
Chapter 10 
Rotation 
 
1 Rotation 
 
1.1 Polar coordinates: general case 
 
The point P is located at (r, ), where r is the distance from the origin and  is the 
measured counterclockwise from the reference line (the x axis).  

 
We introduce the unit vectors given by 
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The position vector (displacement vector) is given by 
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The velocity and acceleration are 
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((Note-1)) 
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((Note-2)) 
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The velocity vector: 
 

 eeeerv       rrrr rrr   

 
The acceleration vector: 
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((Mathematica)) 
Clear"Global`";

R  rt Cost, rt Sint;

V  DR, t  FullSimplify

Cost rt  rt Sint t,

Sint rt  Cost rt t
A  DR, t, 2  FullSimplify

Cost rt t2  rt 
Sint 2 rt t  rt t,

2 Cost rt t  Sint rt t2  rt 
Cost rt t

er  Cost, Sint;

e  Sint, Cost;

A.er  Simplify

rt t2  rt
A.e  Simplify

2 rt t  rt t
V.er  Simplify

rt
V.e  Simplify

rt t  
 
 
1.2 Circular motion (r = constant) 

We consider a circular motion with r = constant. since 0r  and 0r . 
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In summary, we have 
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1.3 Angular velocity  and angular acceleration  

The case when the point P rotates about the origin in a circle of radius r (= constant). 
As the particle moves, the only coordinates that changes is . As the particle moves 
through , it moves through an arc length s. 
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Here we define the angular velocity and angular acceleration as 
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Then we have 
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1.4 Summary 
 
Rotational variables 

Angular displacement   displacement  x 
Angular velocity    velocity  v 
Angular acceleration    acceleration  a 
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The direction of  



The direction of  is along the rotation axis.  
The sense of  is defined by the right-hand rule. 
The thumb of the right hand gives the sense of . 

 

 
 

 

 
 
 
2 The case of  = constant 
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We solve this differential equation with the initial conditions: 
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The solution is as follows. 
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Problem 10-13** (SP-10 Hint)  (10-th edition) 
 

A flywheel turns through 40 rev as it slows from an angular speed of 1.5 rad/s to a 
stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest, (b) 
What is its angular acceleration? (c) How much time is required for it to complete the 
first 20 of the 40 revolutions? 
 
((Solution)) 1 rev = 2 (rad) 
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 is constant. 
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3 Kinetic energy of rotation 

We assume that a particle (mass m) rotates around the z axis with an angular velocity 
. 

 
 
The kinetic energy of the particle is given by 
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where r is distance perpendicular to the axis of rotation. 

Now we consider an object as a collection of particles and assume that it rotates about 
a fixed axis (z-axis) with an angular velocity . Figure shows the rotating object and 
identifies particle element (mi) on the object located at a distance ri from the rotation axis. 
 

 
 
The total kinetic energy of the rotating object: 
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Rotational inertia (moment of inertia) I: 
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The rotational kinetic energy: KR 
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Rotational inertia for the continuous body 
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(1) From the textbook (Halliday, Resnick, and Walker) 
 

 
 
(2) Table from the textbook (Serway and Jewett) 
 



 
 
4. Calculation of moment of inertia 
4.1 Example 

Two balls with masses M and m are connected by a rigid rod of length L and 
negligible mass as in Figure. For an axis perpendicular to the rod, show that the system 
has the minimum moment of inertia when the axes passes through the center of mass. 

Show that this moment of inertia is I = L2, where 
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((Solution)) 



 
 
The moment of inertia is given by 
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The derivative of I with respect to x has a local minimum  
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((Mathematica)) 
 



Clear"Global`"; I1  m L  x2  M x2;

rule1  x  L y, M  m ;

I2  I1  m L2 . rule1  Expand;

eq1  SolveDI2, y  0, y
y 

1

1  


I22  I2 . eq11  Simplify



1  

PlotEvaluateTableI2, , 0, 1, 0.05, y, 0, 1,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10,

AxesLabel  "xL", "
1

m L2
", Background  LightGray
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Fig. Plot of I/(mL2) as a function of x/L, where  = M/m is changed between 0 and 1 

( = 0.05).  
 
4.2 Thin rod about axis through center perpendicular to length 
 



 
 
We assume that the total mass of the rod (length L) is M. Then the mass between x and 
x+dx is  
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The moment of inertia for thin rod is 
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4.3 The square about perpendicular axis through center 
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Therefore the moment of inertia I is given by 
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((Mathematica)) 

Clear"Global`";

IntegrateIntegratex2  y2, y, 0, a  2,

x, 0, a  2
a4

24  
 
4.4 Solid cylinder 

Moment of inertia for the solid cylinder (radius R, height h) (or disk) about central 
axis:  
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The mass: hRM 2  
The moment of Inertia is given by 
 

2
2

44

0

322

2

1

24
22 MR

hR

MhRR
hdrrhrdrdrhdmrI

R

  
  



 
4.5 Annular cylinder  

The mass: hRRM )( 2
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The moment of inertia is given by 
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4.6 Solid sphere 
(a) Method-1 

Moment of inertia for the solid sphere about any diameter: 2
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Then we have 
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(b) Method-2: direct calculation 
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where  is the density of the sphere. 
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Then we have 
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((Mathematica)) 
 

Clear"Global`";

IntegrateIntegratex3, x, 0, R2  z2 ,

z, R, R
4 R5

15  
 
4.8 Sphere (using the spherical co-ordinate) 
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The moment of inertia I for the sphere can be calculated as 
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with the use of the spherical co-ordinate. 
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4.8 Solid cone 

Show that the moment of inertia of a uniform solid cone about an axis through its 
center is given by I = (3/10)MR2. The cone has mass M and altitude h. The radius of its 
circular base is R. 
 

 
 
 
The density  of the cone is 
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From the geometry, we have 
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The moment of inertia; 
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4.9 Moment of inertia for spherical shell 
 

 
 

The mass per unit area  is given by 
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The moment of inertia for the spherical shell is 
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5 Parallel-axis theorem 

The moment of inertia about any axis is equal to the moment of inertia about a 
parallel axis through the center of mass, plus the mass of the body times the square of the 
distance between the two axes. 
 

2MdII CM   

 

 
 
We consider the rotation axis passing through the origin, and the axis passing through the 
center of mass. This axis is parallel to the rotation axis. We consider a plane which is 
perpendicular the rotation axis. The projection of the center of mass on this plane is 
denoted by CM’ (red dot). In the above figure, the vectors R, r, and d are on this plane. 
 

drR   
 
The moment of inertia around the origin is 
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Note that  
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From the definition of d, 
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Then we have 
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where ICM is the moment of inertia around the center of the mass. 
 
 
((Note)) Perpendicular axis theorem 

The perpendicular axis theorem for planar objects can be demonstrated by looking at 
the contribution to the three axis moments of inertia from an arbitrary mass element. 
From the point mass moment, the contributions to each of the axis moments of inertia are  
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Then we have 
 

yxz III   

 
for planar object. 
 

 



 
 
((Example)) 
 
(a) Circular disk (mass M and radius R) 
 

Ix = Iy = 2

4

1
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Iz = 2
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(b) Circular hoop (mass M and radius R) 
 

Ix = Iy = 2

2

1
MR  

Iz = 2MR  
 
 
6 Torque 
 
The torque is defined by 
 

Frτ   
 



 
 
 

 
 
 
In this figure 
 

dF  
 
The moment arm of F:  
d: the component of r perpendicular to the force F. It is called  
 
The line of action of F: 
the component of r parallel to the force F. 
 
The torque is a vector.  
The direction of the torque vector is perpendicular to the plane formed of r and F. 



 
With the choice that counterclockwise torques are positive and clockwise torques are 
negative. 
 

 
 
 
7 Newton’s second law of rotation 
 

 
 
When r = constant, 
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Torque 
 

zrmazrFFrFrr r ˆˆ)ˆˆ()ˆ(   Frτ  

 
Since 
 


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we have 
 

 IImrz  2  
 
8. Example 
8.1  Example-1: Angular acceleration of a solid cylinder subject 

We consider a solid cylinder, free to rotate about a fixed axis coinciding with its 
geometric axis, subject to an applied torque. The torque is provided by a mass hanging 
from a string wrapped around the cylinder. 
 
 

 
 
The moment of inertia for the cylinder is  
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The free-body diagram 
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From these equations, we have 
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8.2 ((Example 2)) 
Serway 10-61 

A long uniform rod of length L and mass M is pivoted about a horizontal frictionless 
pin through one end. The rod is released from rest in a vertical position. At the instant the 
rod is horizontal, find (a) its angular velocity, (b) the magnitude of its angular 
acceleration of its center of mass, (c) the x and y components of the acceleration of its 
center of mass, and (d) the components of the reaction force at the point. 
 
 



 
 
 

 
 
((Solution)) 
The moment of inertia of the rod around the pin, 
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from the parallel axis theorem. 
 
The energy conservation law:  
 

UKE R   
 
where KR is the rotational energy and U is the potential energy 
 



2

2

1
2

IE

L
MgE

f

i




 

or 

if EE   
L
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(a) The angular velocity : 
L
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(b) The angular acceleration 
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(c) Acceleration of the center of mass along the (-y) direction. 
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(d) Centripetal acceleration of the center of mass: 
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(e) The component of the reaction force along the (-y axis) 
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(f) The component of the reaction force toward the center 
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3
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8.3 Example 
Example from Tipler and Mosca Chapter 9 problems 9-96 and 9-97 

A uniform cylinder of mass M and radius R is at rest on a block of mass m, which in 
turn rests on a horizontal, frictionless table. If a horizontal force F is applied to the block, 



it accelerates and the cylinder rolls without slipping. (a) Find the acceleration of the block. 
(b) Find the angular acceleration of the cylinder. Is the cylinder rotating clockwise or 
counterclockwise? (c) What is the cylinder's linear acceleration relative to the table? Let 
the direction of F be the positive direction. (d) What is the linear acceleration relative to 
the block 
 

 
 
((Solution)) 
We draw the two free body diagrams. 
 

 



 
((Solution)) 
 
The moment of inertia for the cylinder is  
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We note that  
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where G denotes the ground. This means that 
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For the cylinder, we have 
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For the block, we have 
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9 Work - energy theorem for rotation 
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)cos(  rF  
 
The work done by the rotation 
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Work-rotational energy theorem 
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This equation has exactly the same mathematical form as the work-energy theorem for 
translation. If an object is both rotating and translating, we have  
 

RT KKW   
 
10 Power in rotational motion 
The power delivered to a rotating object is 
 

 
dt

d

dt

dW
P  

 
This expression is analogous to P = Fv in the case of translation motion. 
 
11 Analogies between translational and rotational motion 
 

   x 
   v 
   a 
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mvKT   

I   m 
   F=ma 



   F 
Power=   Power = Fv 
Work =  d  Work = F dx 
 

Momentum p = mv  Angular momentum L = I

12. Homework (Hint) and SP problems 
12.1 
Problem 10-51 (SP-10)  (10-th edition) 
 

In Fig., block 1 has mass m1 = 460 g, block has mass m2 = 500 g, and the pulley, 
which is mounted on a horizontal axle with negligible friction, has radius R = 5.00 cm. 
When released from rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on the 
pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension 
T1 and (c) tension T2? (d) What is the magnitude of the pulley’s angular acceleration? (e) 
What is its rotational inertia? 
 
 

 
 
((Solution)) 
 
m1 = 0.46 kg, m2 = 0.5 kg, R = 0.05 m, 
h = 0.75 m,  t = 5 sec 
 
Free-body diagram 
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Determination of a: 
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12.2  
Problem 10-71 (HW-10, Hint)  (10-th edition) 
 



In Fig., two 6.20 kg blocks are connected by a massless string over a pulley of radius 
2.40 cm and rotational inertia 7.40 x 10-4 kg m2. The string does not slip on the pulley; it 
is not known whether there is friction between the table and the sliding block; the puley’s 
axis is frictionless. When this system is released from rest, the pulley turns through 1.30 
rad in 91.0 ms and the acceleration of the blocks is constant. What are (a) the magnitude 
of the pulley’s angular acceleration, (b) the magnitude of either block’s acceleration, (c) 
string tension T1, and (d) string tension T2? 
 

 
 
((Solution)) 
 
M = 6.2 kg, R = 0.024 m,  I = 7.40 x 10-4 kg m2, 
 = 1.30 rad in t = 91 ms. 
 

 
 
Determination of the angular acceleration and the acceleration a 
 

2

2

1
t   

 



2

2

t

R
Ra

   

 
Equations of motion: 
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12.3  
Problem 10-93  (10-th edition) 
 

A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational 
inertia of the wheel about the axis is 0.50 kg m2. A massless cord wrapped around the 
wheel is attached to a 2.0 kg block that slides on a horizontal frictionless surface. If a 
horizontal force of magnitude P = 3.0 N is applied to the block as shown in Fig., what is 
the magnitude of the angular acceleration of the wheel? Assume the cord does not slip on 
the wheel. 
 

 
 
((Solution)) 
 
m = 0.05 kg, I = 0.05 kg m2, r = 0.2 m, M = 2.0 kg, P = 3N. 
 
 

 
 



Newton’s second law 
 

MaTPFx   

 




ra

rTI




 

 
From these equations, 
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12.4  
Problem 10-67*** (SP-10)  (10-th edition) 
 

Figure shows a rigid assembly of a thin hoop (of mass m and radius R = 0.150 m) and 
a thin radial rod (of mass m and length L = 2.00 R). The assembly is upright, but if we 
give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and 
hoop, through a lower end of the rod. Assuming that the energy given to the assembly in 
such a nudge is negligible, what would be the assembly’s angular speed about the 
rotation axis when it passes through the upside-down (inverted) orientation? 
 

 
 



((My solution)) 
R = 0.150 m,  L = 2R 
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The energy conservation law 
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((Note)) The moment of inertia for the circular hoop 
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Appendix A 
 



The expression of the velocity of the particle rotating around the axis 
 

 
From the above geometry, we have 
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where 
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Taking into account of the direction of the velocity, we get 
 

rωv   
 
B. ((Richard Feynman, Rotation in space, Feynman Lectures on Physics)) 
 
Is a torque in three dimension a vector? 



 
B1. Definition of vector 
 

We now consider the one coordinate system is rotated by a fixed angle , such that 
the axis z- and z’- are the same. 
 

 
 

 
We assume that the vector a is given by 
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Then we have 
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In the three dimensional notation, we have 
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In general, any vector transforms into the new system in the same way as do ax, ay, and az. 
For convenience, we use the notation 
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B2. Torque  
 
Torque is defined by 
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Now we consider how the torque transforms under the rotation of the coordinate by the 
angle  around the z axis. The torque in the new coordinate is 
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We can show that 
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This means that the torque is a vector. 
 
((Mathematica)) 



A  Cos, Sin, 0,

Sin, Cos, 0, 0, 0, 1
Cos, Sin, 0,
Sin, Cos, 0, 0, 0, 1

A  MatrixForm

Cos Sin 0
Sin Cos 0

0 0 1

F  Fx, Fy, Fz
Fx, Fy, Fz

R  x, y, z
x, y, z

Fn  A.F

Fx Cos  Fy Sin,
Fy Cos  Fx Sin, Fz

Rn  A.R

x Cos  y Sin, y Cos  x Sin, z

  CrossR, F
Fz y  Fy z, Fz x  Fx z, Fy x  Fx y

n  CrossRn, Fn  Simplify

Fz y  Fy z Cos  Fz x  Fx z Sin,

Fz x  Fx z Cos  Fz y  Fy z Sin,
Fy x  Fx y  

 
APPENDIX C 



The kinetic rotation energy of the earth 
 
The kinetic rotation energy for the earth is given by 
 

2

2

1 IK   

 
where I is the moment of inertia of the earth and w is the angular velocity, 
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ME is the mass of the earth, RE is the radius and T is the period (24 hours). The rotation 
energy K can be rewritten as 
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The value of K can be estimated as 
 

K = 2.56537 x 1029 J. 
 
((Mathematica)) 

Clear"Global`";

rule1  ME  5.9736  1024, RE  6.372 106 , hour  3600;

K 
2

5

1

2
ME

2  RE

T1

2 . T1  24 hour . rule1

2.56537  1029
 

 
APPENDIX D: How to determine the moment of inertia (experimentally) 
 
Walter Lewin; 
https://www.youtube.com/watch?v=cB8GNQuyMPc 
The concept of moment of inertia is demonstrated by rolling a series of cylinders down 
an inclined plane.  
 

Suppose that either hollow cylinder or solid cylinder roll down on the incline with the 
angle . There is no slipping on the surface of the incline. First we calculate the 
acceleration using the Newton’s second law for the translation and rotation. 
 



 
 
The Torque around the central axis is 
 

 CMIfR   

 
where the force f is considered. The Newton’s second law for the movement for the 
center of mass,  
 

0cos  MgN  
 
and 
 

fMgMa  sin  
 
where M is the mass of the cylinder and  is the angle of incline. The condition for no 
slipping is given by 
 

Raa cm   

 
Then we get 
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The acceleration a is obtained by 
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We consider an annular cylinder (hollow cylinder) about the central axis. The inner 
radius is R1 and the outer radius is R2. The moment of inertia around the central axis is 
given by 
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Noting that 2RR  , we have the expression for the acceleration as 
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Thus the acceleration a depends only on the ratio 21 / RRx   (≤1). It does not depend on 
the mass (M), the length of cylinder (L), and the kind of materials for the hollow cylinder 
(such as copper, aluminum, wood, and so on). In other words, a is a universal function of 
the ratio x. 
 



x R1 R2

a gsin
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0.55
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Fig.  )sin/( ga  vs the rario 21 / RRx   for the hollow cylinder. 
 
(a) x =0, (R1=0): solid cylinder (or disk) about the central axis 
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(b) x = 1 (R1 = R2): hoop about the central axis 
 

sin
2

1
ga   

 
 



 
 
Then the acceleration a for the solid cylinder is larger than that for the hoop. 
 


