Chapter 10
Rotation

1 Rotation
1.1 Polar coordinates: general case

The point P is located at (r, ), where r is the distance from the origin and & is the

measured counterclockwise from the reference line (the X axis).

¥
F

Vg, 8g

Vr, ar

We introduce the unit vectors given by

f =(coséb,sin )
0= (—sind,cos )

The position vector (displacement vector) is given by
r=(rcosé,rsind) = rcoséi + rsin@A'
The velocity and acceleration are

v =it +rf0
a=(F—r0*)f+Q2r0+rh)o

or



a=af=F-ro’

((Note-1))

r=(rcosé@,rsinf)

v=r=(Fcosf— r@sind,fsind + récos@) =r(cosd,sinf) + ré(—sin@,cos@) = if + 10

a=i=(Fcosd—rOsinf—r1Osin@—rdsind —ro* cosb,sind+ rcos@ + FGcosd + rdcosd —rh*si

or
P =(Fcos@—210sin@—rfsin@—r6* cos,isin@+2r0cos O+ récosd—ro’sinb)
or
F=(Fcos@—210sin@—rdsin@—ro* cosO)i +(Fsin@+2rfcosd+récosd—rbh*sinb) |
F=(—r60)cos@ +sin))+ (2¢O + rd)(—sin @ +cos @) = (f = r6*)F + (20 +rb)o
((Note-2))
e, =(cosd,sinf). e, =(—sinf,cosb)
é, =0 (—sinf,cos@)=0e,, ¢, =—6(cosB,sin ) = —be,
r=re,

The velocity vector:
v=F=Fe +ré =fe +10 ¢,
The acceleration vector:

a=r
—Fe +re +10 e, +10 e,+10 ¢,
=fe +r0e,+10 e, +10 e,+16 (~be,)
=(F-r6)e, +(2¢6 +r10 )e,



((Mathematica))
Clear["Global %"];

R={r[t] Cos[e[t]], r[t] Sin[e[t]]};

V =D[R, t] // FullSimplify

[t] -r[t] Sin[o[t]]

{Cos[6[t]] (t]
[t] + Cos[O[t]] r[t]

Sin[o[t]]

(t],
(€]}

r/ 6/
r/ 6/
A =DI[R, {t, 2}] // FullSimplify

{Cos[o[t]] (-r[t] o [t]?+ r'rt)) -
Sin[e[t]] (2r [t] o [t] +r[t] o’ [t]),

2Cos[o[t]] r'[t] o' [t] +Sin[o[t]] (-r[t] o [t]?+ r'rt)) «+
Cos[o[t]] r(t] o’ [t]}

er = {Cos[e[t]], Sin[e[t]]};
eo = {-Sin[e[t]], Cos[O[t]]};

A_er // Simplify

~r[t] o [t]?+r[t]
A_ee // Simplify

2r [t] o' [t] +r(t] " [t]
V_.er // Simplify

r'[t]

V.eo // Simplify

rit] o' [t]

1.2 Circular motion ( = constant)
We consider a circular motion with r = constant. since f =0 and i =0.

a =-ré’ v
a,=a =ré V,=V,=r0

In summary, we have
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o] Reference line

a =—rf’=-"
r
dv

a,=a=rd=—

0 = & at

-

i
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1.3  Angular velocity w and angular acceleration o
The case when the point P rotates about the origin in a circle of radius r (= constant).

As the particle moves, the only coordinates that changes is 6. As the particle moves
through 6, it moves through an arc length s.



Here we define the angular velocity and angular acceleration as

o= ?j_te =0 angular velocity (rad/s)
2
a= c(lj_(to = % =0 angular acceleration (rad/s?)

Then we have




14 Summary

Rotational variables

Angular displacement [ displacement
Angular velocity 0] velocity
Angular acceleration a acceleration
. A6
Average angular velocity Oy = A
. déo
Instantaneous angular velocity o= ’m
. Aw
Average angular acceleration Aoy = AL
. do d’0
Instantaneous angular acceleration a= o = e

The direction of @



The direction of @ is along the rotation axis.
The sense of @ is defined by the right-hand rule.
The thumb of the right hand gives the sense of @.

z

2 The case of @ = constant
deo d%@
o =——=—— =const
dt dt

We solve this differential equation with the initial conditions:

0(0) = w,
6(0) = 6,

The solution is as follows.



w=0= w, +ot
0=0,+wt +%05t2
o’ -, =2a(0-6,)
Problem 10-13** (SP-10 Hint) (10-th edition)

A flywheel turns through 40 rev as it slows from an angular speed of 1.5 rad/s to a
stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest, (b)
What is its angular acceleration? (c) How much time is required for it to complete the
first 20 of the 40 revolutions?

((Solution)) 1 rev = 2 (rad)

@, =1.5rad /s

A6 =40rev=40x27 =80x (rad)
w; =0

« 1s constant.

w; =o +at
0, =0, +a)it+%at2

a)fz _a)iz =2a(0; - 6,)

3 Kinetic energy of rotation
We assume that a particle (mass m) rotates around the z axis with an angular velocity

o.

4

The kinetic energy of the particle is given by



Ko Ly :lm(a)r)2 :lmrza)2
2 2 2

where r is distance perpendicular to the axis of rotation.

Now we consider an object as a collection of particles and assume that it rotates about
a fixed axis (z-axis) with an angular velocity @. Figure shows the rotating object and
identifies particle element (mi) on the object located at a distance ri from the rotation axis.

The total kinetic energy of the rotating object:

Kg = Z%miviz = Z%mi (a)ri)z :%(Zmi"iz)a)z

Rotational inertia (moment of inertia) I:
I = z m; "i2
i

The rotational kinetic energy: Kr

Rotational inertia for the continuous body



I =_[r2dm

(1)

central axis

1= MR? (a)

Axis

Solid cylinder
(or disk) about
‘;\ central diameter

ez

I=iMR? + s ML? (d)

Axis

Thin
spherical shell
about any

R diameter

I- MR (&)

Axis
- Annular cylinder

(or ring) abow
central axis

I= MR 2 + Ry?) (&)

Axis
Thin rod about
axis through center
perpendicular 1o
¥ length
i

]

I= hMI2 (o)
Axis |
u Hoop about any
R ) diameter
I (hy

I=MR?

(2) Table from the textbook (Serway and Jewett)

From the textbook (Halliday, Resnick, and Walker)

&

Solid cylinder
(or disk) about

) central axis
/’_I I
RN\~
1= 4MR® ()

Axis |
Salid sphere
about any
diameter

-

I= iMR? n

Slab about
perpendicular
. axis through
center

1= M(a® + %) @



Hoop or thin
cylindrical shell
Iy = MR?

Solid cylinder
or disk

Iy = i—}.we?

Long, thin rod
with rotation axis
through center

1

9
!E:M = E;’i‘f.{.—_

Solid sphere
o .

J"l'ﬂ-

.

Hollow cylind

1 : 2,
Iy = :—)M{Rl-’ + RyY)

Rectangular plate

1 ;
.Ir(:_\I = Eﬂ'l{ﬂg
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through end

1 2
f=—MI~
3
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o>

@
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= | =
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4.
4.1

Calculation of moment of inertia

Example

Two balls with masses M and m are connected by a rigid rod of length L and

negligible mass as in Figure. For an axis perpendicular to the rod, show that the system
has the minimum moment of inertia when the axes passes through the center of mass.

Show that this moment of inertia is | = zL?, where u =

((Solution))

mM

m+M



Axis of rotation

A

Y

Y

The moment of inertia is given by
| = Mx* +m(L—-x)*

The derivative of | with respect to X has a local minimum

mM
= L? = 2
min m—|—M /’l
at
L mL
I+— +m
m

((Mathematica))



Fig.

4.2

Clear["Global ™™]; I11=m (L-x)2 + Mx%;
rulel={x-> Ly, M> mn};
12=11/ (mL?) /- rulel // Expand;

eql = Solve[D[I12, y] == 0, V]
1
{y-151

122 =12 /- eql[[1]] // Simplify

_n.
1+n

PIot[EvaIuate[Table[lZ, {n, 0, 1, 0.05}11, {vy, 0, 1},

PlotStyle » Table[{Hue[O.1 1], Thick}, {i, 0, 10}],

AxeslLabel - {"x/L", i} , Background -» LightGray]

m L2
1
m L2
1.0
0.8
0.6

04l

02}

L Il L L L Il L L L Il L L L L n - X/L
0.2 0.4 0.6 0.8 1.0

Plot of 1/(mL?) as a function of X/L, where 77 = M/m is changed between 0 and 1
(An=10.05).

Thin rod about axis through center perpendicular to length



Lz

We assume that the total mass of the rod (length L) is M. Then the mass between X and
X+dx is

dm:de
L

The moment of inertia for thin rod is

L/2 L/2 L/2 L/2
| = szdm: J‘ XZde:M J‘xzdx:ﬂ dex=ﬂ[lx3]5/2
-L/2 -L/2 L L -L/2 L 0 L 3
ML
12

4.3 The square about perpendicular axis through center




a/2 al/2

jrzdn1 jjrzdxdy JJ(X Ly )dxdy) 4 dx I(x +y)dy

a/2 a/2

I dexdy jfdxdy 4-jdx.[dy
0 0

or
al/2 al’2 la
ax[x*y + =y’ 1’2 ax(x &4 24
§—J[y v _5(238) dax @ _(_)_2
2 2

Therefore the moment of inertia | is given by

|=M§=%M¥

((Mathematica))
Clear["Global "];

Integrate[lntegrate[x2+-y2,
{x, 0, a/2}]

{y, 0, a/2}],

24

4.4 Solid cylinder
Moment of inertia for the solid cylinder (radius R, height h) (or disk) about central

axis:

| =LvRr?
2

The mass: M = paR’h
The moment of Inertia is given by
R R zhR* M1
_ 2 _ 2 _ 3 "o _ - 2
I_Irdm_;h”rrmde_zmdqrdr_z;h == 7mR2_2MR




area=rdr dé

4.5  Annular cylinder
The mass: M= ,o;r(Rz2 - Rlz)h

The moment of inertia is given by

I :jrzdm = ph”rzrdrde
R,
= 27ph [ rdr _ 27ph [R*]R
R, 4
AR -RH M
2 MR, —R?)
:M(R24 — R14) :M
2 R’-R> 2

(R’+R,")

4.6  Solid sphere
(a) Method-1

Moment of inertia for the solid sphere about any diameter: |, = % MR*



1 1 1 3M
dl, =—(dM)r* =— par‘dz = — R?—z*)dz = R?-2z%)%dz
. 2( ) 2,0 247[R37T( ) 8R3( )

3
2 4z s
where dM = pzr“dz and M :TR P

Then we have

R R
IZ = J.3_I\/I3(R2_22)2dz:3_'\/|3J.(R2_22)2d223_l\/|3§R5 :EMRZ
J8R 4R AR5 5

(b) Method-2: direct calculation



Idm —TpR3

where p is the density of the sphere.

Irzdm = ” PX*(27x)dxdz = 27:,0” x’dxdz = 27zp&

where
JR2-2? | ®
&= ”X dxdz = jdz Ix3dx— J.dz[ X ]0 _Z J.dZ(RZ _ 2y
R
or

1 s 4 s
-2’ =—R
5 Io

R
:ljdz(R“ LR+ 2%y = LRYz-2R? 1L 4
29 2 3 15

Then we have

15 —ERZ

or

lR
=—.[dz(R2—z2
20

)2



| =2MR?
5

((Mathematica))
Clear["Global «"];
Integrate[lntegrate[x3,{x,(), R2-22}],

(z, -R, R}]

4R
15

4.8 Sphere (using the spherical co-ordinate)



The moment of inertia | for the sphere can be calculated as

| [[[ or?sin® 6(r* sin@)drd e

M 4z s
, R
3 R Vi 2z
_ 4 -3
_4ﬂR3jr dr|sin®6d6 [ dg
0 0 0
_ 3 Risr
47R% 5 3
=%R2
5

with the use of the spherical co-ordinate.



jsin3 6’d9=i
3

0

4.8 Solid cone

Show that the moment of inertia of a uniform solid cone about an axis through its
center is given by | = (3/10)MR2. The cone has mass M and altitude h. The radius of its
circular base is R.

rotation axis

The density p of the cone is

M_ M 3M

- - 2

From the geometry, we have

r
=— or r=—z
R h

z
h

The moment of inertia;



I13M , 3M ,_ 3MR,

1 1
dl =—(dm)r’ = —(par’dz)r* = - artdz ==—-ridz=>——-—7"dz
R (AT = (o anr = oy 2R*h 2Rh B
2
=§M|§ z*dz
2 h
or
2 h 2 IS
1 =3 MR gy - S MRED D e
2 h 2 h" 5 10

0

4.9  Moment of inertia for spherical shell

R sin6 >
/ N
[a] R
6
0O
The mass per unit area o is given by
M
O =
47R?
The moment of inertia for the spherical shell is
n 7! 2
| = [o(Rsin6)’ (2R sin O)Rd6 = M - 27R* ['sin® 66 = MR™ 4 _2 vR
0 47R 0 2 3 3



5 Parallel-axis theorem

The moment of inertia about any axis is equal to the moment of inertia about a
parallel axis through the center of mass, plus the mass of the body times the square of the
distance between the two axes.

I =1g, +Md?

®CM

We consider the rotation axis passing through the origin, and the axis passing through the
center of mass. This axis is parallel to the rotation axis. We consider a plane which is
perpendicular the rotation axis. The projection of the center of mass on this plane is
denoted by CM’ (red dot). In the above figure, the vectors R, r, and d are on this plane.

R=r+d

The moment of inertia around the origin is



| :Idem =j[(r2 +d*+2r-d)dm :j(r2 +d2)dm+2d-jrdm =j(r2 +d*)dm
Note that
J.rdsz

From the definition of d,

. dem
- Idm
J.Rdmz_[ddm

.[(R—d)dm :jrdm =0
Then we have
| =j(r2 +d*)dm =1, + Md>

where lcMm 1s the moment of inertia around the center of the mass.

((Note)) Perpendicular axis theorem

The perpendicular axis theorem for planar objects can be demonstrated by looking at
the contribution to the three axis moments of inertia from an arbitrary mass element.
From the point mass moment, the contributions to each of the axis moments of inertia are

| = I y’dm

l, = Ixzdm

I, = j(x2 +y*)dm
Then we have

=1 +1,

for planar object.



((Example))
(a) Circular disk (mass M and radius R)

1

IX= |y= ZMRZ
I, = lMR2
2

(b) Circular hoop (mass M and radius R)

|x= |y= %'\/IR2

I.= MR’
6 Torque
The torque 7is defined by

T=rxF



=l

Componerg of r
parallel to F

Component of 1
perpendicularto F

In this figure
r=dF

The moment arm of F:
d: the component of r perpendicular to the force F. It is called

The line of action of F:
the component of r parallel to the force F.

The torque is a vector.
The direction of the torque vector is perpendicular to the plane formed of r and F.



With the choice that counterclockwise torques are positive and clockwise torques are
negative.

—
F‘J

7 Newton’s second law of rotation

o

Ve

o] Reference line

When r = constant,



Torque
t=rxF=(rf)x(F.f+F,0)=rF,2 = rma,?
Since
a,=ré
we have
r,=mr’d=10=la
8. Example
8.1 Example-1: Angular acceleration of a solid cylinder subject
We consider a solid cylinder, free to rotate about a fixed axis coinciding with its

geometric axis, subject to an applied torque. The torque is provided by a mass hanging
from a string wrapped around the cylinder.

lm

The moment of inertia for the cylinder is

I :lMR2
2

The free-body diagram



mg

la =RT
a=Ra
mg-T =ma

From these equations, we have

8.2 ((Example 2))
Serway 10-61

A long uniform rod of length L and mass M is pivoted about a horizontal frictionless
pin through one end. The rod is released from rest in a vertical position. At the instant the
rod is horizontal, find (a) its angular velocity, (b) the magnitude of its angular
acceleration of its center of mass, (¢) the X and y components of the acceleration of its
center of mass, and (d) the components of the reaction force at the point.



F

a,=vg*[(L/2) oM
Fy
Vg =L Q}/Q
ag=La f 2
- £+
((Solution))

The moment of inertia of the rod around the pin,

L=ive=Lmeimty
3 12 2

from the parallel axis theorem.
The energy conservation law:
E=K;+U

where Kr is the rotational energy and U is the potential energy



or

(a)

(b)

(c)

(d)

(e)

®

8.3

E, :lla)2
2
E, = ot =29
L
. 39
The angular velocity w: o= T
. 39
The angular acceleration ¢ o = i
L
r=la=Mg—
g 2
L
Ma —
yo 2230
12 2L
~ML?
3

Acceleration of the center of mass along the (-y) direction.

L
8 =—a=

39
2 4

Centripetal acceleration of the center of mass:

r

39
L

|

a-ot- 39
2 2

The component of the reaction force along the (-y axis)

3M
Mg - F, = Ma, :Tg
F-Mo

4

The component of the reaction force toward the center

F, = Ma, =>M9
2

Example

Example from Tipler and Mosca Chapter 9 problems 9-96 and 9-97

A uniform cylinder of mass M and radius R is at rest on a block of mass m, which in

turn rests on a horizontal, frictionless table. If a horizontal force F is applied to the block,



it accelerates and the cylinder rolls without slipping. (a) Find the acceleration of the block.
(b) Find the angular acceleration of the cylinder. Is the cylinder rotating clockwise or
counterclockwise? (c) What is the cylinder's linear acceleration relative to the table? Let
the direction of F be the positive direction. (d) What is the linear acceleration relative to
the block

((Solution))
We draw the two free body diagrams.




mg

((Solution))

The moment of inertia for the cylinder is

| = % MR*>  for cylinder

We note that
X=X + Xgg = —RO+ Xgg

where G denotes the ground. This means that

For the cylinder, we have

Nc = Mg

For the block, we have

(g




N; —N. =mg
F-f=ma,
Then we have

N. =Mg, Ny =(M +m)g,

a —3a —i
8 " M+3m’
F
a. = ,
M +3m
;
R M +3m
2F
a.—a, =—Ra=-
c " M +3m
3F
a a, =
@ ® M +3m
(b) azl 2F
R M +3m
F
c a. =
© " M4+3m
2F
d)  a.-a,=-Ra=-
@ c " M +3m

. a1s in the counterclockwise direction.




dW =F-ds = Fdscosa = Frd@cosa = F(rcosa)dd =8
where

t=F(rcosa)
The work done by the rotation

dW =@ =lad@ =1 d—“’d&: Id—wd—9d6’= Ia)d—md49= lade
dt dé dt [

with
do_dodo_ do
dt dé@ dt do

Work-rotational energy theorem

This equation has exactly the same mathematical form as the work-energy theorem for
translation. If an object is both rotating and translating, we have

The power delivered to a rotating object is

This expression is analogous to P = FV in the case of translation motion.




T F

Power= tw Power = Fv
Work = 7d6 Work = F dx
Momentum p = mv Angular momentum L =l®

12. Homework (Hint) and SP problems
12.1
Problem 10-51 (SP-10) (10-th edition)

In Fig., block 1 has mass mi = 460 g, block has mass m2 = 500 g, and the pulley,
which is mounted on a horizontal axle with negligible friction, has radius R = 5.00 cm.
When released from rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on the
pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension
T1 and (c) tension T2? (d) What is the magnitude of the pulley’s angular acceleration? (e)
What is its rotational inertia?

((Solution))

mi=0.46 kg, m2=0.5kg, R=0.05m,
h=0.75m, t=5 sec

Free-body diagram



T

mia

T,-mg=ma
lo = |%= R(T,-T)

m,g—-T,=m,a
a=Ra«a

Determination of a:

a:2—2h:0.06m/s2
t

T,=m(a+g)=4.54N
T,=m,(-a+g)=4.87N

| = _[g(m1 — mz) + a(ml + mz)]R2

T Tz

T2

a

a=2—12rad/s’
R

12.2
Problem 10-71 (HW-10, Hint)

=0.0139kgm’

(10-th edition)



In Fig., two 6.20 kg blocks are connected by a massless string over a pulley of radius
2.40 cm and rotational inertia 7.40 x 10 kg m?. The string does not slip on the pulley; it
is not known whether there is friction between the table and the sliding block; the puley’s
axis 1is frictionless. When this system is released from rest, the pulley turns through 1.30
rad in 91.0 ms and the acceleration of the blocks is constant. What are (a) the magnitude
of the pulley’s angular acceleration, (b) the magnitude of either block’s acceleration, (c)
string tension T1, and (d) string tension T2?

((Solution))

M=6.2kg, R=0.024m, | =7.40 x 10* kg m?,
0=130rad int=91 ms.

=

T4

Mg

Determination of the angular acceleration « and the acceleration a

0:10&2
2



Equations of motion:

a a
T -T)R=la=1— or T-T=los
Mg —T, = Ma
12.3
Problem 10-93 (10-th edition)

A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational
inertia of the wheel about the axis is 0.50 kg m?. A massless cord wrapped around the
wheel is attached to a 2.0 kg block that slides on a horizontal frictionless surface. If a
horizontal force of magnitude P = 3.0 N is applied to the block as shown in Fig., what is
the magnitude of the angular acceleration of the wheel? Assume the cord does not slip on
the wheel.

B
—_—

((Solution))

m=0.05kg, 1=0.05kgm? r=0.2m, M=20kg, P=3N.

frictionless

—



Newton’s second law
> F,=P-T=Ma

la=rT
a=Ila

From these equations,

Tr>  r’P
I Mr? + |

a =%= 4.6rad /s’

12.4
Problem 10-67*** (SP-10) (10-th edition)

Figure shows a rigid assembly of a thin hoop (of mass m and radius R = 0.150 m) and
a thin radial rod (of mass m and length L = 2.00 R). The assembly is upright, but if we
give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and
hoop, through a lower end of the rod. Assuming that the energy given to the assembly in
such a nudge is negligible, what would be the assembly’s angular speed about the
rotation axis when it passes through the upside-down (inverted) orientation?

Hoop

Rotation




((My solution))
R=0.150 m, L=2R

E, :%Ia)z—mg(3R+ R)
E,;=mg(BR+R)

| =[m(3R)* + %mR2]+ [MR? +%m(2R)2] =10.83mR*
The energy conservation law

%Ia)2 -~mg(BR+R)=mg(3R+R)
or

%Ia)2 =mg(8R)

a):wfwzQSrad/s

((Note)) The moment of inertia for the circular hoop

s of reRation

f M 1
| = 2{(Rcos€)2%(Rd0) =§MR2

Appendix A



The expression of the velocity of the particle rotating around the axis

F'i

From the above geometry, we have

Ar =RA¢
R=rsind
Then
£ =R A—¢ =@rsin @
At
where
o3¢
dt

Taking into account of the direction of the velocity, we get
V=wXxF
B. ((Richard Feynman, Rotation in space, Feynman Lectures on Physics))

Is a torque in three dimension a vector?



B1. Definition of vector

We now consider the one coordinate system is rotated by a fixed angle 6, such that
the axis z- and z’- are the same.

B3

By P

ay

=

;S

We assume that the vector a is given by
a=a€, +a€ =a,€, +a,6
= (cos0), + (sinO)e,

€x
€, =(-sin0)e, + (cosO)e,



or

cosf)é, +(—sinO)g,

e, =(
€, = (sin@)€, +(cosO)é,

Then we have

or

or

or

or

ayey +a6, =a6 +ae
=a,(cosé, —sinék, ) +a, (sinBy +cosék,)

QD
>
D>
>
+
_<$1)
B
Il

(a,cosf +a,sinf)e, +(—a,sind+a, cosd)e,

ay =a,cosf+a,sind

a, =—a,sind+a, cosd

ay | ( cosf sind | a,
a, ) (-sin@ cosd a,



a, cosd —sind ) ay
a, “sin@  cos@ a,
In the three dimensional notation, we have

ay cosd sind O} a,
a, |=|—sin€ cosf O0|a,
a, 0 0 1\a,

In general, any vector transforms into the new system in the same way as do ax, ay, and a-.
For convenience, we use the notation

a'X =dy

ay = y

a, =a,
B2. Torque z

Torque is defined by

i j k
t=rxF=x 'y z|=ri+rj+71,k
Fo F, F
where
r,=YyF, —zF,
r,=7F, —xF,
7, =Xk, —yF,

Now we consider how the torque transforms under the rotation of the coordinate by the
angle @around the z axis. The torque in the new coordinate is

l'V jl kl
T'=r'xF'=|X'" Yy 7'|=r,d+7, )47,k
F., F, F,



.=Y'F.-7'F,

— = 1
r,=7'F,—X'F,

7, =X'F,-y'F,
Using
X' cosd sinfd O0) X F. cosd sinf@ O)F,
y'|=|—-sinf cos@ Oy F, |=|—sind cos® 0| F,
z' 0 0 1)z F, 0 0 I\F

Z z
We can show that
t.=Y'F,-7'F,=1,cos0+7,sind

t,=2'F,-X'F,=-r,sin0+7, cos

,=XF,-y'F. =7,

or
Ty cosd sinf 0},
T, |=| - sind cos@ 0 7,
T, 0 0 1\,

z z

This means that the torque is a vector.

((Mathematica))



A = {{Cos[e], Sin[e], O},
{_Sin[e] ’ COS[G] ] O}’ {O’ 01 1}}

{{Cos[o], Sin[o], O},

A // MatrixForm
Cos[©] Sin[6] O
-Sin[6] Cos[o] O

0 0 1

F={Fx, Fy, Fz}

{Fx, Ry, Fz}

R={X,y, z}
{Xs yy Z}

Fn=A.F

{FxCos[©] + Fy Sin[©o],

Fy Cos[o] -FxSin[o], Fz}
Rn=A_R

{(xCos[©] +ySin[o], yCos[©®] -xSIn[B], Z}

T = Cross|[R, F]

{(Fzy-Fyz, -Fzx+Fxz, Fy X -Fxy}

th = Cross[Rn, Fn] // Simplify

{(Fzy-Fy z) Cos[©] + (-Fzx+Fxz) SIn[6],
(-Fzx+Fxz) Cos[©] + (-Fzy +Fy z) Sin[o],
Fy X - FxXy}

APPENDIX C



The kinetic rotation energy of the earth

The kinetic rotation energy for the earth is given by
K=Llw
2

where | is the moment of inertia of the earth and w is the angular velocity,

I:gMEREz’ T:2_7Z-ZZ7ZRE, V:a)RE
5 w Vv

ME is the mass of the earth, Rk is the radius and T is the period (24 hours). The rotation
energy K can be rewritten as

12 1 1. (2R Y
K =5§MERE2¢02 =§MEv2 :gME( E]

The value of K can be estimated as
K=2.56537 x 10*° J.

((Mathematica))
Clear["Global " *"];

rulel:{ME—>5-9736><1024, RE - 6.372 10°, hour - 3600} ;

2nRE
T1

21 2
K = s ME( ) /- {T1->24hour} //. rulel

2.56537 x 10%
APPENDIX D: How to determine the moment of inertia (experimentally)

Walter Lewin;

https://www.youtube.com/watch?v=cB8GNQuyMPc

The concept of moment of inertia is demonstrated by rolling a series of cylinders down
an inclined plane.

Suppose that either hollow cylinder or solid cylinder roll down on the incline with the
angle 6. There is no slipping on the surface of the incline. First we calculate the
acceleration using the Newton’s second law for the translation and rotation.



The Torque around the central axis is
r=fR=I1 o

where the force f is considered. The Newton’s second law for the movement for the
center of mass,

N —Mgcosd =0
and

Ma =Mgsind — f

where M is the mass of the cylinder and & is the angle of incline. The condition for no
slipping is given by

a=a, =Ra
Then we get
f _lewa :IC—Ma
R R’

The acceleration a is obtained by



We consider an annular cylinder (hollow cylinder) about the central axis. The inner
radius is R1 and the outer radius is R2. The moment of inertia around the central axis is
given by

M
ICM =7(R12 + Rzz)

Noting that R = R, , we have the expression for the acceleration as

Thus the acceleration a depends only on the ratio x=R,/R, (<1). It does not depend on

the mass (M), the length of cylinder (L), and the kind of materials for the hollow cylinder
(such as copper, aluminum, wood, and so on). In other words, a is a universal function of
the ratio X.



0.65

0.60

0.55¢

X=R1/R2
0.2 04 0.6 0.8 1.0

Fig. a/(gsin@) vs the rario X =R, /R, for the hollow cylinder.

(a) X =0, (R1=0): solid cylinder (or disk) about the central axis

2
a=—Qsind
39

= x/)

(b) X =1 (R1 = R2): hoop about the central axis

1
a=—0Qsind
29



g

Then the acceleration a for the solid cylinder is larger than that for the hoop.



