________________________ 
Appendix 
 
A.1 Ballistic pendulum 



The ballistic pendulum is an apparatus used to measure the speed of a fast-moving 
projectile, such as a bullet. A bullet of mass m1 is fired into a large block of wood of mass 
m2 suspended from some light wires. The bullet embeds in the block, and the entire 
system swings through a height h. The speed of the bullet can be determined from the 
measurement of h. 
 

 
 
(a) Momentum conservation law on the collision 
 

ummmvm )(0. 2121   
 
or 
 

21

1

mm

vm
u


 , (1) 

 
where v is the velocity of bullet before the collision and u is the velocity of bullet and 
block. 
________________________________________________________________________
_ 

   
 
_______________________________________________________________________ 
 
(b) Energy conservation law: 
 
The kinetic energy at the point A is given by 
 

2
21 )(

2

1
ummK A  . 



 
The potential energy at the point C is given by 
 

ghmmUB )( 21   
 
Then we have 
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1
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where h is the height between the point A and the point B. From Eqs.(1) and (2), we have 
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A.2 A variable-mass drop 
 
We consider a raindrop falling through a cloud of small water droplets Some of these 
small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force of 
the rain drop is 

dt

dm
v

dt

dv
m

dt

dp
Fext  . 

 
Suppose the mass of the raindrops depends on the distance x that it has fallen. Then m = 
kx, where k is constant, and dm/dt = kv. This gives 
 

)(kvv
dt

dv
mmg   

or 
 

2v
dt

dv
xxg   

 
since Fext = mg. 
 
Reference: 
K.S. Krane, Am. J. Phys. 49, 113 (1981). 
 
We assume that v = dx/dt = v0 and x = x0 at t = 0. We solve this problem (nonlinear 
differential equation) using the Mathematica (NDSolve) numericallty. 
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Fig. x vs t, where v0 = 0 and x0 = 0.01 – 0.20 (x0 = 0.02) 
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Fig. dx/dt vs t, where v0 = 0 and x0 = 0.01 – 0.20 (x0 = 0.02). 
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B. Center of mass frame and laboratory frame for elastic collision 
B.1 Momentum conservation and the energy conservation 
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Fig. Laboratory frame. The initial momentum is L
iim 1v . The scattering angle of 

the particle 1 with mass m1 is L
1 . 

 
In the laboratory frame, the velocities of the particles 1 and 2 before and after 
collision, are defined by 
 

L
i1v , L

i2v , L
f1v , L

f2v , 

 
where 
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since the particle with mass m2 is at rest before the collision. The center of mass 
velocity is given by 
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In the center of mass frame 
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We have the relation 
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(i) The momentum conservation in the laboratory frame; 
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which means that the velocity of the center of mass remains unchanged before 
and after the collision. Using Eqs.(1a) and (1b), we get 
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(ii) The energy conservation law; 
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Using Eqs.(1a) and (1b), we get 
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where  is the reduced mass and is given by 
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Using Eqs.(2) and (3), 
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in magnitudes. 

In conclusion we have 
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Fig. The center of mass frame. 
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That is, the rate at which two objects approach each other before an elastic 
collision is the same at the rate at which they separate afterward. We can use this 
result to identify elastic collisions in any inertial reference  frame. Namely, the 
relative velocity of two objects at a given time, that is, the difference in the 
velocity vectors of the objects must be the same in all inertial reference frames. 
 
B.2 Scattering angles CM , L

1  and L
2  

The y and z components of CM
fv1  and CM

fv2 ; 
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where the z axis is in the horizontal direction and the y axis is in the vertical 
direction. 
 
Using Eq.(1b), we have 
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The scattering angle in the laboratory scheme is obtained as 
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When m1 = m2, we have 
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Then we have 
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Fig. The relation between scattering angle in the laboratory frame and in the 

center of mass frame. 
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APPENDIX C Energy of a system of many particles 
 
The kinetic energy of many particles is given by 
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The velocity in the laboratory frame iv  is given by 
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where vCM is the velocity of the center of mass and CM

iv  is the velocity in the center of 

mass frame. Then K can be rewritten as 
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Then K consists of the kinetic energy of the center of mass (KCM) and the kinetic energy 
of the objects as viewed in the center of mass frame (Krel). 


