Chapter 11
Rolling, Torque, and angular momentum

1 Angular momentum
The instantaneous angular momentum L of a particle relative to the origin O is

defined as

L=rxp

pP=p,+p,

where
P, 1s the component of p parallel to the direction of r.

p, 1is the component of p perpendicular to the direction of r.
Then we have

L=rx(p,+p)=rxp,

L=r xp

Pperpendicular

Prarallel

2 The angular momentum of the circular motion



L=rxp

L, =mvr

Note that a particle in uniform circular motion has aconstant angular momentum about an
axis through the center of its path. This angular momentum can be rewritten as

v
L,=mvr=mr’==lo
r

where | is the moment of inertia and is given by
| =mr?
and w is the angular velocity and is given by

\"
w=—.
r

This form of L indicates the close relations such as

Lo p, lom, 0V

W




Fig.1 Orbital (circular) motion of electron with mass m and a charge —e. The direction
of orbital angular momentum L is perpendicular to the plane of the motion (X-y
plane).

((Quantum Mechanics))
The orbital angular momentum of an electron (charge —e and mass m) L is defined by

L=rxp=rx(mv),or L, =mvr. (1)

According to the de Broglie relation

_h
p=- &)

where p (= mv) is the momentum, h is the Planck’s constant, and A is the wavelength.

Bohr condition:

~——=n or rzli
A 2

The angular momentum Lz is described by

Lzzmvr:przﬂlzznlznh 3)
A2r 2

. o . . h
The angular momentum is quantized in the units of the Dirac constant (% = 2—)
V4




Fig.  Acceptable wave on the ring (circular orbit). The circumference should be equal
to the integer n (=1, 2, 3,...) times the de Broglie wavelength A. The picture of
fitting the de Broglie waves onto a circle makes clear the reason why the orbital
angular momentum is quantized. Only integral numbers of wavelengths can be
fitted. Otherwise, there would be destructive interference between waves on
successive cycles of the ring.

3. Angular momentum of the system of particles with respect to any reference
point
((Theorem))

The angular momentum about any point (in our case the origin) is equal to the
angular momentum about the center of mass plus the angular momentum due to
translation of the center of mass with respect to the point.

L=R,, xMV,, +Lg,

((Proof))

From the definition, the angular momentum L around the origin O is given by

N
where M is the total mass; M = z m.

i
i=1



We assume that

r =Ry +p,
i; = RCM + p,

where

M=
3
>

I
S

Il
—_

M=
3
S

I
ja)

from the definition of the center of mass. Then the angular momentum of system with
respect to the origin (reference point O) is given by

L Zmi[(RCM +p)xVen + p)]
i=1

N . .
Zmi(RCM XVeu + Roy X p; + pi xVey + pi X py)

i=1

N
zmi(RCM XVeu + P X i)
i1

N
MR\ x Ve +Zmi(pi xp;)

i=1

or

L=R,, xMV,, +Lg,



where Lem 1s the angular momentum of the system with respect to the center of mass and
is given by

N
L, = Zmi(pi Xp;)
i=1

((Example)) See also the discussion described at Sec.8.
We now consider the angular momentum of the rotating wheel around the point P

A
Y

The angular momentum around the point P is given by
L=Le, + MRV, =lg@+MR(aR) =l 0+ MR 0= 1,0
where

I, =lg, + MR? (which corresponds to the parallel-axis theorem)

((Note))
Since the wheel undergoes one rotation, it takes a period T. The center of mass of the
wheel moves the distance 27zR, where R is the radius of the wheel.

v MR 2R o
T2z
@

4 Newton’s second law in angular momentum

4.1 One particle-system
The torque is related to the angular momentum,



?j—lt':%(rxp):%xp+rxz—f:rxz—lt’:er:r
or
dL
T=—0
dt

The SI units of the angular momentum L is N m s = kg m?/s.

4.2 Conservation of angular momentum of a particle in the presence of the
central force
We consider the case of a single particle uniformly rotating around the origin O. We
assume that there is an attractive force between the particle and the center of orbit
(central force).

The angular momentum L (L = mvr):
L=rxp
The vector L is directed along the z axis. The torque around the origin;

dL

r=a=r><F=O, L = conserved

since r is antiparallel to F (central field). This means that L is conserved only at the origin
0.

4.3 Many-particles system

Now we consider the total angular momentum L for the many-particle system,



d ) )
a(”ixl’i):"ixl’i"'"ixpi =KX P

L=} (rxp)

=%Z(ﬂxpi)

= Z(”. X p;)

=2 x(F"+ ) F
i i

or

L=>rx ‘e)+z xF,
i J

i]

The last term on the right in this equation can be considered a sum of the pairs of the
form

KX Fy+ 1< Fy = (1 —r)x Fy =1, x F
using the equality of action and reaction, where r; =r —r;.

((Note))
I X Fji =0

for the strong law of action and reaction (the internal forces between two particles in
addition to being equal and opposite site, also lie along the line joining the particles).

Then we have
L=3rxF" =7
i
The time derivative of the total angular momentum is equal to the moment of the external
force about the given point O.
5 Angular momentum of a rotating rigid object

5.1 Definition



To find the angular momentum of the entire object, add the angular momentum of all
the individual particles

or

where ri is the distance between the position of the particle mi and rotational axis. The
angular momentum L is directed along the z axis (rotation axis), as is the vector @.

rotation axis

——— rotation

5.2 Angular momentum conservation
When the net external torque acting on the system is zero, the angular momentum L
of a system remains constant.

=—=0
dt

T

or



or

Rotation axis

L

(a)
L
c

L _Qe

0

6. Angular momentum and rotational kinetic energy (general case)
From the Appendix of LN-10, the instantaneous velocity v for a point at position r in
the body is given by

V=WXr



The total angular momentum of the system (with N particles) around the origin is given
by

L:i[}’ixmi(wx”i)]

The rotational kinetic energy is

Kq :ZN:%mi(wxri)-(wxri):%ZN:mi|wxri|2

i=1 i=1
Here we assume that @ is given by

w= (a)x’a)y’a)z)

i j ok
OXr =0, 0, O :(a)yzi_a)zyi’a)zxi_a)xzha)xyi_a)yxi)
Xi yi Zi

nx(@xn)=|n[ = o)



Then we have

L= m[n[ @ (- (@)r]

where
L, =L +1l,0,+1,0
L, =l,0,+1,0 + Iyza)Z
L, =10+ Izya)y + 1,0,
where
:Z (v +127) L, => m" +2") L, => mx* +y")
i=1 i=1 i=1
|Xy=Zm( XY, IyZ:;m,(—yizi) |ZX=;m,( Z,%,)
Lo =D M(=%2) Ly = D mMi(=y;%) L, =Y m(=zY,)

When ax = wy = 0, the rotational energy is obtained as
K — 1 o3 2 2y 1 2
R _Ea)z zmi(xi +Yi )_Elzza)z
i=1

2 Example
7.1 11-49 Serway
A puck of mass m is attached to a cord passing through a small hole in a frictionless,
horizontal surface. The puck is initially orbiting with speed Vo in a circle of radius ro. The
cord is then slowly pulled from below, decreasing the radius of the circle to r.
(a) What is the velocity v of the puck when the radius is r?
(b) Find the tension T in the cord as a function of r.
(c) How much work W is done in moving m from ro to r? (Note: the tension depends
onr).
(d) Obtain numerical values for v, T, and W when r = 0.100 m. m = 50.0 g, ro = 0.300
m, and Vo = 1.50 m/s?



((Solution))

Angular momentum conservation

No external torque (since the tension vector T is parallel to r)

L, =my,r,=mvr=L
Note:
L=lw=mr’eo=mvr

(a) Velocity v

mr, r
V= v, = v,
mr r
(b) Force T
2
Vv 1
T=m—=mv,r,’ —
r

The tension T is dependent on r.



Tension (N)
120 -

100;
60;
40?—

20

oL T 't (m)
0.00 0.05 0.10 0.15 0.20 0.25 0.30

(c) The work done W is obtained from the work-energy theorem.

1 2 2y 1 r02 2 IR N | 1
W =AK =Em(v —V )=5m(r_zvo —Vo )=Emr0 Vo (F_?)

Or one can calculate the work done from the integral.

R 1
dW =T -dr=(T-f)dr :—mvoerZFdr
0 22 1 2 2t 1 22r73+1rﬂ 1 22,1 1
W =_r[(—mv0 r, F)dr =mv,T, J;Fdr =mv,T, [ﬁ ! =5mv0 r, (r_z_?)
(d)
v=45m/s, T=10.125N, W=045]

7.2  Example-2
11.50 Serway
A projectile of mass m moves to the right with a speed vo. The projectile strikes and
sticks to the end of a stationary rod of mass M, length d, pivoted about a frictionless axle
through its center.
(a) Find the angular velocity of the system right after the collision.
(b) Determine the fractional loss in mechanical energy due to the collision.



¥

The moment of inertia after the projectile strikes and sticks to the end of the rod,

3m+M

T " yd?
12 )

d2 1 2
l=m(=)"+—Md" =
)+ (

The angular momentum conservation law at the collision
d 3m+M

mv —=Ilw= d’w
) ( 12 )
m oy,
W= —
3m+M d

Ratio ¢ of the mechanical energy before and after the collision

L, 5
—lw

§=2 _ 3m
;mvoz 3m+M

7.3 Example-3

Serway 11-55

A solid cube of side 2a and mass M is sliding on a frictionless surface with uniform
velocity V (=Vo). It hits a small obstacle at the end of the table, which causes the cube to
tilt as in Figure. Find the minimum value of v such that the cube falls off the table. Note
that the moment of inertia of the cube about an axis along one of its edges is 8Ma?/3.

23
-




lew = % Ma’ for cubic with edge (2a x 2a x 2a).

| = % Ma’ + M (ﬁa)z = % Ma’ (parallel-axis theorem)
Angular-momentum conservation law
L =Mva=L, =lw, or @,

Energy conservation law
AK +AU =0
AK :% (0 — @)

AU =Mg(+/2 -1)a

Then we have

2o N, 2Mg(~/2 -1)a _ 3g(v/2 1)

0 2 =
64a 8 Va2 4a

3

vzx/m(?)ﬁgazl.@ ga

8. Neutron star (pulsar)
For Crab pulsar: v =30/s (T =33 ms), M = 1.4 solar masses, R = 12 km.



Crab Pulsar

Pulsars

Rotation
Axis

Radiation
Beam

Discovered by Jocelyn

O Bell in 1967.
G ™%
/' !\‘\\:-‘ ) \: Her advisor, Anthony
-, il f} Hewish, won the Nobel
v Mo Prize in Physics for the
i discovery in 1974.

Beam



For a rotating object to remain bound, the gravitational force at the surface must exceed
the centripetal acceleration:

2 2
>mre’ = 2 _ 47 @4—7[r3>4ﬁ = 37

m > f— >
2 r 77 3 T2 PTG

For the Crab pulsar, T = 33 ms so the density must be greater than 1.3x10'! g/em® =
1.3x10'" kg/m>. This exceeds the maximum possible density for a white dwarf.

Spinning up of neutron star
Angular momentum of sphere

L= Ia):gMRza)

where M is mass, R is radius, o is the angular velocity.
If the Sun (T = 25 days, radius 7x10® m, mass 1.988x10%* kg) were to collapse to a
neutron star with a radius of 16 km, how fast would it be spinning?



R’o =R, o,, or —= = =2x10’

2
@ R

o, R’ [7x10°) 49x10"
16x10° 256

In other words, the star is rotating 2 billion times faster after the collapse than it was
before.

T
1 T, = 25><(24><§600) — 0.001sec
T 2x10 2x10

((Crab pulsar))

R (radius) = 12 km=1.2x 10°m
T=2nw=33.5028583 m sec.

Although the pulsar were first noted for their regular periods, careful timing
measurements by radio telescope soon revealed that the pulsar is gradually slowing down.
Its period increases by 36.4 ns each day. Even such the slightest slowdown corresponds
to a tremendous loss of energy.

The moment of inertia I:

| :§MR2 =1377x10% kg m?

The angular frequency w:

0=2" — 187.54 radls
The frequency f:
f=29.85Hz

The rotational kinetic energy:

Kot =lla)2 212 MR’w* =2.42 x 10*2]
2 25

The loss of energy per day:

47° AT

P=——"1—=6.09x10"' W,
T At

where AT =36.4 ns per At =1 day =24 x 3600 s.



((Mathematica))

Crab pulsar : kinetic rotational energy

rulel = {M - 2.39x10%, R - 12x10°,

T - 33.5028583x 1073, AT -» 36.4x 1079,
At - 24 3600}

M- 2.39x10%, R - 12000, T - 0.0335029,
AT - 3.64x10°8, At - 86400}
Moment of inertia (kg mz)
2 2
I11=- MR® /. rulel
5

1.37664 x 108

Angular frequency (rad/s)

2

=
w /. rulel
187 .542

Frequency (Hz)

w
f=— /. rulel
2

29.8482
Rotational kinetic energy (J)
1 2
Krot = — I1 w* /. rulel
2
2.42095 x 10%?

Energy loss per day

-4 7211 AT
Pl=——— — /_ rulel
T3 At

~6.08867 x 10°%!



9. Pure rolling motion
The surfaces must exert friction forces on each other.

Otherwise, the object would slide rather than roll. In such a case, there is a simple
relationship between its rotational and translational motions.

s=R@O
v, =B _r99_p,
dt dt
d’s do
= —= —:R
Bn dt? dt “

The rolling motion of a wheel is a combination of purely translational and purely
rotational motions. For the purely rotational motion (as if the rotation axis through the
center were stationary), every point on the wheel rotates about the center with angular
velocity . For the purely translational motion (as if the wheel did not rotate at all), every
point on the wheel moves to the right with speed Vem.

(@) Pure rotation e (b) Pure translation - (¢) Rolling motion
= i — - — —>
L & Vcom V=Veom V= 2Veom

>

>

=

1l

=i
A

=—Veom

]
com — -

- 0
V=""Yeom T Yeom =



Cycloid

The cycloid is the locus of a point on the rim of a circle of radius rolling along a
straight line. It was studied and named by Galileo in 1599. Galileo attempted to find the
area by weighing pieces of metal cut into the shape of the cycloid. Torricelli, Fermat, and
Descartes all found the area. The cycloid was also studied by Roberval in 1634, Wren in
1658, Huygens in 1673, and Johann Bernoulli in 1696. Roberval and Wren found the arc
length (MacTutor Archive). Gear teeth were also made out of cycloids, as first proposed
by Desargues in the 1630s (Cundy and Rollett 1989).

T
0]
VCM
2R =V T =27 —
@
Voy = aR
10 Rolling as pure rotation

The combination of pure rotation and pure translation yields the actual rolling motion
of the wheel. Note that in this combination of motions, the portion of the wheel at the
bottom (at point P) is stationary and the portion at the top (at point T) is moving at speed
2Vem, faster than any other portion of the wheel.

212 R o

oY
g

112
27“R 212 R 2112 R o




2Rcoss,

Using the above figure we now discuss the motion of the wheel geometrically. The line
B1B:2 (a horizontal line) is perpendicular to the line AE. The line BiQ is the tangential

line at the point Bi; ZOB,Q :%. For convenience we assume that /B AO=6 . The

distance A_B1 1s 2Rcos@. Then we have

/BOE =20
/OBB, = % ~20
/B,BQ =260

The vector @ (blue line) is the velocity of the rotation motion. The vector ﬁ is the
velocity of the translational motion of the center of mass. BiQ = BiP= Rw. The vector
ﬁ (Zﬁj + ﬁ) is the resultant velocity; ZQB,S = ZPB,S = 6 The magnitude of the
resultant velocity is 2R@ cosé@ (=A_B1 ) The line BiS is perpendicular to the line ABi,
since ZABS=0+(n/2-20)+0=n/2.



E
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These figures suggest another way to look at the rolling motion of a wheel—namely, as
pure rotation about an axis that always extends through the point where the wheel
contacts the street as the wheel moves. We consider the rolling motion to be pure rotation
about an axis passing through point P and perpendicular to the plane of the figure. The
vectors in the Figure then represent the instantaneous velocities of points on the rolling

wheel.
If we review the rolling as pure rotation about an axis through P, we have

K =%IF,a)2 =%(Icm +MR*)w’ =%Icma)2 +%MR2a)2 =%Icma)2 +%Mvcm2

The kinetic energy consists of the rotational energy and the translational energy.

((Force of rolling))



In summary, we realize that all parts of the wheel instantaneously rotate around the
point P at the angular velocity @. The magnitude of the velocity is equal to the distance
(between the point P and each point of the wheel) times @. Then the total kinetic energy



is the rotational energy around the point P with the moment of inertia lp. Using the
parallel axis theorem, the moment of inertia I, is expressed by

| =1lg, + MR’

p

The kinetic energy is given by
1 1 1 1
K :Elpa)z :E(ICM + MR?)@’ =5|CMa)2 +5|\/|VCM2

where
Vew =Ro

This means that the total kinetic energy is the sum of the rotational energy around the
center of mass and the kinetic energy arising from the translation of the center of mass.
As is described previously, the angular momentum around the point P is given by

L, =Ly + MRV, =l y@+MR(aR) = 1,0+ MR?w = )
where

I, =1, + MR? (which corresponds to the parallel-axis theorem)

11. Typical Example
11.1  Yo-yo

Problem 11-17 (HW-11) (10-th edition)

A yo-yo has a rotational inertia of 950 g cm? and a mass of 120 g. Its axle radius is
3.2 mm, and its string is 120 cm long. The yo-yo rolls from rest down to the end of the
string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to
reach the end of the string? As it reaches the end of the string, what are its (c) linear
speed, (d) translational kinetic energy, (e) rotational kinetic energy, and (f) angular
speed?



or

(a)

el

(b

Tr=la
mg-T =ma
a=ra




or

g9
I

mr

a=

1+

2

11.2 A ball rolling down on a ramp (energy conservation law)
The rotational friction f produces the net torque required for rotation. Suppose that the
ball does not slip. For sphere, the moment of inertia is given by

I :ngz.
5

cm

ma,, =mgsinf — f

.= 1R
a,, = Ra
N =mgcosé (the normal force)

or



ma,, =mgsiné — f

Icmacm
Tzf
or
Cm:mgmlnﬁz 951:10 :égsine
m+~7 1+ 7
R mR
I i I
f:L;mgsmH: = mgsiné’zgmgsine
R lew MR +1, 7
m -+
R2

The rotational friction f is related to the normal force as

izgtané?
N 7

which is different from the kinetic friction ( f, = £ N , independent of the angle 6).

Kinetic-energy theorem

h 5 gsind h  2gh

v -0’ =2a,d =2a,,— i
siné |4 _tem siné |4 _tem

mR? mR?

2mgh

4 ten_

mR?

m(v> -0°) =

This means that the energy conservation is valid in the case of rotating without slipping
(in spite of the existence of the rotational friction force which is essential for the rotation)

Energy conservation:

I, 1 )
—mv-+—1_® =mgh
> 5 tem g

((Another method))
The angular momentum at the point P is given by

L, =l 0+mMR’o=(_,+mMR)o=10



The torque around the point P is
7, = Mg(Rsin )

From the Newton’s second law for rotation, we get

T —dLP—I da)—l a
"oodt Tdt T
or
gt mgRsind gRsind 1 gsind
=P _ = .
o I +mR® o o2 Ry, lcmz
m mR
+—<0
mR*
((Note))

Thick walled cylindrical tube with open ends with outside radius R and inter radius r

The moment of inertia is

Icm

1 2 2
=—M@R" +r
> M( )

Thus we have

Il 1. r

cm :_(

—_— +_
MR*> 2 R’

which is dependent only on the ratio of r/R (<1).



04r

02
I x=r/R
0.0 ‘ ‘ ‘ ‘ ‘
0.0 0.2 04 0.6 0.8 1.0
. I, 1 r’ : N P .
Fig. > =—(l+—) vsratio r/R. The ratio —= is 1 for thin cylindrical shell (x
MR= 2 R MR

=1, Vem is low) and is O for the solid cylinder (X = 0, Vem is high)

Fig. WileyPlus. Physics demonstration (Chapter 11). Rolling bodies race down an
incline

11.3
Serway 10-78

A constant horizontal force F is applied to a lawn roller in the form of a uniform solid
cylinder of radius R and mass M. If the roller rolls without slipping on the horizontal
surface, show that



(a) the acceleration of the center of mass is 2F/3M, and
(b) the minimum coefficient of friction necessary to prevent slipping is F/(3MQ).
(Hint: take the torque with respect to the center of mass).

((Solution))
ma
F-f=Ma,
Rf =1« =1MR2a
2
a,, =Ra
(a)
f= lMa
g 2F
or Ay =——
3M

(b)

11.4 Cylinder on an accelerated rough surface



We consider a cylinder (mass M) resting on a rough horizontal rug that is pulled out
from under it with acceleration a perpendicular to the axis of the cylinder. What is the
motion of the cylinder, assuming it does not slip? The only horizontal force on the
cylinder is that of friction P.

The point O is the center of mass.

la = fR
Macm =-f
or
Ra
a, =— 1
=" (M)

where acm is the acceleration of the center of mass and « is the angular acceleration. | is
the moment of inertia,

| =LmRr?
2



We observe the motion of the cylinder from the ground (G).

chlinder—G = chlindr—carpet + Xcarpet—G
We note that
chlinder—G = Xcm > chlindr—carpet = Re > Xcarpet—G = Xp

So the position of the center of mass is expressed by
Xm = Xp + RO
or
a,, =—a+Ra )

where a>0. From Egs.(1) and (2), we have

a:ERa
2
a,, __lpa--1j
2
f-m2
3

11.5 Sphere rolling on a fixed sphere
A sphere of radius r and mass m on top of a fixed sphere of radius R. The first sphere

is slightly displaced so that it rolls (without slipping) down the second sphere. What is the
angle q at which the first sphere loses a contact with the second sphere.



ma

Energy-conservation law

mg(R+r)=mg(R + r)cos6’+%mvcm2 +% I,

with
I, =Cmr?

The condition for no slipping:

ds . r.
ch—a—(R+r)‘9—(R+r)E¢—0ﬁ
RO=rg

where
o=r@+dh=rC g o g1

R r(R+r)

@



where ¢ is the rotation angle of the ball.

Then we get

mg(R+r)=mg(R + r)cost9+%mr2a>2 +%Cmr2a)2

g(R+r)(l—cosH)=%a)2r2(1+C) (1)

Newton’s second law (centripetal acceleration)

2
V, 1
mgcosd—N=m—"_=m re’
R+r R+r

When N =0,

Rolling



r.2602

R+r

gcosf = (2)
From Eqgs.(1) and (2), we have
g(R+r)(1-cosd) = %a)zrz(l+C)

r’ew’ =gcosd(R+r)

leading to
cosf = 2 = 2|
3+C 34 on
mr
Sphere C=2/s. 0 =53.97°
Cylinder C=1/2 0 =55.15°
Hoop C=1 0 =60.0°

In other words, the take-off angle depends only on the value of C for the moment of
inertia.

11.6 Bowling:
Slipping at large velocity and rotating at small velocity

Problem 11-15%**  (10-th edition)

A bowler throws a bowling ball of radius R = 11 cm along a lane. The ball (Fig)
slides on the lane with initial speed Veom” = 8.5 m/s and initial angular speed ao = 0. The
coefficient of kinetic fiction between the ball and the lane is 0.21. The kinetic friction
force fx along the ball causes a linear acceleration of the ball while producing a torque
that causes an angular acceleration of the ball. When speed Vcom has decreased enough
and angular speed o has increased enough, the ball stops sliding and then rolls smoothly.
(a) What then is Vcom in terms of @? During the sliding, what are the ball’s (b) linear
acceleration and (c) angular acceleration? (d) How long does the ball slide? (e) How far
does the ball slide? (f) What is the linear speed of the ball when smooth rolling begins?



—>
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—
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((Solution))
direction of moving
friction
mg
R=11cm, Vo=28.5m/s, o =0, Mk =0.21.

The ball undergoes sliding as well as rotating, just after the ball is thrown.

la = f,.R

I:EmR2

ma=—f,

fi =mN
N =mg

or




Consider the condition of v, =V, .

Fig.  Plot of Vem (red) and v,, (blue) as a function of t.

((Note))
After the condition V., =V, = Rw, the friction becomes zero since the ball stops sliding.

In other word, the acceleration for the center of mass becomes zero. The angular
acceleration also becomes zero. Then the velocity for the center of mass is constant. The
angular velocity also becomes constant. The reason is as follows. We assume that

a=Ra

Then we have
fk=——=%mRa=zma
5 5

Since ma =—f,, we have
ma =0

In other words, we get

=V, =Rw

cm @

12. Gyroscope: angular momentum conservation
Topics from Feynman Lectures on Physics



BEFORE AFTER

Fig. Before: axis is horizontal (the y axis); angular momentum about vertical
axis (the z axis) = 0. After: the z axis is vertical; the angular momentum
about the vertical axis is still zero; man and chair spin in direction
opposite to spin of the wheel.

If we sit on a swivel chair and hold the spinning wheel with its axis horizontal (the y
axis), the wheel has an angular momentum about the horizontal axis. Angular momentum
around a vertical axis cannot change because of the frictionless pivot of the chair, so if
we turn the axis of the wheel into the vertical (the z axis), then the wheel would have
angular momentum about the vertical, because it is now spinning about this axis. But the
system (wheel, ourselves, and chair) cannot have a vertical component, so we and chair
have to turn in the direction opposite to the spin of the wheel, to balance it.
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Figure shows the wheel spinning rapidly about the y-axis. Therefore its angular
momentum is like-wise in that direction. Now suppose that we wish to rotate the axis of
the wheel about the X-axis through the angle A6. The rate of the rotation of Lo is an
angular velocity in the X direction, and is equal to £2 = d@/dt. After a short time At, the
axis has turned to a new position, tilted at an angle A6 with the horizontal (the y axis).
The change AL is a vector pointing in the z direction.

AL = L,A0
T=A—L= LOA—9= L,
At At

Taking the directions of the various quantities into account, we see that

T=0xL,

since the magnitude of Lo does not change. Thus, if £2is along the X axis and Lo is along
the y axis, the torque 7 is along the z axis. To produce such a torque, the man must exert
equal and opposite forces (the horizontal forces F and —F) in the X direction. We try to
rotate the axis of the wheel into the z direction. But Newton’s third law demands that
equal and opposite forces (and equal and opposite torques) act on man. This causes man
to rotate in the opposite sense about the vertical axis z.

13.  Precession of gyroscope

Angular momentum is the basis of the operation of a gyroscope. A gyroscope is a
spinning object used to control or maintain the orientation in space of the object or a
system containing the object. Gyroscopes undergo precessional motion.



i Lie af masdes

L=Ilw
dL=Lsin&dg
=9 _ Lsined—¢¢3= L sin Q¢

dt dt



or

r:z—fzer:—mgr(foZ):mgrsin¢3

From these two equations, we have

mgr sin & = L sin &2
mgr = LQ

or

dg_,_mor_mgr
dt L low

£is the angular frequency of precession.

((Mathematica)) Graphics3D






14. Gyroscope and precession
A gyroscope is supported at one end. When the flywheel spins, it and its axis float in
the air while moving in a circle about the pivot. The horizontal circular motion of the

flywheel is called precession. The angular speed of the precession is £2.

We see what happens if the flywheel is spinning initially, so the initial angular
momentum Li is is not zero. Since the flywheel rotates around its symmetry axis, Li lies
along the axis. But each change in angular momentum is perpendicular to the axis
because the torque

T =rxMg



is perpendicular to the axis. This causes the direction of L to change, but not its
magnitude.

L, =L +dt

The changes tdt are always in the horizontal X-y plane, so the angular momentum vector
and the flywheel axis with which it moves are always horizontal. In other words, the axis
does not fall. It just presses. Note that the only external force on the gyroscope are the
normal force N acting at the pivot (assumed to be frictionless) and the weight Mg of the
flywheel that acts at its center of mass.

Suppose that the angle between Li and Ly is d¢.

Ld¢ = lowd¢ = dt = Mgrdt
The rate at which the axis moves, 2 (= d¢/dt) is called the precession angular speed.

q-9¢ _ Mor

dt lw

where o is the angular velocity of the flywheel.




A demonstration gyroscope

14. Link

Cycloid
http://mathworld.wolfram.com/Cycloid.html

Angular momentum
http://en.wikipedia.org/wiki/Angular_ momentum

WileyPlus
http://edugen.wiley.com/edugen/secure/instructor/index.uni? &protocol=http

Appendix

Angular momentum and torque (from Walter Levine, MIT Lecture); it is none of
intuitive. http://www.youtube.com/watch?v=NeXIV-wMVUk& feature=related

Rotation gyroscope

http://ocw.mit.edu/courses/physics/8-01-physics-i-classical-mechanics-fall-1999/video-
lectures/lecture-24/

((Experiments by Walter Levin)) This figure is copied from the note written by Walter
Levin.
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A.1  Experiment I

This is the excellent demonstration of the Newton's second law for the angular
momentum.

We consider the wheel rotating around the axis. The angular frequency of the
spinning wheel is @. The moment of inertia of the wheel around the center of mass is I.
When such a wheel is hanged to the string as shown below. In this case the wheel
undergoes a precession around the string.



Fig. Precession of the spinning wheel around the string (the z axis) under the presence
of the torque (MgR). Note that F(=mg) L7 and AL//7.



The precession angular frequency is calculated as follows. The change of the angular
momentum is given by

dL = zdt
where 7is the torque and is given by
r=MgR.

Note that the direction of the vector dL is parallel to that of the torque (vector). The
magnitude of dL is obtained as

dL = Ld¢ = MgRdt,

where d¢ is the change of the angle as a result of the precession of the wheel around the
string (the z axis). Then the precession angular frequency is evaluated as



Q_gg___MgR__MgR
dt L lo

Note that the tension T is given by
T=Mg

A2. Experiment II

We assume that the rotation wheel is supported by both hands at the points A and B.
The wheel rotates in counter-clock wise. Thus the angular momentum is directed along
the OB direction. Suppose that the force F is applied at the point A and point B as shown
in the figure during the short time At. The direction of the torque is denoted by the purple
arrow. Then the angular momentum is changed from L to L+dL . The wheel rotates
around the vector L+ dL in counter-clockwise in the y-z plane

WL=7At

Fig. The effect of the force F at the point A and point B during the short time At, on
the rotating wheel. The direction of F is horizontal (the negative X axis) at the



point B. AL =7At with 7 =rxF . After the time At, the angular momentum
changes from L to L +AL. Note that F L 7 and AL//t .

A3.  Experiment III

We assume that the rotation wheel is supported by both hands at the points A and B.
The wheel rotates in counter-clock wise. Thus the angular momentum is directed along
the OB direction. Suppose that the force F is applied at the point A and point B as shown
in the figure during the short time At. The direction of the torque is denoted by the purple
arrow. Then the angular momentum is changed from L to L+dL. The wheel rotates
around the vector L+dL in counter-clockwise in the x-y plane.

Fig. The effect of the force F at the point A and point B during the short time At, on
the rotating wheel. The direction of F is downward at the point B. AL = 7At with

7 =rx F . After the time At, the angular momentum changes from L to L +AL.
Note that F L 7 and AL//7.

C. Physics on white dwarf, neutron star and black hole



C1. Degeneracy pressure
In quantum mechanics, the electrons have very large velocity in the limit of small
space. When L is the length of space, the momentum p is described by

p=h
L

where h is the Planck’s constant. The electrons are also fermions with spin 1/2.
According to the Pauli’s exclusion principle, each electron has a different state. No same
state exists. As the density increases, the region (L) where each electron can move is
decreased. Because of the increased momentum, the kinetic energy of electrons increases,
leading to a pressure. This pressure is called a degeneracy pressure. The degeneracy
pressure is expressed by

6 7' 1/3 s
Pr=—(—)"—n,
5°3 2m,
where Ne is the density of electrons and me is the mass of electron. Note that protons and
neutrons are also fermions and are certainly degenerate. The mass of the fermion in
question appears in the denominator of the degenerate pressure. Since nucleons are some
2000 times more massive than electrons, their degeneracy pressure is negligible.

C2.  Gravitational Pressure
The mass of the star is almost totally accounted for with N nucleons — neutrons or
protons.

1 4n -
Pg =§(T)l/3G(Nmp)2V 4/3 (1)
C. Balancing the degeneracy pressure against the gravitational pressure

We assume that ne is given by

Then the degeneracy pressure is rewritten as

6 72'4 1/3 hz 5/3 s —
P, = — (23 = N33y 2
f 5(3) 2m @

e

We consider a star with the mass of K Msun, where K =1 — 50. We have



When Pt = Pg, the radius R is estimated as

3323
3(=
-~ U

R n”
2k1/3 Gmemp5/3Msun1/3
or
2.27325%10*
R= —kl = km

Stars that reach the degenerate state described here are familiar to astronomers as white
dwarf. A white dwarf with the mass of the sun is on the same order as that of Earth.

((Mathematica))



White dwarf, neutron star and black hole

Physconst = {g - 9.80665, G » 6.6742867 10", me » 9.1093821545 10™*",
eV - 1.602176487 1071°, MeV -» 1.602176487 10713, ge » 1.602176487 107°,
C - 2.99792458 108, mn - 1.67492721110%, mp » 1.672621637 10~ ,
h - 6.62606896 103, 7 - 105457162853 10"**, Msun -» 1.988435 10%,
Rsun - 6.9599 10°}

{g~9.80665, G - 6.67429x 10 ™, me - 9.10938x 10!, eV > 1.60218x 10°*?,
MeV - 1.60218x 10713, ge - 1.60218 x 101%, ¢ 5 2.99792 x 108,
mn - 1.67493x 10727, mp » 1.67262x 1027, h - 6.62607 x 10°3*,
h - 1.05457x 10734, Msun - 1.98844 x 10%, Rsun - 6.9599 x 10%}

Density of neutron stars
rulel = {T> 33107}
{Te —33 }
1000
3
p= —— /. rulel /. Physconst
126G
1.2967 x 101

Condition for the Black - hole; the escape velocity is equal to the velocity of light

2 G Msun
Rb = k — /. Physconst
c

2953.28k

Balancing between degenerate pressure and gravitational pressure. N is the number of protons for the system with mass
having k time larger than Sun

rulel = {N-> k M;:n}
{N» k’\:;un}

Number of protons for Sun
Msun
mp
1.18881x10°’

/. Physconst

Degenerate pressure

4\1/3 .2
Pf = 9 N_ h_ (N)5/3 V—5/3
513 2 me
32/3 N5/3 ;4/3 32
5 me Vv°/3

Pfl = Pf /. rulel /. Physconst // Simplify

3.11767 x 1057 K5/3
V5/3




Gravitational pressure

1 (47\1/3
Pg= - (—) G (N mp)2v-4/3
g = p
2/3 2 N2 1/3
22/3 Gmp2 N (%)

5v4/3

Pgl=Pg /. rulel /. Physconst // Simplify

8.50786 x 1049 K2
V4/3

Radius when the degenerate pressure is equal to gravitational pressure

drn . _ _
sl:SoIve[Pf:: Pg /. Va?R , R] // Simplify

3(;5)1/3 (-7)2/3 p2 3(—%)1/3ﬂ2/3h2

R - 2 . - -
H 2 G me mp2 N1/3 2 G me mp2 N1/3

R1=R/.s1[[3]] /- rulel /. Physconst
2.27325x107
Kkl/3

R12=R /. s1[[3]] /- rulel // PowerExpand

3 (§>1/37(2/3h2
2

2 G k1/3 me mp®/3 Msunl/3
Ratio Pg/Pf
R2 is the radius in unts of 10% km
Pgl
T PFL
0.439899 k/3 R2

Al

J v

/. {V - 4% R3} /- {R » 10" R2} // PowerExpand

3 (5)1/3 72/3 52
2

2 G me mp2 N1/3

pl= PIot[EvaIuate[Table[Al, {k, 1, 20, 2}11, {R2, O, 3},

PlotStyle » Table[{Thick, Hue[0.11i]}, {i, O, 10}1,
PlotRange » {{0, 2}, {0, 2.4}}, AxesLabel » {"R(lo4 km) ", "Pg/Pf"}]
p2 = Plot[1, {R2, O, 3}, PlotStyle » {Thin, Black},

PlotRange -» {{0, 2}, {0, 2.4}}]1;
Show([pl, p2]

Pg/Pf
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APPENDIX Scattering: Semiclassical argument for the angular momentum,
The particles with the impact parameter b possesses the angular momentum L given

by
L= pb,

where p (=7K ) is the linear momentum of the particles. Only particles with impact
parameter b less than or equal to the range R of the potential energy would interact with

the target;

L<L, . =#hkR

since b<R.

When energy is low, Lmax is small. Partial waves for higher | are, in general, unimportant.
That is why the partial wave expansion is useful in the case of low energy incident
particle. The main contribution to the scattering is the S-wave (I = 0). The P-wave (I =1)
does not contribute in typical cases.



