Chapter 9

1 Center of mass

Newton’s laws of motion are formulated for single particle. However, they can be
extended without difficulty to systems of particles and bodies of finite dimensions.

We now consider two particles located on the x axis.
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The position of the center of mass is defined by
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where mi and m2 are the masses of particle 1 and particle 2.
For the system with many particles,
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where M = Zmi is the total mass of the system. Physically, the center of mass can be

interpreted as a weighted average position of the system of the particles. In the special
case of a uniform gravitational field the center of mass coincides with the center of
gravity.

For the continuous distribution of particles, the position of center of mass is given by
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2. Calculation of center of mass
2.1. Center of the mass for the uniform rod
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where A is the line density (mass/length): A= M/L

2.2 Center of the mass for the uniform triangle
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where o is the area density (mass/area).

((Geometry))
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2.3 Center of mass for the half circle with radius a

((Solution))

X =0 from the symmetry.
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3 Linear momentum
3.1 Definition of linear momentum
The linear momentum of the particle with a mass m and a velocity v, is defined by
p=my

The general statement of Newton’s second law

==t
dt
or
F :i(mv) = md—v+d—mv
dt dt dt

For a constant mass m, we have

av

F = ma =ma (conventional law)

3.2 System consisting of many particles



Now we apply the Newton’s second law to the motion of many particles shown in Fig.

o]

Newton’s second law:
P = szi + Fi(e)
j

where F;; is the internal force applied on the i-th particle from the j-th particle (i # j) and

Fi(e) is the external force applied on the i-th particle.

We note that

Fji = —Fij (Newton’s third law)

The forces two particles exert on each other are equal and opposite.

(a) Weak law of action and reaction
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Wealkg law of action and reaction

(b) Definition for the strong law of action and reaction.
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Strong law of action and reaction

From the above equation, we have
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P ::?zmiri :ZFi(e) =F©,

since F;; =—F;, where F© is the total external force. The center of mass Rcwm is the

average of the radii vectors, weighed in proportion to their mass,



Zmiri = MRCM

where M is the total mass defined by
M=>m.

Then we have
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y Motion of center of mass




Fig. Typical motion of two bodies (with the same mass, red and blue circles)
connecting by a uniform rod. The center of the mass is the midpoint of the two
bodies. It shows a parabola-motion in the Xx-y plane.

y Motion of center of mass

Fig. Typical motion of two bodies (mass 2m for the red circles and mass m for blue
circles) connecting by a uniform rod. The center of the mass is deviated from the
midpoint of the two bodies. It shows a parabola-motion in the X-y plane.

4. Conservation law of linear momentum

If F© =0, we have
P=F®=0

leading to

P=M dz% = conserved



This means that

where P;i and Pr are the linear momentum in the initial state and the final state.

((Note))

5. Sample problems
5.1 Sample problem 9-2
A uniform metal plate (radius 2R) from which a disk of radius R is stamped out

¥

We consider two circles (linear combination)
Circle (radius 2R and the area density o) centered at the origin (0, 0)
Circle (radius R and the area density -o) centered at (-R,0).

_olz(2R)’ 10 +[-o(xR)I(-R) _o(sR)R R
™ o[x(2R)]+[-c(ARY)]  3o(AR>) 3
Yemn =0

5.2 Typical problem
Problem 9-16*** (SP-09) (10-th edition)

Ricardo, of mass 80 kg, and Carmelita, who is lighter, are enjoying Lake Merced at
dusk in a 30 kg canoe. When the canoe is at rest in the placid water, they exchange seats,



which are 3.0 m apart and symmetrically located with respect to the canoe’s center. If the
canoe moves 40 cm horizontally relative to a pier post, what is Carmelita’s mass.

((Solution))
ol
mR me
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) H2 ——M
mr = 80 kg
I=2a=3.0m.
M =30kg

The position of the center of mass Xem does not change since there is no external force.

_ M (X, —a) + Mx, + m. (X, + ) _ M (X, —a) + Mx, + my (X, +a)
m; +M +mg mg + M +mg

X

cm

or
Mg (X, —a) + MX, + M. (X, +a) = M (X, —a) + MX, + my(X, +a)

We put
X=X =Y
Then we have

_ 2a(mR — mc)

y
my + M +mg

When y = 0.4m, we have mc = 57.6 kg.



5.3 Problem from Serway 8-39

Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing his guitar from the rear of their
boat at rest in still water, 2.70 m away from Juliet who is in the front of the boat. After
the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a
kiss on Romeo’s cheek. How far does the 80.0-kg boat move toward the shore it is
facing?

((Solution))

*3

mr = 77.0 kg: weight of Romeo
my =55.0 kg: weight of Juliet
M = 80.0 kg: mass of the canoe
| =2a=2.70 m

The position of the center of mass Xem does not change since there is no external force.

« = m, (% —a)+ Mx + M (X, +8) _ MX, +(mg + M, )(X, +a)
o m, +M +m, m, +M +m,

or
m, (X, —a) + Mx, + my (X, + a) = Mx, +(mg +m,)(X, +a)

We put

X=X =Y



Then we have

y = 2am, :2'7XS5'0:0.70m
my + M +mg 212
6 Elastic collision (head-on collision): one-dimensional

In the absence of the external force, the total linear momentum is conserved before
and after the collision of two particles with mass mi1 and m2. We consider the elastic
collision where the total energy is conserved before and after the collision.

V1 "2

mq ma
Before the collision
u
U4 2
—_ B —
mA ma

After the collision

Momentum conservation law

myv, + m,v, = mu, + m,u,

Energy conservation law (elastic collision)

1 2 1 2 1 2 1 2
Emlvl +Em2V2 :Emlul +Em2u2

or

U = (m1 — mz)Vl + 2m2V2
! m, +m,

— 2my, — (m1 _ mz)Vz
m, + m,

2

((Mathematica))



Clear["Global *"];
eql=mlvl+m2v2==mlul + m2u2;

1 , 1 2 1 2 1 2
eg2=—mlvl®+ — m2v2° == — mlul® + — m2u2°;
2 2 2 2

eq3 = Solve[{eql, eqg2}, {ul, u2}] // Simplify
mlivl-m2vl+2m2v2

{{u1—>v1, u2 - v2j}, {u1—>

ml + m2
2mlvl-mlv2+m2v2
uz - ml + m2 }}
7 Perfectly inelastic collision
Vg
1 . - -
m4 ma

Before the collision

u
—_—

mq mz
After the collision
Momentum conservation law;
myV, + myv, =mu+myu
The energy is not conserved in this case.

8 2D collisions
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myv,; =mv,; +m,v,, (Two-dimensional vectors)

From the above figure

mVv,; = mV,; cosd, + m,v,, cosb,

myV,, sing, = m,v, sin 6,

The solution is

sin @,
Vir =V
cos(6, +6,)
m, sin 6,
Vor =

— Vi
m, ~ cos(6, +6,)
Here we assume the case of elastic collision (the energy conservation law)

1 2 1 2 1 2
5 myv,; = 5 m,Vi; +Em2V2f

When m; = my, this condition is rewritten as

6, +0,=—

((Note))
In the general case (including the case of inelastic collision), the energy is not conserved.
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When mi = mo,

AE
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Figure Plot of AE/Ei as a function of €, where mi = mz2. 61 is changed as a

parameter: 6 = 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. AE/E; becomes
zero for 61 + 6 = /2 (elastic scattering).

((Mathematica))



egl = ml vli = mlvlifCos[8l] +m2 v2f Cos[82]

ml vli =ml vlf Cos[&l] +m2 v2f Cos [&2]

eg2 = ml vif Sin[el] == m2 v2£f Sin[82]

ml vlif Sin[&l] =m2 v2f Sin[&2]

eqg3 = Solve[{eql, eq2}, {vlf, v2£}] // Simplify

1 v1iCsc[81 +62] Sin[sl
{{vlfavliCsc[51+52] sin[62], v2f » L V11 Csc[El+&2] Sin[S ]H

m2

1 2 1 > 1 2
egd = —ml v1f + = m2 v2f - - ml wli
2 2 2

ml vlif? mlvli? m2v2f?

+
2 2 2

eqdl —eq4 /. eq3[[1l]] // FullSimplify

ml v1i% csc[6l +62]12 5in[61] (ml Sin[&l] -m2 Sin[&l + 2 62])
2 m2

When m1 = m2
eqd42 = eqgé4l /. {m2 > ml} // FullSimplify
—mlvli?cot [l +82] Cac[5l +&82] 8in[&l] Sin[&2]

eqd?
eqgb =
% ml v1i?

_2cot[s8l +82] Csc[8l +82] sin[el] Sin[62]
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f=eq5/. {el-> —x1, 62 » — xz};
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Plot[Evaluate[Table[f, {x1, 10, 80, 10}]1]1, {x2, 0, 90},
PlotStyle » Table[{Hue[0.12 1], Thick}, {i, 0, 7}71,
AxeslLabel -» {'62 (degrees)", "AE/Ei"},

PlotRange » {{0, 90}, {-0.6, 0}}]
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9 Elastic collision of particles with the same mass
Problem 9-75** (SP-09) (10-th edition)

A projectile proton with a speed of 500 m/s collides elastically with a target proton
initially at rest. The two protons then move along perpendicular paths, with the projectile
path at 60° from the original direction. After the collisions, what are the speeds of (a) the
target proton and (b) the projectile proton?

((Solution))
Vii = Vpp +Vyy
2 2 2
Vii =Vip +Vy

2 2 2 2 2 2
Vii =Vip Vo _(Vlf+v2f) =Vip + Vg +2V1f'V2f
or Vi; -V, =0

In other words,

vif and Vor are perpendicular to each other.
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10.1 Theorem




At

(B)

Definition of impulse J
J=Ap=p;—p

ty
J=[Fdt=F,(t -t) = F,At
t

or
J_Ap_
At A
with
1
F, = [ Fat
t, -t

The average force F,, can be evaluated from the values of J = Ap and the time interval

((Impulse-momentum theorem))

The change in the momentum of a particle is equal to the impulse of the net force
acting on the particle.

((Note))



A moving particle has momentum and kinetic energy, but it does not carry with it a
force. The force required to cause a particle to stop depends on how big the momentum
change is and on how quickly the momentum change occurs.

((Example))
Impulse example

The change in momentum of an object during a collision is equal to the product
of the average force acting on an object and the time over which it acts.

((Example)) SmartPhysics p.144-146

A ball with a mass of m = 1 kg is released from rest from an initial height of (h; =
1 m) above the floor. It bounces back to half its original height (hf= 0.5 m). If we
assume the ball is in contact with the floor for a time of At = 10 ms, what is the
average force on the ball during the collision?



-~ © My = 1 kg

@&
{ &
hy=1m © -
& L ]
&
Fr},- =0.35m
'il.l'! in
Time in Contact Af =10 ms
((Solution))
h =1m. hy =0.5m. m=1kg. At =10 ms.

) v1 is the velocity of the ball which falls from the height hi and touchs on
the floor

0> -v’=(=2gh), or v, =.2gh =443 m/s

(11) V2 1s the velocity of the ball which bounces back from the floor



0% —v,> =(-2gh,), or v, =./2gh, =3.13 m/s

Impulse
J=Ap=F At=mv, —(-mv,)=m(v, +Vv,)=7.56 N s

The average force F,, is obtained as

av

_ v, +v,)

- =756 N.
At
10.2 Example
Problem 9-38** (10-th edition)

In the overhead view of Fig., a 300 g ball with a speed v of 6.0 m/s strikes a wall at an
angle @ of 30° and then rebounds with the same speed and angle. It is in contact with the
wall for 10 ms. In unit-vector notation, what are (a) the impulse on the ball from the wall
and (b) the average force on the wall from the ball?

Y

%
‘_ Vv
X

<V

m=03kg, Vv=6.0m/s, =30, At=10 ms




J=Ap=F_ At

where
(a)
J =Ap=2mvsinf =1.8Ns
(b)
J
F, =—=180N
At
11 Systems with varying mass: A rocket

11.1  Formulation

We assume that we are at rest relative to an inertial reference frame (the Earth),
watching a rocket accelerate through deep space with no gravitational or atmospheric
drag force acting on it.

We consider a rocket plus fuel that is initially at rest. When fuel is ejected out the
back of the rocket, it acquires momentum, and so the rocket must move forward to
acquire opposite momentum to cancel the fuel’s momentum, since the total momentum of
the system remains constant.

Suppose that a rocket of mass M is moving at the velocity v with respect to the Earth.
Now a mass of fuel (- dM) is ejected with the velocity u with respect to the Earth. The
rocket now moves forward with mass (M+dM) and velocity (v+dv)

W

- e .

u
Momentum conservation law:

Mv = (=dM)u + (M +dM )(v + dv) (1)

Note that
Vrocket-Earth = Vrocket-fuel + Vfuel-Earth
where
Vrocket-Earth (= V + d V) is the velocity of rocket relative to the Earth.

Vrocket-fuel (= Vrel) 18 the velocity of rocket relative to the exhaust fuel.
Viuel-Earth (= U) 1s the velocity of the exhaust fuel relative to the Earth.



We get the relation
u=v-+dv- Vrel. (2)
Substituting Eq.(2) for u into Eq.(1), we get

Mv=—-dM(v+dv-v,)+(M +dM)(v+dv)

or
Mv = —vdM —dMdv +Vv,,dM + Mv + Mdv + vdM + dMdv_
or
0=v,dM + Mdv
or
0=v, d—M+ M av
dt dt

Then we have

M ﬂ = _Vrel d_M
dt dt
=V, (—dd—l\tll) (first rocket equation).
= erel
where
Vrel: the fuel’s exhaust velocity relative to the rocket.
T =Rv,, the thrust of the rocket engine (N)

R (=-dM/dt) the rate of fuel consumption

Here we assume that vrel is constant. Then we have

Mdv = —v,,dM
dv = vre,d—l\/I
M
" dM M
Vi =V =J.dV— Vrel“' M __Vrelln( f)v



or

Vi =V =V ln(&)
M

f (second rocket equation)

V., —V. . M.
"' as a function of —L-
rel f
(vf—vi)/ve
4.

We make a plot of

11.2  The case for constant R (=-dM/dt) and Vye.
Here we assume that R (= -dM/dt) and Vil are independent of t. Then we have

M ﬂ = erel
dt
dMm

dt

From the second equation, M is obtained as

M =M, — Rt
or
M__R
MO MO

where Mo is the initial mass at t = 0 and t<Mo/R. Then we have

rel __

dv_Rv Rv.,  Rv,/M,
dd ™M M,-Rt 1-Rt/M,

or



where O<&<1.
0

(a) Plot of (V-Vo)/vrel vs &= Rt/Mo.

V-V,

=i —3)

rel

Note that in the limit of £&—0 (or t—0)

V-v, N
v TP TETTS

rel

(b)  Plot of M/Mo vs &= Rt/Mo.



: =Rt/M0O
.Of v

In conclusion:
The velocity of the rocket is proportional to the time in early stage. As the mass of
rocket decreases in the late stage, the velocity of the rocket rapidly increases.

((Note)) The velocity of rocket

10? miles/h = 47.7 m/s
10° miles/h=0.447 km/s = 447 m/s

10* miles/h = 4.4704 km/s

The velocity for the orbit on the earth

M G

E

=7.91 km/s = 1.77 x 10* miles/h

Vorbit =

The escape velocity form the earth:

Veseape = /ZI\QEG =11.19 km/s = 2.50 x 10* miles/h.
E

Problem 9-78 (10-th edition)

11.3

Consider a rocket that is in deep space and at rest relative to an inertial reference
frame. The rocket’s engine is to be fired for a certain interval. What must be the rocket’s
mass ratio (ratio of initial to final mass) over that interval if the rocket’s original speed
relative to the inertial frame is to be equal to (a) the exhaust speed (speed of the exhaust

products relative to the rocket) and (b) 2.0 times the exhaust speed?

((Solution))
Second rocket equation with vi=0 and vi = V;



M.
Vi =V, =V—=0=V In(—-
f i rel (Mf)

M, v
M—f—eXP( )

rel

(a) If v = vrel, we obtain % =e'=2.72
f

(b) If v =2 Vrel,, we obtain % =e’ =739
f

11.4
Problem 9-79 (10-th edition)

A rocket that is in deep space and initially at rest relative to an inertial reference
frame has a mass of 2.55 x 10° kg, of which 1.81 x 10° kg is fuel. The rocket engine is
then fired for 250 s while fuel is consumed at the rate of 480 kg/s. The speed of the
exhaust products relative to the rocket is 3.27 km/s.

(a) What is the rocket’s thrust? After the 250 s firing, what are (b) the mass and (c) the
speed of the rocket?

((Solution))

(a) The thrust of the rocket is given by T = Rvrel where R (=- dM/dt) is the rate of fuel
consumption and Vrel 1s the speed of the exhaust gas relative to the rocket. For this
problem R = 480 kg/s and Vil = 3.27 x 10> m/s, so

T=RVwe1=1.57x 10° N

(b)

The mass of fuel ejected is given by Mmel = RAt, where At is the time interval of the

burn. Thus, Ml = (480 kg/s)(250 s) = 1.20 x 10° kg. The mass of the rocket after the
burn is

Mt = Mi — Mfuet = (2.55 — 1.20) x 10° kg = 1.35 x 10° kg.

(c)

Since the initial speed is zero, the final speed is given by the second rocket equation

vV, =V ln(&) =2.08x 10° m/s
f rel M

f

11.5



Problem 9-76 (10-th edition)

A 6090 kg space probe moving nose-first toward Jupiter at 105 m/s relative to the Sun
fires its rocket engine, ejecting 80.0 kg of exhaust at a speed of 253 m/s relative to the
space probe. What is the final velocity of the probe?

((Solution))

Second rocket equation;

Vi =V + Vg ln(%)
f

ve= 105 m/s + (253 m/s) In(6090 kg/6010 kg) = 108 m/s.

12. Homework and SP-09
12.1
Problem 9-14 (SP-09) (10-th edition)

In Fig., two particles are launched from the origin of the coordinate system at time t =
0. Particle 1 of mass mi = 5.00 g is shot directly along the X axis on a frictionless floor,
with constant speed 10.0 m/s. Particle of mass m2 = 3.00 g is shot with a velocity of
magnitude 20.0 m/s, at an upward angle such that it always directly above particle 1. (a)
What is the maximum height Hmax reached by the c.o.m. of the two-particle system? In
unit-vector notation, what are the (b) velocity and (b) acceleration of the c.o.m. when the

c.0.m. reaches Hmax?

Y

((Solution))
m; = 5.00g, mz2 =3.00 g, vi =10.0 m/s, v2 =20 m/s



V2

Vl = (V1 ’0)5
Vv, =(V, cosd,V, sind — gt)

r =(xi, y1) r2 =(Xz2, y2)
R~ MA+m
Ot m,+m,
v =My Fmy,
o omi4+m,
A - m,a, +m,a,
on m, +m,
12.2
Problem 9-37 (SP-09) (10-th edition)

A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The
player’s foot is in contact with the ball for 3.0 x 107 s, and the force of the kick is given
by

F(t)=[(6.0x10°)t —(2.0x10°)t*]N

for 0<t<3.0x107s, where t is in seconds. Find the magnitudes of (a) the impulse on
the ball due to the kick, (b) the average force on the ball from the player’s foot during the
period of contact, (c) the maximum force on the ball from the player’s foot during the

period of contact, and (d) the ball’s velocity immediately after it loses contact with
player’s foot.



((Solution))
F(N)

4000

3000

2000

1000 |

a=6.0x10%b=2.0x 10°

to=3.0x 107 s,

m=0.45 kg

The force is given by
F(t)=at —bt’

The impulse J:

J:TFamt

The average force Fav:

I:av = i
1:0
12.3
Problem 9-70*** (SP-09) (10-th edition)

In Fig., puck 1 of mass mi = 0.20 kg is sent sliding across a frictionless lab bench, to
undergo a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off
the bench and lands a distance d from the base of the bench. Puck 1 rebounds from the
collision and slides off the opposite edges of the bench, landing a distance 2d from the
base of the bench. What is the mass of puck2? (Hint: Be careful with signs).



~——2d— ~d—]

((Solution))
mi =0.2 kg

Before collision

Before collision

Elastic collision

my mg

The momentum conservation law:
myv, + m, -0 =-myu, + m,u, (1)

For the mass mi,



or

t= |2
g
x:2d:ul/gn
9
u, = 2d 4
2h

For the mass ma,

1
=0=h-=gt’=0
y 29

From Egs.(1) and (2), we have

2myv,
U =———
m, —2m,

m,v

U2 — 171

m, —2m,

)

)



The energy conservation law:

1 1 2 1 2
Emlv1 = Emlu1 + Emzuz

The substitution of Eq.(3) into the energy conservation law leads to

m, (Sml — mz)mlvl —
2m, —m,

0

Thus we get
m, =5m,

12.4
Problem 9-64** (SP-09) (10-th edition)

A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far
end. The ball is then released when the cord is horizontal (Fig.) At the bottom of its path,
the ball strikes a 2.50 kg steel block initially at rest on a frictionless surface. The collision
is elastic, find (a) the speed of the ball and (b) the speed of the block, both just after the
collision.

((Solution))



W -

Before collision

After callision

M=250kg, m=05kg, R=07m.

Energy conservation law

mgR :%mv2 or V=.20R =3.70m/s

Momentum conservation law

mv=MU + mV

The collision is elastic.

lmv2 :lMU2 +lmV2
2 2

Vv :(m_M jv=—2.47m/s
m+ M

2mv
m+ M

U= =1.23m/s




13. Problems from Sewway
13.1 Serway Problem 8-51

A small block of mass m = 0.500 kg is released from rest at the top of a curve-shaped
frictionless wedge of mass M = 3.00 kg, which sits on a frictionless, horizontal surface.
When the block leaves the wedge, the velocity is measured to be v =4.00 m/s to the right.
(a) What is the velocity of the wedge after the block reaches the horizontal surface? (b)
What is the height h of the wedge?

((Solution))

((Solution))
M =3.00 kg
m = 0.500 kg
v=4.00 m/s

(a)
The initial momentum of the system is zero, which remains constant through the motion
(the momentum conservation). When the block of mass m leaves the wedge, we have

mv-MV =0

or



V=0.667 m/s

(b) Energy conservation
Ei=Er
where
E, = mgh
E, Lo+ Lmve
Then we have h=0.952 m.
13.2  Serway Problem 8-58

A cannon is rigidly attached to a carriage, which can move along horizontal rails but

is connected to a post by a large spring, initially stretched and with force constant k =
2.00 x 10* N/m. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed
45.0° above the horizontal.

(a) Assuming that the mass of the cannon and its carriage is 5000 kg, find the recoil
speed of the cannon.

(b) Determine the maximum extension of the string.

(©) Find the maximum force the spring exerts on the carriage.

(d) Consider the system consisting of the cannon, carriage, and projectile. Is the
momentum of this system conserved during the firing? Why or why not?

((Solution))

k=2.00 x 10* N/m

mp = 200 kg; mass for the projectile

Vp = 125 m/s; velocity for the projectile
0=45.0°.

M = 5000 kg for the cannon and carriage



(a) Use conservation of the horizontal component of momentum for the system of the
shell, the cannon, and the carriage, from just before to just after the cannon firing.

m,v, cos45°+ Mv 0

recoil —
or
Viecoil = -3.54 m/s

(b) Use conservation of energy for the system of the cannon, the carriage, and the
spring from right after the cannon is fired to the instant when the cannon comes to

rest.
Er=Ei
where
E = %mvremi,2
E, = Ly 2

Then we have

Xmax = \/E|Vrecoil| = 177m
k

) F_ =kx_ =3.54x10N

max

(d)

No. The rail exerts a vertical external force (the normal force) on the cannon and prevents
it from recoiling vertically. Momentum is not conserved in the vertical direction. The
spring does not have time to stretch during the cannon firing. Thus, no external horizontal
force is exerted on the system (cannon, carriage, and shell) from just before to just after
firing. Momentum of this system is conserved in the horizontal direction during this
interval.

Appendix

A.1  Ballistic pendulum



The ballistic pendulum is an apparatus used to measure the speed of a fast-moving
projectile, such as a bullet. A bullet of mass mi is fired into a large block of wood of mass
m2 suspended from some light wires. The bullet embeds in the block, and the entire
system swings through a height h. The speed of the bullet can be determined from the
measurement of h.

N\

m{ +m2z
L
B
v m2 u h
ay— ay —
mA A

(a) Momentum conservation law on the collision
myVv+m,.0 =(m, + m,)u

or

myv
u= ,
m, + m,

(1)

where V is the velocity of bullet before the collision and u is the velocity of bullet and
block.

Before collision o
After collision

v mq +m2 u
O — mg - —
mq

(b) Energy conservation law:

The kinetic energy at the point A is given by

K, =%(m1 +m)u’.



The potential energy at the point C is given by
Ug=(m + mz)gh

Then we have
1 )
E(ml +m2)u =(m1 +m2)gh, (2)

where h is the height between the point A and the point B. From Egs.(1) and (2), we have

V:[M] gh.

m,

A.2 A variable-mass drop

We consider a raindrop falling through a cloud of small water droplets Some of these
small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force of
the rain drop is

Enggzm9!+vgﬂ.
dt dt dt

Suppose the mass of the raindrops depends on the distance X that it has fallen. Then m =
kx, where k is constant, and dm/dt = kv. This gives

dv
mg = m— + v(kv
g pm (kv)

or

xg—xgx+v2
dt

since Fext = MQ.

Reference:
K.S. Krane, Am. J. Phys. 49, 113 (1981).

We assume that v = dx/dt = vo and x = Xo at t = 0. We solve this problem (nonlinear
differential equation) using the Mathematica (NDSolve) numericallty.



Fig. xvst, where Vo =0 and xo =0.01 — 0.20 (4x0 = 0.02)

Fig. dx/dt vst, where vo =0 and xo = 0.01 — 0.20 (4xo = 0.02).



Raindrop
Clear["Global " +"]
g=9.8;

timex[x0_, u0_, tmax_, opts__] :=
Module[{numsol, numgraph},
numsol = NDSolve [{x[t] u'[t] +U[t]? = g x[t], X [t] =u[t], X[0] = xO, u[0] = uo},
{x[t], u[t]}, {t, 0, tmax}];
numgraph = Plot[Evaluate[x[t] /. numsol[[1]]], {t, O, tmax}, opts, DisplayFunction - Identity]]

timelistx =
timex[#, 0, 0.4, PlotStyle » {Hue[4.5 (#-0.01)], Thick}, AxesLabel -» {"t", X"},
Background - LightGray, PlotRange » All, DisplayFunction - Identity] & /e
Range[0.01, 0.2, 0.02]; Show[timelistx, DisplayFunction -» $DisplayFunction]
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B. Center of mass frame and laboratory frame for elastic collision
B.1 Momentum conservation and the energy conservation




Fig. Laboratory frame. The initial momentum is m,v;; . The scattering angle of

the particle 1 with mass m1 is 6.

In the laboratory frame, the velocities of the particles 1 and 2 before and after
collision, are defined by

where

since the particle with mass mz is at rest before the collision. The center of mass
velocity is given by

m L
Voy =———V,:
CM

m+m, "

In the center of mass frame

CM CM CM

Vli H V2i H Vlf H sz H

We have the relation

Vi =V +Vewm » Va = V5 +Vew (la)
Vig =it +Vew s Vo =Vof Ve (1b)
where
(1) The momentum conservation in the laboratory frame;

L L L L
MV +MyVy =MVie +MyVyy .
which means that the velocity of the center of mass remains unchanged before
and after the collision. Using Eqs.(1a) and (1b), we get

L cM cM
MV =M (Ve +Vey )+ My (Vo +Vey)



or
mlvlch + mzvzc?/l = m1V1Li —(M +m,)vg,, =0
or
my ' +myvsy =0, or
(11) The energy conservation law;
1 L2 Ly 1 Ly 1 L\
Eml(vli) +_m2(V2i) :_ml(vlf ) +Em2(v2f )
Using Egs.(1a) and (1b), we get
1 cM 1 cM » 1 LY
_ml(vlf *Vewm )Z +Em2(vzf +Veu) zzml(vli)

or

CM

1 1 1
Eml(vlch )’ "‘Emz(vzc?/l )+ (myvyy + mZVICfM ) Ve +§(m1 +mM,)(Vey ) =

or

1 1 1 1 1
Eml(vffM )2 +Emz(V§?A )2 = Eml(vll})z _E(ml + mz)(VCM )2 :E,u(vll})z

where g is the reduced mass and is given by

— m1m2
m +m,’

Using Egs.(2) and (3),

or

c™M _ ml CM (2)

Sm(otf

€)



1 Im? 1 mm
—m, (Vlch )? +__1(V1CfM P= _1—2(Vll})2
2 2m, 2m, +m,
or
L L
m,V.: m\Vv.:
Vlch — 2 V1i , and Vg?ﬂ — 1Y1i
m, +m, m, +m,
and
in magnitudes.
In conclusion we have
m m
Vir = ——tvit vt = ——L v
m2 m1 + m2

with

CM,_CM
Vit (=Vii)

mj



L
m2vl i

Fig. The center of mass frame. v;" =v' =—21,
m,+m,

myv,;
c™M _\,CM _ Vi CcM CM _ ,,CM CM
=Vp = =Vem- Vit tVop =V Yy

m,+m,

\Y

2i =V, . The scattering

angle of the particle 1 with mass m is 8 .

Note that

L L cM oM

‘sz_Vlf‘:‘(sz + Ve ) — (Vi +VCM)‘
|, CM  ,CM
_‘sz — Vit ‘

L

L L
mlvli + m2vli |_
— Vi

m+m, m+m,

‘VzLi _VlLi‘ =|(vs5" +Vem )= (v +Vew )
= v —vlciM‘
B 1L VY S LL T
m+m, ' m+m, "
:vlL.

That is, the rate at which two objects approach each other before an elastic
collision is the same at the rate at which they separate afterward. We can use this
result to identify elastic collisions in any inertial reference frame. Namely, the
relative velocity of two objects at a given time, that is, the difference in the
velocity vectors of the objects must be the same in all inertial reference frames.

B.2  Scattering angles 6" , 6 and 6,

The y and z components of v;{" and VS}' ;

L
. m,V.: .
(VICfM ) =v sin @M = —215in gV
y m, +m,

m,vs:
(Vlch) =v' cos M = —21_cos HM
Z
ml + m2

L
. m,v,. .
(Vf?" )y =-v¥ sin@™M = ——11_5in g
m, +m
1 2



L
myv.:
(vzc?" ) =V cos @M = ——L1_cos HM
z
m, +m,

where the z axis is in the horizontal direction and the y axis is in the vertical
direction.

Using Eq.(1b), we have

L CM L cM
Vlf :Vlf +VCM s sz :sz +VCM ,
or
myvs-
(VlLf) :(VICfM) +(VCM) :V1CfM sin @M = —21_gin gM
! Y g m, +m,
L _ CM
(Vlf )Z o (Vlf )Z + (VCM )z
=V cos @M +vg,
L L
m,v;; mVv.
ZACOSHCM + 1V1i
m1 + m2 m1 + m2
CM
_ (m, +m, cosd )VL.
m, +m, .
m,vE
L) — (ySM _ Vi i aCM
(sz )y = (V2f )y + (Ve )y = —msmﬁ
L) _(,cM
(sz )Z = (sz ) +(VCM )z
L L
MW osgom ¢ i
m1 + m2 m1 + m2
_(m,—m, cos ™) St
m, +m, i
where
ml L
Vem =— Vi -
M m +m, "

The scattering angle in the laboratory scheme is obtained as



m, sin 9"

m, +m, cos 9"

,  msind™  sing™" _ cot oM
f)z m —m cos@  1—cos&"

When m; = mz, we have

QCM 0CM
2sin| —— |cos| ——
. sin@" { 2 J ( 2 J oM
tang = o = =tan .
1+cosé Z(GCM J 2
2cos’| ——

Then we have

V4
O +6, ==
2
since
tan " tan @) =1.
my/my =2
vE
® >0
v§Y=vew Vit
Fig. The relation between scattering angle in the laboratory frame and in the
L L
m,Vv; mVv,;
center of mass frame. V" =v} =—21— v =i =11 =y
m, +m, m,+m,
vi=vit +vY v =vEM +vSM | In this figure, we assume that ma/mi = 2.
APPENDIX C Energy of a system of many particles

The kinetic energy of many particles is given by



1
K== z m. (V. -V.
2 I I ( 1 1 )
The velocity in the laboratory frame v, is given by

_ cM
Vi=Ven TV,

where Veu is the velocity of the center of mass and v is the velocity in the center of
mass frame. Then K can be rewritten as

1
K =2 2 (Ve +V™) - (Vo +V™)

=%zmi[VCM2 "‘2ViCNI “Vewm +ViCMZ)

:%MVCMz +%Zmi(ViCM )’ "‘(ZmiViCM)'VCM

=%MVCM2 +%Zmi(ViCM )?

=K, + Key

rel
where

zmiViCM :Zmi(vi _VCM): MVCM _MVCM =0

Then K consists of the kinetic energy of the center of mass (Kcwm) and the kinetic energy
of the objects as viewed in the center of mass frame (Krer).



