
Chapter 11 
Rolling, Torque, and angular momentum 
 
1 Angular momentum 

The instantaneous angular momentum L of a particle relative to the origin O is 
defined as 
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where 

//p  is the component of p parallel to the direction of r. 

p  is the component of p perpendicular to the direction of r. 
 
Then we have 
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2 The angular momentum of the circular motion 
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Note that a particle in uniform circular motion has aconstant angular momentum about an 
axis through the center of its path. This angular momentum can be rewritten as 
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where I is the moment of inertia and is given by 
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and  is the angular velocity and is given by 
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This form of Lz indicates the close relations such as 
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Fig.1 Orbital (circular) motion of electron with mass m and a charge –e. The direction 
of orbital angular momentum L is perpendicular to the plane of the motion (x-y 
plane). 

 
((Quantum Mechanics)) 

The orbital angular momentum of an electron (charge –e and mass m) L is defined by 
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According to the de Broglie relation  
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where p (= mv) is the momentum, h is the Planck’s constant, and  is the wavelength.  
 
Bohr condition: 
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The angular momentum Lz is described by 
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The angular momentum is quantized in the units of the Dirac constant (
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Fig. Acceptable wave on the ring (circular orbit). The circumference should be equal 
to the integer n (=1, 2, 3,…) times the de Broglie wavelength . The picture of 
fitting the de Broglie waves onto a circle makes clear the reason why the orbital 
angular momentum is quantized. Only integral numbers of wavelengths can be 
fitted. Otherwise, there would be destructive interference between waves on 
successive cycles of the ring. 

 
3. Angular momentum of the system of particles with respect to any reference 

point 
 
((Theorem)) 

The angular momentum about any point (in our case the origin) is equal to the 
angular momentum about the center of mass plus the angular momentum due to 
translation of the center of mass with respect to the point. 
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((Proof)) 

From the definition, the angular momentum L around the origin O is given by 
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for the N-particles system. The center of mass is given by 
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where M is the total mass; 
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We assume that 
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from the definition of the center of mass. Then the angular momentum of system with 
respect to the origin (reference point O) is given by 
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or 
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where Lcm is the angular momentum of the system with respect to the center of mass and 
is given by 
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((Example)) See also the discussion described at Sec.8. 

We now consider the angular momentum of the rotating wheel around the point P 
 

 
 
The angular momentum around the point P is given by 
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where 
 

2MRII CMP   (which corresponds to the parallel-axis theorem) 

 
((Note)) 

Since the wheel undergoes one rotation, it takes a period T. The center of mass of the 
wheel moves the distance 2R, where R is the radius of the wheel. 
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4 Newton’s second law in angular momentum 
 
4.1 One particle-system 

The torque is related to the angular momentum,  
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The SI units of the angular momentum L is N m s = kg m2/s. 
 
4.2 Conservation of angular momentum of a particle in the presence of the 

central force 
We consider the case of a single particle uniformly rotating around the origin O. We 

assume that there is an attractive force between the particle and the center of orbit 
(central force). 

 
 
The angular momentum L (L = mvr): 
 

prL   
 
The vector L is directed along the z axis. The torque around the origin; 
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since r is antiparallel to F (central field). This means that L is conserved only at the origin 
O.  
 
4.3 Many-particles system 
 

Now we consider the total angular momentum L for the many-particle system, 
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The last term on the right in this equation can be considered a sum of the pairs of the 
form 
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using the equality of action and reaction, where jiji rrr  .  

 
((Note)) 
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for the strong law of action and reaction (the internal forces between two particles in 
addition to being equal and opposite site, also lie along the line joining the particles). 
 
Then we have 
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The time derivative of the total angular momentum is equal to the moment of the external 
force about the given point O. 
 
5 Angular momentum of a rotating rigid object 
 
5.1 Definition 



To find the angular momentum of the entire object, add the angular momentum of all 
the individual particles 
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or 
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where ri is the distance between the position of the particle mi and rotational axis. The 
angular momentum L is directed along the z axis (rotation axis), as is the vector . 
 

 
 
5.2 Angular momentum conservation 

When the net external torque acting on the system is zero, the angular momentum L 
of a system remains constant. 
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6. Angular momentum and rotational kinetic energy (general case) 

From the Appendix of LN-10, the instantaneous velocity v for a point at position r in 
the body is given by 
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The total angular momentum of the system (with N particles) around the origin is given 
by 
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The rotational kinetic energy is 
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Here we assume that  is given by 
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Then we have 
 





N

i
iiim

1

2
])(([ rωrωrL  

 
where 
 

zzzyzyxzxz

zyzyyyxyxy

zxzyxyxxxx

IIIL

IIIL

IIIL













 

 
where 
 



















m

i
iiixz

m

i
iiixy

m

i
iiixx

zxmI

yxmI

zymI

1

1

1

22

)(

)(

)(

 



















m

i
iiiyx

m

i
iiiyz

m

i
iiiyy

xymI

zymI

zxmI

1

1

1

22

)(

)(

)(

 



















m

i
iiizy

m

i
iiizx

m

i
iiizz

yzmI

xzmI

yxmI

1

1

1

22

)(

)(

)(

 

 
When x = y = 0, the rotational energy is obtained as 
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7. Example 
7.1 11-49 Serway 

A puck of mass m is attached to a cord passing through a small hole in a frictionless, 
horizontal surface. The puck is initially orbiting with speed v0 in a circle of radius r0. The 
cord is then slowly pulled from below, decreasing the radius of the circle to r. 

(a) What is the velocity v of the puck when the radius is r?  
(b) Find the tension T in the cord as a function of r. 
(c) How much work W is done in moving m from r0 to r? (Note: the tension depends 

on r). 
(d) Obtain numerical values for v, T, and W when r = 0.100 m. m = 50.0 g, r0 = 0.300 

m, and v0 = 1.50 m/s? 
 



 
((Solution)) 
 
Angular momentum conservation 
No external torque (since the tension vector T is parallel to r) 
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Note:  
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(a) Velocity v 
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The tension T is dependent on r. 
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(c) The work done W is obtained from the work-energy theorem. 
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Or one can calculate the work done from the integral. 
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(d) 

v = 4.5 m/s, T = 10.125 N,  W = 0.45 J 
 
7.2 Example-2 
11.50  Serway 

A projectile of mass m moves to the right with a speed v0. The projectile strikes and 
sticks to the end of a stationary rod of mass M, length d, pivoted about a frictionless axle 
through its center.  

(a) Find the angular velocity of the system right after the collision. 
(b) Determine the fractional loss in mechanical energy due to the collision. 

 



 
 
The moment of inertia after the projectile strikes and sticks to the end of the rod,  
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The angular momentum conservation law at the collision 

d

v

Mm

m

d
Mm

I
d

mv

0

2
0

6

3

)
12

3
(

2










 

 
Ratio  of the mechanical energy before and after the collision 
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7.3 Example-3 
Serway 11-55 
A solid cube of side 2a and mass M is sliding on a frictionless surface with uniform 
velocity v (=v0). It hits a small obstacle at the end of the table, which causes the cube to 
tilt as in Figure. Find the minimum value of v such that the cube falls off the table. Note 
that the moment of inertia of the cube about an axis along one of its edges is 8Ma2/3. 
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Angular-momentum conservation law 
 

00 ILaMvL fi    or 
a

v

Ma

aMv

I

aMv 0

2

00
0 8

3

3

8
  

Energy conservation law 
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Then we have 
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8. Neutron star (pulsar) 

For Crab pulsar:  = 30/s (T = 33 ms), M = 1.4 solar masses, R = 12 km. 
 



 

 
 



 
 
 
For a rotating object to remain bound, the gravitational force at the surface must exceed 
the centripetal acceleration: 
 

GTT
r

r

G

Tr

GM
mr

r

GM
m

22

2
3

32

2
2

3
2

2

34

3

44    

 
For the Crab pulsar, T = 33 ms so the density must be greater than 1.31011 g/cm3 = 
1.3x1014 kg/m3. This exceeds the maximum possible density for a white dwarf. 
 
Spinning up of neutron star 

Angular momentum of sphere 
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where M is mass, R is radius,  is the angular velocity. 

If the Sun (T = 25 days, radius 7108 m, mass 1.988x1030 kg) were to collapse to a 
neutron star with a radius of 16 km, how fast would it be spinning? 
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In other words, the star is rotating 2 billion times faster after the collapse than it was 
before. 
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((Crab pulsar))  
 

R (radius) = 12 km = 1.2 x 103 m 
T = 2/ = 33.5028583 m sec. 

 
Although the pulsar were first noted for their regular periods, careful timing 
measurements by radio telescope soon revealed that the pulsar is gradually slowing down. 
Its period increases by 36.4 ns each day. Even such the slightest slowdown corresponds 
to a tremendous loss of energy. 
 
The moment of inertia I: 
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The rotational kinetic energy: 
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where T = 36.4 ns per t = 1 day = 24 x 3600 s. 



 
((Mathematica)) 
 
Crab pulsar : kinetic rotational energy

rule1  M  2.39 1030, R  12 103,

T  33.5028583 103, T  36.4 109,

t  24 3600
M  2.391030, R  12000, T  0.0335029,

T  3.64108, t  86400
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9. Pure rolling motion 
 
The surfaces must exert friction forces on each other. 
 

Otherwise, the object would slide rather than roll. In such a case, there is a simple 
relationship between its rotational and translational motions. 
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The rolling motion of a wheel is a combination of purely translational and purely 
rotational motions. For the purely rotational motion (as if the rotation axis through the 
center were stationary), every point on the wheel rotates about the center with angular 
velocity . For the purely translational motion (as if the wheel did not rotate at all), every 
point on the wheel moves to the right with speed vcm. 
 
 

 



 
Cycloid 

The cycloid is the locus of a point on the rim of a circle of radius rolling along a 
straight line. It was studied and named by Galileo in 1599. Galileo attempted to find the 
area by weighing pieces of metal cut into the shape of the cycloid. Torricelli, Fermat, and 
Descartes all found the area. The cycloid was also studied by Roberval in 1634, Wren in 
1658, Huygens in 1673, and Johann Bernoulli in 1696. Roberval and Wren found the arc 
length (MacTutor Archive). Gear teeth were also made out of cycloids, as first proposed 
by Desargues in the 1630s (Cundy and Rollett 1989).  
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10 Rolling as pure rotation 

The combination of pure rotation and pure translation  yields the actual rolling motion 
of the wheel. Note that in this combination of motions, the portion of the wheel at the 
bottom (at point P) is stationary and the portion at the top (at point T) is moving at speed 
2vcm, faster than any other portion of the wheel.  

 

 
 
 



 
 
Using the above figure we now discuss the motion of the wheel geometrically. The line 
B1B2 (a horizontal line) is perpendicular to the line AE. The line B1Q is the tangential 

line at the point B1;
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distance 1AB  is 2Rcos. Then we have 
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The vector QB1  (blue line) is the velocity of the rotation motion. The vector PB1  is the 

velocity of the translational motion of the center of mass. B1Q = B1P= R. The vector 

SB1  (= QB1  + PB1 ) is the resultant velocity;  SPBSQB 11 The magnitude of the 

resultant velocity is 2Rcos (= 1AB  ) The line B1S is perpendicular to the line AB1, 

since 2/)22/(1   SAB .  
 



 
 
These figures suggest another way to look at the rolling motion of a wheel—namely, as 
pure rotation about an axis that always extends through the point where the wheel 
contacts the street as the wheel moves. We consider the rolling motion to be pure rotation 
about an axis passing through point P and perpendicular to the plane of the figure. The 
vectors in the Figure then represent the instantaneous velocities of points on the rolling 
wheel. 

If we review the rolling as pure rotation about an axis through P, we have 
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The kinetic energy consists of the rotational energy and the translational energy. 
 
((Force of rolling)) 
 



 
 

 
 

In summary, we realize that all parts of the wheel instantaneously rotate around the 
point P at the angular velocity . The magnitude of the velocity is equal to the distance 
(between the point P and each point of the wheel) times . Then the total kinetic energy 



is the rotational energy around the point P with the moment of inertia Ip. Using the 
parallel axis theorem, the moment of inertia Ip is expressed by 
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The kinetic energy is given by 
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where 
 

RvCM   

 
This means that the total kinetic energy is the sum of the rotational energy around the 
center of mass and the kinetic energy arising from the translation of the center of mass.  

As is described previously, the angular momentum around the point P is given by 
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where 
 

2MRII CMP   (which corresponds to the parallel-axis theorem) 

 
11. Typical Example 
11.1 Yo-yo 
 
Problem 11-17 (HW-11) (10-th edition) 
 

A yo-yo has a rotational inertia of 950 g cm2 and a mass of 120 g. Its axle radius is 
3.2 mm, and its string is 120 cm long. The yo-yo rolls from rest down to the end of the 
string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to 
reach the end of the string? As it reaches the end of the string, what are its (c) linear 
speed, (d) translational kinetic energy, (e) rotational kinetic energy, and (f) angular 
speed? 
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11.2 A ball rolling down on a ramp (energy conservation law) 

The rotational friction f produces the net torque required for rotation. Suppose that the 
ball does not slip. For sphere, the moment of inertia is given by 
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The rotational friction f is related to the normal force as 
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which is different from the kinetic friction ( Nf kk  , independent of the angle ). 

 
Kinetic-energy theorem 
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This means that the energy conservation is valid in the case of rotating without slipping 
(in spite of the existence of the rotational friction force which is essential for the rotation)  
 
Energy conservation: 
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((Another method)) 

The angular momentum at the point P is given by 
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The torque around the point P is  
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From the Newton’s second law for rotation, we get 
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((Note)) 

Thick walled cylindrical tube with open ends with outside radius R and inter radius r 
 
The moment of inertia is 
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Thus we have 
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which is dependent only on the ratio of Rr / ( )1 .  
 



x r R

ICM MR2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 
 

Fig. )1(
2

1
2

2

2 R

r

MR

Icm   vs ratio Rr / . The ratio 
2MR

Icm  is 1 for thin cylindrical shell (x 

= 1, vcm is low) and is 0 for the solid cylinder (x = 0, vcm is high) 
 

 
 
Fig. WileyPlus. Physics demonstration (Chapter 11). Rolling bodies race down an 

incline 
 
 
11.3  
Serway 10-78 

A constant horizontal force F is applied to a lawn roller in the form of a uniform solid 
cylinder of radius R and mass M. If the roller rolls without slipping on the horizontal 
surface, show that 



(a) the acceleration of the center of mass is 2F/3M, and 
(b) the minimum coefficient of friction necessary to prevent slipping is F/(3Mg). 

(Hint: take the torque with respect to the center of mass). 
 

 
 
((Solution)) 
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11.4 Cylinder on an accelerated rough surface 



We consider a cylinder (mass M) resting on a rough horizontal rug that is pulled out 
from under it with acceleration a perpendicular to the axis of the cylinder. What is the 
motion of the cylinder, assuming it does not slip? The only horizontal force on the 
cylinder is that of friction P. 
 

 
 

 
 

The point O is the center of mass.  
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where acm is the acceleration of the center of mass and  is the angular acceleration. I is 
the moment of inertia, 
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We observe the motion of the cylinder from the ground (G).  
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We note that 
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So the position of the center of mass is expressed by 
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where a>0. From Eqs.(1) and (2), we have 
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11.5 Sphere rolling on a fixed sphere 

A sphere of radius r and mass m on top of a fixed sphere of radius R. The first sphere 
is slightly displaced so that it rolls (without slipping) down the second sphere. What is the 
angle q at which the first sphere loses a contact with the second sphere. 
 



 
Energy-conservation law 
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The condition for no slipping: 
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where  is the rotation angle of the ball. 
 
Then we get 
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Newton’s second law (centripetal acceleration) 
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When N = 0, 
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From Eqs.(1) and (2), we have 
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Sphere  C = 2/5.  97.53  

 
Cylinder C = 1/2  15.55  

 
Hoop  C = 1   0.60  

 
In other words, the take-off angle depends only on the value of C for the moment of 
inertia. 
 
 
11.6 Bowling: 
Slipping at large velocity and rotating at small velocity 
 
Problem 11-15***  (10-th edition) 
 

A bowler throws a bowling ball of radius R = 11 cm along a lane. The ball (Fig) 
slides on the lane with initial speed vcom

0 = 8.5 m/s and initial angular speed 0 = 0. The 
coefficient of kinetic fiction between the ball and the lane is 0.21. The kinetic friction 
force fk along the ball causes a linear acceleration of the ball while producing a torque 
that causes an angular acceleration of the ball. When speed vcom has decreased enough 
and angular speed  has increased enough, the ball stops sliding and then rolls smoothly. 
(a) What then is vcom in terms of ? During the sliding, what are the ball’s (b) linear 
acceleration and (c) angular acceleration? (d) How long does the ball slide? (e) How far 
does the ball slide? (f) What is the linear speed of the ball when smooth rolling begins? 
 



 
 
((Solution)) 

 
 
 
R = 11 cm, v0 = 8.5 m/s,   0 = 0,  k = 0.21. 
 
The ball undergoes sliding as well as rotating, just after the ball is thrown. 
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Consider the condition of vvCM  . 
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Fig. Plot of vcm (red) and v (blue) as a function of t.  
 
((Note)) 
After the condition  Rvvcm  , the friction becomes zero since the ball stops sliding. 

In other word, the acceleration for the center of mass becomes zero. The angular 
acceleration also becomes zero. Then the velocity for the center of mass is constant. The 
angular velocity also becomes constant. The reason is as follows. We assume that 
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Since kfma  , we have  
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In other words, we get 
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12. Gyroscope: angular momentum conservation 

Topics from Feynman Lectures on Physics 
 



 
 
Fig. Before: axis is horizontal (the y axis); angular momentum about vertical 

axis (the z axis) = 0. After: the z axis is vertical; the angular momentum 
about the vertical axis is still zero; man and chair spin in direction 
opposite to spin of the wheel. 

 
If we sit on a swivel chair and hold the spinning wheel with its axis horizontal (the y 

axis), the wheel has an angular momentum about the horizontal axis. Angular momentum 
around a vertical axis cannot change because of the frictionless pivot of the chair, so if 
we turn the axis of the wheel into the vertical (the z axis), then the wheel would have 
angular momentum about the vertical, because it is now spinning about this axis. But the 
system (wheel, ourselves, and chair) cannot have a vertical component, so we and chair 
have to turn in the direction opposite to the spin of the wheel, to balance it. 



 
 

Figure shows the wheel spinning rapidly about the y-axis. Therefore its angular 
momentum is like-wise in that direction. Now suppose that we wish to rotate the axis of 
the wheel about the x-axis through the angle . The rate of the rotation of L0 is an 
angular velocity in the x direction, and is equal to  = d/dt. After a short time t, the 
axis has turned to a new position, tilted at an angle  with the horizontal (the y axis). 
The change L is a vector pointing in the z direction. 
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Taking the directions of the various quantities into account, we see that 
 

0LΩτ   

 
since the magnitude of L0 does not change. Thus, if  is along the x axis and L0 is along 
the y axis, the torque  is along the z axis. To produce such a torque, the man must exert 
equal and opposite forces (the horizontal forces F and –F) in the x direction. We try to 
rotate the axis of the wheel into the z direction. But Newton’s third law demands that 
equal and opposite forces (and equal and opposite torques) act on man. This causes man 
to rotate in the opposite sense about the vertical axis z. 
 
13. Precession of gyroscope 

Angular momentum is the basis of the operation of a gyroscope. A gyroscope is a 
spinning object used to control or maintain the orientation in space of the object or a 
system containing the object. Gyroscopes undergo precessional motion. 
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From these two equations, we have 
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 is the angular frequency of precession. 
 

 
 
((Mathematica)) Graphics3D 
 



 
 

 
 



 
 
14. Gyroscope and precession 

A gyroscope is supported at one end. When the flywheel spins, it and its axis float in 
the air while moving in a circle about the pivot. The horizontal circular motion of the 
flywheel is called precession. The angular speed of the precession is .  
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We see what happens if the flywheel is spinning initially, so the initial angular 
momentum Li is is not zero. Since the flywheel rotates around its symmetry axis, Li lies 
along the axis. But each change in angular momentum is perpendicular to the axis 
because the torque 
 

grτ M  



 
is perpendicular to the axis. This causes the direction of L to change, but not its 
magnitude. 
 

dtif τLL   

 
The changes dtτ  are always in the horizontal x-y plane, so the angular momentum vector 
and the flywheel axis with which it moves are always horizontal. In other words, the axis 
does not fall. It just presses. Note that the only external force on the gyroscope are the 
normal force N acting at the pivot (assumed to be frictionless) and the weight Mg of the 
flywheel that acts at its center of mass. 

Suppose that the angle between Li and Lf is d. 
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The rate at which the axis moves,  (= d/dt) is called the precession angular speed. 
 




I

Mgr

dt

d
  

 
where  is the angular velocity of the flywheel. 
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A demonstration gyroscope 

 
 
14. Link 
 
Cycloid 
http://mathworld.wolfram.com/Cycloid.html 
 
 
Angular momentum 
http://en.wikipedia.org/wiki/Angular_momentum 
 
WileyPlus 
http://edugen.wiley.com/edugen/secure/instructor/index.uni?&protocol=http 
 
 
Appendix 
 
Angular momentum and torque (from Walter Levine, MIT Lecture); it is none of 
intuitive. http://www.youtube.com/watch?v=NeXIV-wMVUk&feature=related 
 
Rotation gyroscope 
http://ocw.mit.edu/courses/physics/8-01-physics-i-classical-mechanics-fall-1999/video-
lectures/lecture-24/ 
 
((Experiments by Walter Levin)) This figure is copied from the note written by Walter 
Levin.  



 
 
A.1 Experiment I 
 

This is the excellent demonstration of the Newton's second law for the angular 
momentum. 

We consider the wheel rotating around the axis. The angular frequency of the 
spinning wheel is . The moment of inertia of the wheel around the center of mass is I. 
When such a wheel is hanged to the string as shown below. In this case the wheel 
undergoes a precession around the string.  
 



 
 
Fig. Precession of the spinning wheel around the string (the z axis) under the presence 

of the torque (MgR). Note that τgF  )( m  and τL // . 
 



 
 
The precession angular frequency is calculated as follows. The change of the angular 
momentum is given by 
 

dtdL   
 
where  is the torque and is given by 
 

MgR . 
 
Note that the direction of the vector dL is parallel to that of the torque (vector). The 
magnitude of dL is obtained as 
 

MgRdtLddL   , 
 
where d is the change of the angle as a result of the precession of the wheel around the 
string (the z axis). Then the precession angular frequency is evaluated as 
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Note that the tension T is given by 
 

MgT   
 
A2. Experiment II 

We assume that the rotation wheel is supported by both hands at the points A and B. 
The wheel rotates in counter-clock wise. Thus the angular momentum is directed along 
the OB direction. Suppose that the force F is applied at the point A and point B as shown 
in the figure during the short time t. The direction of the torque is denoted by the purple 
arrow. Then the angular momentum is changed from L to LL d . The wheel rotates 
around the vector LL d  in counter-clockwise in the y-z plane  
 

 
Fig. The effect of the force F at the point A and point B during the short time t, on 

the rotating wheel. The direction of F is horizontal (the negative x axis) at the 



point B. t τL  with Frτ  . After the time t, the angular momentum 
changes from L to L +L. Note that τF   and τL // . 

 
A3. Experiment III 

We assume that the rotation wheel is supported by both hands at the points A and B. 
The wheel rotates in counter-clock wise. Thus the angular momentum is directed along 
the OB direction. Suppose that the force F is applied at the point A and point B as shown 
in the figure during the short time t. The direction of the torque is denoted by the purple 
arrow. Then the angular momentum is changed from L to LL d . The wheel rotates 
around the vector LL d  in counter-clockwise in the x-y plane. 
 

 
 
Fig. The effect of the force F at the point A and point B during the short time t, on 

the rotating wheel. The direction of F is downward at the point B. t τL  with 
Frτ  . After the time t, the angular momentum changes from L to L +L. 

Note that τF   and τL // . 
 
 
C. Physics on white dwarf, neutron star and black hole 



 
C1. Degeneracy pressure 

In quantum mechanics, the electrons have very large velocity in the limit of small 
space.  When L is the length of space, the momentum p is described by 
 

L

h
p   

 
where h is the Planck’s constant. The electrons are also fermions with spin 1/2. 
According to the Pauli’s exclusion principle, each electron has a different state. No same 
state exists. As the density increases, the region (L) where each electron can move is 
decreased. Because of the increased momentum, the kinetic energy of electrons increases, 
leading to a pressure. This pressure is called a degeneracy pressure. The degeneracy 
pressure is expressed by 
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where ne is the density of electrons and me is the mass of electron. Note that protons and 
neutrons are also fermions and are certainly degenerate. The mass of the fermion in 
question appears in the denominator of the degenerate pressure. Since nucleons are some 
2000 times more massive than electrons, their degeneracy pressure is negligible. 
 
C2. Gravitational Pressure 

The mass of the star is almost totally accounted for with N nucleons – neutrons or 
protons.  
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C. Balancing the degeneracy pressure against the gravitational pressure 

We assume that ne is given by 
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Then the degeneracy pressure is rewritten as 
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We consider a star with the mass of k Msun, where k = 1 – 50. We have  
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When Pf = Pg, the radius R is estimated as 
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Stars that reach the degenerate state described here are familiar to astronomers as white 
dwarf. A white dwarf with the mass of the sun is on the same order as that of Earth.  
 

 
 
((Mathematica)) 



White dwarf, neutron star  and black hole
Physconst  g  9.80665, G  6.6742867 1011, me  9.1093821545 1031,

eV  1.602176487 1019, MeV  1.602176487 1013, qe  1.602176487 1019,

c  2.99792458 108, mn  1.674927211 1027, mp  1.672621637 1027,

h  6.62606896 1034, —  1.05457162853 1034, Msun  1.988435 1030,

Rsun  6.9599 108
g  9.80665, G  6.67429 1011, me  9.10938 1031, eV  1.60218 1019,

MeV  1.602181013, qe  1.60218 1019, c  2.99792 108,

mn  1.674931027, mp  1.67262 1027, h  6.62607 1034,

—  1.054571034, Msun  1.98844 1030, Rsun  6.9599 108

Density of neutron stars
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Condition for the Black - hole; the escape velocity is equal to the velocity of light
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APPENDIX Scattering: Semiclassical argument for the angular momentum, 

The particles with the impact parameter b possesses the angular momentum L given 
by 
 

pbL  , 
 
where p (= k ) is the linear momentum of the particles. Only particles with impact 
parameter b less than or equal to the range R of the potential energy would interact with 
the target; 
 

kRLL  max  

 
since b<R. 
 

R
b

p=Ñk

 
 
When energy is low, Lmax is small. Partial waves for higher l are, in general, unimportant. 
That is why the partial wave expansion is useful in the case of low energy incident 
particle. The main contribution to the scattering is the S-wave (l = 0). The P-wave (l = 1) 
does not contribute in typical cases. 
 
 


