Chapter 13

1 Introduction

(a) Newton’s law of gravitation
The attractive force between two point masses and its application to extended
objects

(b) The acceleration of gravity on the surface of the earth, above it, as well as below
it

(c) Gravitational potential energy outside and inside the Earth

(d) Satellites (orbits, energy , escape velocity)

(e) Kepler’s three laws on planetary motion

(f) Bohr model for the electron in the hydrogen atom

(g) Black-hole

2 Newton’s law of universal gravitation
2.1 Inverse-square law

Every particle in the Universe attracts every other particle with a force that is directly
proportional to the product of their masses and inversely proportional to the square of the
distance between them
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where G is the universal gravitational constant.
G =6.6742867 x 10! Nm?kg™

This is an example of an inverse square law; the magnitude of the force varies as the
inverse square of the separation of the particles. The law can also be expressed in vector
form
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The forces form a Newton’s Third Law action-reaction pair. Gravitation is a field force
that always exists between two particles, regardless of the medium between them. The
force decreases rapidly as distance increases.
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F12 is the force exerted by particle 1 on particle 2. The negative sign in the vector form of
the equation indicates that particle 2 is attracted toward particle 1. F» is the force exerted
by particle 2 on particle 1

2.2 Cavendish balance

Phys.427/527 Senior Lab and Graduate Lab of Physcs

Henry Cavendish (1731 — 1810) measured the universal gravitational constant in an
important /798 experiment. Cavendish apparatus consists of two small spheres, each of
mass m, fixed to the ends of a light, horizontal rod suspended by a fine fiber or thin metal
wire. When two large spheres, each mass M, are placed near the smaller ones, the
attractive force between smaller and larger spheres causes the rod to rotate and twist the
wire suspension to a new equilibrium orientation. The angle of rotation is measured by
the deflection of a light beam reflected from a mirror attached to the vertical suspension.
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The strength of the gravitational force depends on the value of G. The value of the
gravitational constant can be determined using the Cavendish apparatus. Two small lead
spheres of mass m are connected to the end of a rod of length L which is suspended from
it midpoint by a fine fiber, forming a torsion balance. Two large lead spheres, each of
mass M, are placed in the location indicated in Figure. The lead spheres will attract each
other, exerting a torque on the rod. In the equilibrium position the gravitational torque is



just balanced by the torque exerted by the twisted fiber. The torque exerted by the twisted
wire is given by

T =K6
The torque exerted by the gravitational force is given by
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where R is the equilibrium distance between the center of the large and the small spheres.
If the system is in equilibrium, the net torque acting on the rod is zero. Thus
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All of a sudden the large spheres are rotated to a new position (position B in Figure). The
net torque acting on the twisted fiber is now not equal to zero, and the system will start to
oscillate. The period of oscillation is related to the rotational inertia / and the torsion
constant x
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The angle between the two equilibrium positions is measured to be 26. This, combined
with the measured torsion constant, is sufficient to determine the torque 7 acting on the

torsion balance due to the gravitational force. Measurements show that G = 6.67 x 107!
Nm?/kg?.

Link: see the article at the URL
http://www.leydenscience.org/physics/gravitation/cavend.htm

3 The potential energy
The attractive force (conservative) is given by
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This force is called a central force, since the direction of the force is radial.
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We now consider the potential energy U defined by
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dU(r)  GMm
dr r’

Then we have
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Here we choose U =0 at » = c0. Then we have final form of U as
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r
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Note that the sign of the attractive potential is negative.
In general, the potential energy of a localized mass distribution is given by

U(r) =—Gm j"(—’ld

where p(r,) is the mass density at r and dri is the volume element.



dM = p(rq)dry

4. Typical calculations of gravitational forces and potentials
4.1 Example
Problem 13-16***  (SP-13) (10-th edition)

In Fig., a particle of mass is a distance cm from one end of a uniform rod with length
and mass. What is the magnitude of the gravitational force on the particle from the rod?
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((Solution))
For simplicity, we change this figure into the following figure.
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Calculation of the force
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The direction of the resultant force is along the positive x axis.
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Calculation of the potential energy

The potential energy U is given by
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3.2 Gravitational force from a semicircle-shaped mass

Mass M is distributed uniformly over a semicircle of radius 7. Find the gravitational
force (magnitude and direction) between this semicircle mass and a particle of mass m
located at the center of the semicircle.



The line density A is

=M
V4
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Calculation of the force for the particle with mass mo at the origin.
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Fx=0 from the symmetry.

33 Gravitational force from a disk-shaped mass
Mass M is distributed uniformly over a disk of radius a. Find the gravitational force

(magnitude and direction) between this disk-shaped mass and a particle of mass m
located a distance z above the center of the disk.



Calculation of the force

In this figure
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Fig.  Red line for the force from the disk. Blue line for the force from a particle
with mass m at z = 0.

Calculation of the potential energy

U(z)= —”GTm ordgdr

= —IIGTm 72{2 rd ¢dr
R
- ZCZZM { 2 +rrz)”2 @
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2GmM 2z
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The force F% is obtained as

F __dU(z)__ZGmM[l_ z ]
) dz R’ VR? +z2°
((Mathematica))
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J(; (22+r2)3/2 ar//
Simplify[#, {(R>0, z>0}] &
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J;, (22+r2)1/2 ar//

Simplify[#, {(R>0, z>0}] &

—Z+\/R2+Z2

34 Gravitational force from the planet

Several planets (Jupiter, Saturn, Uranus) are encircled by rings, perhaps composed of
material that failed to form a satellite. In addition, many galaxies contain ring-like
structures. Consider a homogeneous thin ring of mass M and outer radius R (Fig.). (a)
What gravitational attraction does it exert on a particle of mass m located on the ring’s
central axis a distance x from the ring center? (b) Suppose the particle falls from rest as a



result of the attraction of the ring of matter. What is the speed with which it passes
through the center of the ring?

Ring of Satumn

Ring of Saturn
Link: see the article at the URL
http://en.wikipedia.org/wiki/Rings of Saturn




In this figure

cosé?:i

L
M = A(27R)
L=+x*+R’

First we calculation the potential energy

GMm GMm
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The total energy E is given by
1 2
E= Emv(x) +U(x)
The energy conservation law:
1 2 1 2
E= Emv(x =0)+U(x=0)= Emv(x) +U(x)

When v(x) = 0, then we have

GMm N GMm
(x2 +R2)1/2 R

%mv(x)2 =Ux)-U(x=0)=-

or



v(x) = \’ ZC;M [1- (xz +1;2)1/2 ]1/2
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((Note)) Calculation of the force

du d GMm GMmx
F =- =—1 2 2 1/2] T2 27372
dx dx (x"+R") (x*+R°)

((Note)) Direct calculation

F.= Ide = —J'coseG_’znchw —_ Gﬂ;lX&z”R __ GMSmx _ 2GManS/2
J L L 27R L (x* +R?)
4. Potential energy and force between a point mass and a solid shell

4.1 The potential energy outside a shell

The force on a point test mass m (= M1 in the Fig.) distant from the center of a
uniform thin spherical shell of radius R is exactly the same at points >R out side the shell
as if the entire mass of the shell were concentrated its center. For points <R inside the
shell the force on the point mass is zero.

Let s be the mass per unit area of the shell. The total mass of the ring is

AM =27Rsin O(RAO)c = 27R’* o sin OAO
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The potential energy AU of the test mass (M1= m) is obtained as

_GmAM _ Gm(27R’c'sin OA)

h h

AU =

where 71 1s the distance between the test mass and the ring,
r? =r’ + R* —2rRcos6
Since

2rAr, =2rRsin OAQ

3 GmQ2aR’c) nAy, _ Gm(27RAnR0)
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The total potential energy U is

r+R 2
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where M =47R*c .

4.2 The potential energy and the force inside a shell



If the test charge lies anywhere within the shell, the derivation is identical except that
the range of summation of Ar1 in U'is from R-rto R + 7.
't Gm(2aRo) dr =— Gm(27R0)
r r
M
47R*

U= r=—-Gm(4nRo)

R-r

=-Gm(47R)
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U is independent of 7.
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From the definition, the force F is obtained as

_8U _ GMm

F=— r>R
or r? ( )
F:—6—U:O (r<R)
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for the spherical shell with radius R.
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Fig. Force is equal to zero everywhere inside the spherical shell.

S. Potential energy and force between a point mass and a solid sphere
5.1 Gauss’s theorem for gravitational force

The case of r<R.



We may build up a solid sphere of mass M and radius R by adding up a series of
concentric shells. For points outside the sphere, the force on the test mass m for ¥>R is
given by

The case of r<R.

We now consider the case when a point mass is inside a solid sphere. We know that
the mass in any spherical shell outside the test mass has no contribution to the force on
the test mass. Only the mass in all spherical shell inside the test mass contributes. Then
the force will be directed toward the center of the sphere and will be
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where Menclosed 1S the total mass inside the spherical surface area (radius 7).

Gauss’s theorem

iSF-da:Fr A = —42GmM

enlosed

where da is the surface element (with radius ») and is normal to the surface.

5.2  Application of Gauss’s law to the gravitational force around sphere

We now calculate the gravitational force on a mass m outside and inside the sphere
(Mass M, and radius R) such as Earth, using the above theorem. This theorem is
applicable to the system such as sphere which is highly symmetric.

(a) Outside the sphere

—4rGm(M)

enlosed —

iSF-da:Fr A’ = —4aGmM



or

The potential energy U(r) is given by

—dr=—
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:

Ur)= —jF(r)dr

Inside the sphere

(b)



Fr

0
Menclosed
§F-da=F, -4m° = -42GmM,,,
If the sphere is of uniform density o then
My = o —
inside 3 p R3
where
M=
3
Then we have
GmM r* GmMr  dU
F=———— ===
r R R dr

The potential energy is then given by
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U(r)=U(R) - j(— r)dr
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R
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GmM 3 7
= (_ - 2)

2R

5.2  Advanced Problem: gravity train

First consider a body of mass m outside the Earth. (a) What is the magnitude and
direction of the gravitational force for the mass outside the Earth? Here r is the distance
between the center of Earth and the body, Rk is the radius of the Earth, Mk is the mass of
the Earth, and G is the gravitational constant. (b) What is the potential energy U for the
mass outside the Earth? Note that U=0 at r = o0

Next, see Fig.1, we consider the body of mass m inside the Earth. The density p of the
Earth is homogeneous and is given by p = Me/(4zRe*/3). (c) What is the magnitude and
direction of the gravitational force for the mass inside the Earth? Here r is the distance
between the center of Earth and the body. (d) What is the potential energy U for the mass
inside the Earth? Note for » = Rg, U inside the Earth equals to U outside the Earth.

Imagine that a hole is drilled through the center of the Earth to the other side along
the x axis in Fig.1. An object of mass m at a distance » from the center of the Earth is
pulled toward the center of the Earth only by the mass within the sphere of radius . (¢)
Write Newton’s second law of gravitation for an object at the distance » from the center
of the Earth, and show that the force on it is of Hooke’s law form F, = —kx, where the

effective force constant is k = (4/3)zpGm .
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Fig. 1

((Solution))
We consider the gravitational force and the potential energy inside the Earth

iy 3
ME :T RE
M, =4—7rpr3
M, _
ME RE3

(a) For r>RE, the force is directed toward the center.

_GmME];

2
r

F =

(b) For r>Rg

Uiy = G

(©) For r<RE, the force is directed toward the center.
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(d) For r<Rg

Fig.  Plot of the potential energy and the gravitational force as a
function of #/R

(e) The force is directed toward the center.

_GmM, . GmM, r

F= -
r2 r2 RE3 RE3




The equation of motion for the particle on the tunnel along the x-axis.

m)'c'=Frcos¢9=—GmA34Ercosﬁ=—GmA;[Ex=—kx (7)
RE RE
where
k= GmAfE _A% = G—n::4—”Gmp
R, 3 R, 3
or
¥=-0'x (Simple harmonics)
where
P GM _ / g
3
RE RE
3
r=2% 0z | Re _oy /ﬁ = 5061.43s
@ GM g
or
r

5 =2530.7s =42.2min

((Note)) Use of Mathematica
Suppose that the expression for the force is given as a function of » for each region (<R
and »>R). We need to get the expression for the potential energy U, such that

F=-9Y9
dr

The use of the Mathematica makes it easier to calculate the form of U and to make a plot
of U as a function of . We add constant such that the potential energy becomes zero at
the infinity.



Clear["Global %"];

1
f1=Which[0<xsl, -x, 1sx, —|;
X

T2 = Integrate[-T1, X]

0 X=<0
2
xZ O<«<x=<1
2
S _ 1 True
2 X

Plot[f2-3/2, {x, 0, 5}, PlotStyle » {Red, Thick}]
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Plot[fl, {x, O, 5}, PlotStyle » {Red, Thick}]
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5.3 Gravitational force on Earth
Consider an object of mass m near the earth’s surface. The gravitational field at some
point has the value of the free fall acceleration

mg = GMET
RE
or
g= GM’; =9.8m/s’
RE
where

Mg =15.9736 x 10** kg and R = 6.372 x 10° m

The average density pr of the Earth can be estimated as follows.

ME—gRE
G
gRE2
pE:ME: G _3 ¢ =551x10°kg/m* =5.51g/cm’
V, 47,1 4rGR,
3 E

5.4  Example

A hole is drilled from the surface of the earth to its center of the earth. Ignore the
earth’s rotation and air resistance. If the particle is dropped from rest at the surface of the
earth, what is its speed when it reaches the center of the earth?

((Solution))
The energy conservation:

1, 3GmM,

E.=—mv, ————=, at the center of the earth
2 2R,
GmM
E,=- n; L at the surface of the earth,
E

where v, is the velocity



Since E¢ = E_. (the energy conservation), we get

or

5.5  Escape velocity
The total energy of the system is given by

E:%mvz _GMm

r

where v is the velocity.

Suppose that v = 0 in the limit of ¥—o0. Then we have E = 0. The escape velocity vesc
can be estimated as



or

Similarly the escape velocity for the sun is given by

5.6 Circular motion (satellite)
The mechanical energy of the satellite (£) is given by

E= lmv2 _GMym
2 r
£
] — g (unbound)
=
0 rmax

E, (bound)

U(r)

Newton’s second law (condition of the circular orbit):

2 GMEm
, or my =———
r

Then E is derived as

_GMm
2r

E= <0 (circular orbit)



The velocity is obtained as

GM,

r

y =

When r = Rg, we have

y= /% =7.910 knv/s
RE

The period T'is
3
T = e =2r Ry =5061.43 sec = 1 hour 24 min 21 s
v GM
((Note))

A.R.P. Rau, The Beauty of Physics: Patterns, Principles, and Perspective (Oxford
2014). p.12-13

Since

gR52 =GM,

3

the period 7 can be rewritten as

T=2rx &
Vg

This time period is that of a pendulum of length / equal to the radius of the Earth. This
coincides with the time it takes a near-Earth satellite such as the International Space
Station to go once around in a circular orbit.

5.7 Evaluation of the physical quantities by Mathematica



5.8

Physconst = {G » 6.6742867 107",

Mea » 5.9736 10**, Rea- 6.372 10°,
Msun - 1.988435 10%°, Rsun - 6.9599 10°}

G~ 6.67429x 10711,

Mea - 5.9736 x 10°, Rea - 6.372x 10°,
Msun - 1.98844 x 10%°, Rsun - 6.9599 x 10°%}

Mea
gl=0G / - Physconst
Rea?
9.8195
39l
1= ——— /. Physconst
4 7 G Rea
5512.14
) G Mea
VCIr = / . Physconst
Rea
7910.11
2 G Mea
VescC = — /. Physconst
Rea
11186.6
Rea®
Tl=2rn / - Physconst
G Mea
5061.43

Simple harmonic oscillation of the apple inside the earth



Suppose we make a tunnel inside the earth. This tunnel passes through the center of
the earth. The apple is dropped from rest at the surface of the earth without any resistance
including air. We assume that the density is uniform inside the earth. We find that the
apple undergoes the motion of simple harmonics.

Inside the earth, we have a force directed toward the center,

GmM , x° GmMx du
F,=- 2 53 3
x° R R dx

where we use x instead of 7. We set up the equation of motion for the system inside the
tunnel of the earth.

M ‘M
m)'c'=Fx=—Gm3Ex or 5c'=—G fx=—£x=—a)2x
R, R, R,
where
GM
g=—, o= £
RE RE

So we find that the system undergoes the motion of simple harmonics with the period



R
7=2" _on R _5061.43

@ g
The total energy is a sum of the kinetic energy and the potential energy,

GmM o 3GmM ,,
2R, 2R,

E:K+U:%mx2+

b

The velocity of the apple at the center of the earth can be obtained as

M
v, = /G E = JgR, =7.90493 km/s.
RE

from the energy conservation law;

E= lmsz _36mM, at the center
2 2R,
g=-GmMy at the surface
RE

5.9 Geosynchronous orbit

A geosynchronous orbit (sometimes abbreviated GSO) is an orbit around the
Earth with an orbital period of one sidereal day, intentionally matching the Earth's
sidereal rotation period (approximately 23 hours 56 minutes and 4 seconds). The
synchronization of rotation and orbital period means that, for an observer on the
surface of the Earth, an object in geosynchronous orbit returns to exactly the same

position in the sky after a period of one sidereal day.



2
or vir=GM,

We also note that

M,
mg=GRnZ, or gRE2=GM

E

on the Earth surface. From these two equations, we get

g

v=R,.[|= (velocity)
r
3
T= 2m = 2z | (period)
v Ry\g
2/3
- gl/{&} (radius)
2

((Example))



Period: T'=23 hours 56 min 4 sec = 86164 s

Radius: r=42,149.1 km

Height: 35777.1 km =22,235.6 mile

Velocity 3.07356 km/s (1.90982 mile/s = 6875 miles/hour)

6 The Potential energy in many-body system

If the system contains more than two particles, the principle of superposition applies.
In this case we consider each pair and the total potential energy is equal to the sum of the
potential energies of each pair. In calculating the total potential energy of a system of
particles one should take great care not to double count the interactions. The total
potential energy of a system of particles is sometimes called the binding energy of the
system. The total potential energy is the amount of work that needs to be done to separate
the individual parts of the system and bring them to infinity.

6.1 The system of two particles
The potential energy associated with any pair of particles of mass m1 and m2
separated by a distance 712 is given by

U=-_ Gmm,

D)

6.2 The system of three particles

AN
. \

mi () - 11z - @ 2

Figure: A system of three particles.
The total potential energy of the three-particle system is given by

U =_l[(Gmlm2 N Gm3m1)+( m3)+(

2 D) 3 D) 3 53 3
__Gmm, Gmym; Gmsm,

Gmm, N Gm, Gm,m, N Gm,

L

4P I3 3



where the factor 2 is needed because of double counting.

6.3 General case (many body systems)
The potential energy of N discrete masses due to their mutual gravitational attraction
is equal to the sum of the potential energy of all pairs of masses.

:__ZZGmm _ szm

i=l j=1 ;j All y
i) pairs
i#]

((Example)) Estimation of the gravitational energy of the galaxay.
We approximate that the gross composition of the galaxy by N stars of mass M, and
with each pair of stars at a mutual separation of the order of R. Then we have

GM®>  N(N-1)GM*

U=-,C, -
R 2 R

n

N(N-1)
2
Here we assume that

where ,C, =

N=1.6x 10", R=10*" m, and M =2 x 10* kg.
Then we have
U=-34x10"J

((Mathematica))

Physconst = {G - 6.6742867 107, M-2.0 10*, N-1.610", R>1.010%}

[6-56.67429x10M, M 2. x10%, N> 1.6x10™, R > 1. x10?!)

N (N-1) GM?
Ul = Y = / - Physconst

~3.41723x10°

7 Kepler’s laws



Johannes Kepler (December 27, 1571 — November 15, 1630)

Johannes Kepler (December 27, 1571 — November 15, 1630) was a German
mathematician, astronomer and astrologer, and key figure in the 17th century
astronomical revolution. He is best known for his eponymous laws of planetary motion,
codified by later astronomers based on his works Astronomia nova, Harmonices Mundi,
and Epitome of Copernican Astronomy.

http://en.wikipedia.org/wiki/Johannes_Kepler

Tycho Brahe (14 December 1546— 24 October 1601)



Tycho Brahe (14 December 1546— 24 October 1601), born Tyge Ottesen Brahe, was a
Danish nobleman known for his accurate and comprehensive astronomical and planetary
observations. He was born in Scania, then part of Denmark, now part of modern-day
Sweden. Tycho was well known in his lifetime as an astronomer and alchemist and has
been described more recently as "the first competent mind in modern astronomy to feel
ardently the passion for exact empirical facts."

http://en.wikipedia.org/wiki/Tycho_Brahe

((Kepler’s First Law))
Each planet in the Solar System moves in an elliptical orbit with the Sun at one focus

(F).
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Fig. Two focal points F1 (sun) and F2. The planet (Q) on the ellipse orbit (green).

((Kepler’s Second Law))
The radius vector drawn from the Sun to a planet sweeps out equal areas in equal

time intervals. It is a direct consequence of the law of conservation of angular

momentum.
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((Kepler’s Third Law))
The square of the orbital period of any planet is proportional to the cube of the
semimajor axis of the elliptical orbit.

For Earth, T=1 year and a = 1 AU = 1.49597870 x 10'' m (astronomical units).

In other words,

47

(14U)

(1year)’ =

sun

Then the Kepler’s third law can be rewritten as
[T(vear)] =[a(AU)T

((Mathematica))



Physconst = { G - 6.6742867 107", Msun - 1.988435x 10%,
Rsun -» 6.9599 x 108, AU - 1.49597870 101,
year - 365.25 x 3600 x 24} ;

4 2 3
AU /. Physconst

G Msun

9.95909 x 1014

year? /. Physconst

9.95882 x 1014

Neptune m

10000 X
Uranus B

B Sawmn

B Jupiter

o
=
=T
5
Ul
=
IS
O
4]
o))
=
o
Job]
0

“
-

1 10 100 1000 10000
Square of the Orbital Period

Figure: [a(AU)J® vs [T(year)]? for the solar system



{-able 4-3

]
Sidereal

period
Planet P (years)
Mercury 0,24
Venus 0.61
Earth 1.00
Mars 1.88
Jupiter 11.86
Saturn 2946
Uranus 54.01
Neprune 64.79
Pluto 248.54

Semimajor
axis
a |AL)

0.39
0.72
1,04
1.52
5.20
9.54
19.19
30.06
39.53

_—

A Demonstration of Kepler's
Third Law

p* a?
.06 0.06
0.37 0.37
1.00 1.00
3.53 3.51
140.7 140.6
867.9 868.3
7.058 7,067
27,160 27,160
61,770 61,770

8 Kepler problem
8.1 Definition of ellipsoid

The Sun is at the one focus of the ellipse (the Earth orbit). The ellipse orbit is

described by

a is the semimajor axis.
b is the semiminor axis
e 1s the eccentricity (0<e<l)

The essentricity e is defined by



ae

A/"
PTI

The focus is at (ae,0) and (-ae,0). For simplicity, we assume that Sun is located at focus
(ae,0). p is the semi latus rectum and is defined by

p=a(l-é).

Sun is at the focal point (F1).

r,=a(l-e), r.=a(l+e).
Perihelion (7p) the point nearest the Sun
Apbhelion (7a) the point farthest the Sun

From the Pythagorean theorem for AOPF,, we have

a’ =b*+a’e’, b=avl-é*.



ae

We note that the area of the ellipse orbit is given by

A= mab =m*V1-é

We now discuss the dependence of 71 on the angle 6.



(-

In the triangle AFiF2P, we have
n+r=2a,
from the definition of the ellipse. Using the cosine law, we get
=1’ +4ad’e® —4aer, cos(r — 0) = 1;” + 4a’e® + daer, cos 6 .
From these two equations, we have
(2a—r)* =1’ +4a’e® + 4aer, cos O
or

2 2
4a® —4dar + 1 =1 +4a’e* + 4aer, cosd
1 1 1 1



or

_ P
]/i_—
1+ecosd

with
p=a(l—e)
Note that 71 is an even function of 6.

(1) For 8 = 0 the planet is at the perihelion at minimum distance

p _a(l-¢")
rn=r = = =a(l-e
P 1te l+e (1-e)

(11) For0=90°:n,=p.

(ii1))  For 6=n, the planet is at the aphelion at maximum distance,

r, = P =a(l+e)
l-e
Note that
1 1 14+e 1-e 2
r, 1 p p p

((The semi latus rectum, p))

The chord of an ellipse which are perpendicular to the major axis and pass through
the focal point F1 is called the dr,i latus rectum of the ellipse. In this Fig. p is the length of
PFi. The value of p can be obtained from the Pythagorean theorem for the triangle
AOFFa.



In this figure, we get the relation,
(2a - p)* = p* + (2ae)’
or
p=a(l-é%)

9 The angular momentum
9.1 Central force problem
In general case




Since the gravitational force is directed toward the origin (so called central field),

In other words,

or

9.2  Angular momentum
The angular momentum is defined as



L=rxp=rx(mv)=m(rr)x(v.7+ vgé) = mrvgle = Lzlé
or
L. =mv,r

dL d

d
=—(rxp)=—((rxmv)=rxF =0
AR LAl

since F is a central force (//F), L_ is a constant of motion.
[ =mrv, =mr’d

((Note-1))
In general (Chapter 10), we have

v =it +réo
a=-ré*i+2r0+rd)o

((Note-2))
The velocity v, is given by

Vo=r=r—s=—
mr-  mr

9.3  Physical meaning
What is the physical meaning of the constant angular momentum? We now consider
the d4/dt, where d4 is the partial area of the ellipse.



dA (the area of the triangle AOPQ) is given by

dA:lrzdé’
2
or
d_:l,ﬂzﬁ:lrzézizcons‘[
da 2 dt 2 2m

since / = mr*0 = const . The period T is evaluated as

T=jdt=27mjdA=2Tmmb

2m 2

l1-e".

since dt = 2deA . Later we will show that

l1-¢e* = r

mka

where k = GMm . Using this relation we have the Kepler’s third law,



2 2 2 2
T2:4721 ﬂ2a4(l—e2):47; *a’ / :47zma3

mka k

10.  The effective potential
The total energy is a sum of the kinetic energy and the potential energy

E :lmv2 _k :lm(vr2 +v92) _k
2 r 2 7
or
1 I? k1 I? k
E=—m@*+ — = =—mi + —— 1
2 ( mzrz) ro 2 2mrt 1

where k= GMm. The energy is dependent only on r (actually one dimensional problem).

k I?
=—=+
r  2mr

U

off (effective potential)

2

The effective potential energy Uesr has a local minimum

» mk*
Umm __
eff 2]2
at
12
rmin =
mk

d . k.
——=mrr+—r - 37
t r mr
12
z(mi”'+—2— 3)1"':0
r mr
k I?

mi+————==0 (equivalent 1D problem)
r- mr




Plot of the effective potential as a function of

-3 ;
4
Ll
Figure The effective potential vs » with /=0.1 — 0.5
11. Perihelion and aphelion

When 7 =0 for the perihelion (nearest from the Sun) and the aphelion (farthest from
Sun) rp and ra are the roots of Eq.(1).

k k & I’
r,trn=—=—=2a, rr,=———=—.
’ 2mE  2mlE]|

where
E= —|E | (bound state; £<0)
r,=a(l-e), r,=a(l+e)

From this we have



g2 o I I’ 2a I

s - a22m|E| - 2ma* 7  mka

For e>1 (E>0) hyperbola

For 0<e<1 (E<0), ellipse

For e =0 [E = -mk*/(2)], circle
((Note))

The eccentricity of the Earth's orbit is currently about 0.0167, meaning that the
Earth's orbit is nearly circular, the semiminor axis is 98.6% of the semimajor axis. Over
thousands of years, the eccentricity of the Earth's orbit varies from nearly 0.0034 to
almost 0.058 as a result of gravitational attractions among the planets.

2:\/1— > =0.986.
a

12 Kepler’s Third Law
The period T is given by

3/2

2
P2 i g | L2

mka: W

or

e Ar*m*a’ B Ar’ma’

mk k

or

a_3 — k — GMMSMIZ — GMSUI’I

T* 4x’m 47°m 47
or

T2 = 4r’ a4

GM

sun

or



[T(year)I’ =[a(AU)T

13 Derivation of the Kepler's First Law
We start with

mit = mr6* -—
r

mr’@ = [ = constant
Here we have

ldt = mr’d@
Note that » depends only on 6.

d 0o 1 d
dt dt 060 mr* dé

d d [l d 1 d
Z ()= “

dt dt mrzd_H(mr2 dﬁ)

or

| d 1 Pk
mr® d@ mr* d0° m*r® mr’

We define u as u =l,
r

Ldr__d 1 _du

r* do do r do
Then we have

AN

m*r* de - do  wm*r mr’

or



do’ I?

The solution of this equation is given by

u =l=m—2k(1+ecosé?)
ro

where e is the eccentricity. Note that » (or u) is an even function of &. There is no sine-
term. Since r, = a(l—e)for =0, and 7, =a(l+e) for 6=, we get

LMK se)
r, |
l—’"—f(l—e)
r, 1
or
L _mK 4, ! =m—2k(1—e).
a(l-e) [ a(l+e) [

Then we have

NS
—al—e) =2
p=all=e) mk

leading to the expression

r:—p
1+ecos@
with
12
p=a(l-¢&)=—

mk
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Fig. Ellipse orbits with various eccentricity e (0<e<l). The focus is located at the
origin. The focus is located at the origin.

14. Black-hole

The escape velocity is the velocity at which a projectile (or particle) would have to be
fired straight up so that it will eventually (infinitely far in the future) escape the gravity
(come to rest at zero velocity infinitely far away). The escape velocity can be calculated
from the energy equation:

1, GmM
myv
2 r

For escape, v = 0 at » = o, so therefore in such an orbit £ = 0. Therefore, at the surface
(or any radius r), the escape velocity is given by:

. 2GM
r

v

Note that this velocity is higher than the (circular) orbital speed given by the centripetal
velocity:




by a factor V2 . If the speed of the Earth in its orbit is increased by more than the factor

V2, then it would no longer be bound in orbit about the Sun and would be free to fly
about the galaxy.
If a mass M is compressed to a radius

2GM

2
C

Ry, =

or smaller, then the escape velocity at the radius Rsw will equal the speed of light. This
radius is called the Schwarzschild Radius for the astrophysicist Karl Schwarzschild who
calculated it soon after the publication of Einstein's theory in 1916.

An object with a radius equal to or less than the Schwarzschild Radius Rsw is called a
black hole. Light, nor anything else, can ever escape the surface of such an object, and it
will appear dark. Note that this calculation uses only Newton's theory for gravity. In fact,
the possibility for the existence of "dark stars" was postulated as early as 1783.

The Schwarzschild radius for 1 Msun is

2GM
Ry = 2

=2.95km

- if the Sun were to suddenly (and inexplicably) collapse to this radius it would become a
black hole - though our orbit would remain unchanged since the gravitational force
depends only on the mass and distance, not the size of the mass.

The effective radius of a black hole, the Schwarzschild radius, depends only on the
mass itself, not on the actual density the mass has (beyond the fact that it must be within
its own Schwarzschild radius. As you increase the mass, the radius of the black hole
increases proportionally to the mass. Furthermore, since nothing can escape, even light,
the mass and size of a black hole can only increase with time.

The spherical "surface" surrounding a black hole of mass M at distance of the
Schwarzschild radius Rsw is called the event horizon. Once within the event horizon,
matter (or radiation) is lost forever from contact with the universe outside the event
horizon. The event horizon is the boundary between what we can know about and what
we cannot at outside the horizon. Of course, someone unlucky to be inside the event
horizon of the black hole can receive news of the outside world in a one-way information
transfer.

15.  Hodographic solution to the Kepler’s problem
In order to see the detail of the following discussion, see the note in the web site,
http://bingweb.binghamton.edu/~suzuki/GeneralPhysL.N.html




15.1 Geometry of ellipse orbit
(a) Definition of ellipse

An ellipse is the curve that can be made, by taking one string and two tracks and
putting a pencil here and going around. Or mathematically, it is the locus, such that the
sum of the distance SQ and the distance FQ remains constant (see Fig.1), where S (the
Sun) and F are the two fixed points. One may have heard another definition of an ellipse:
these two points are called the foci, and this focus means that the light emitted from S
will bounce to F from any point on the ellipse (ellipse optic theorem).

Suppose that the Earth undergoes an orbital motion of ellipse where the Sun (S) is
one of the focus of the ellipse, and F is another focus. We consider the point Q on the
ellipse orbit.
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Fig. Hodograph diagram. Q (the Earth) is on the ellipse. F and S (the Sun) are foci. FQ
+ QS =2a. LFQC = ZSQC (ellipse optic theorem). The point P is on the circle

(radius 2a) centered at S. FP is proportional to the velocity at the point Q. The
direction of the velocity is parallel to the tangential line at Q.

From the property of the ellipse, we have



FO+S0=2a,
OF =0S =ae,

where a is the semi-major axis and e is the eccentricity; 0<e<l. When FQ = QP , we

have
SP=2a.
The point P is located at the circle with radius 2a centered at the focal point S.

(b) Ellipse optic theorem

First we demonstrate the equivalence of these two definitions for ellipse. The light is
reflected as though the surface were a plane tangent to the actual curve. We know that the
law of reflection for the light from a plane is that the angle of incidence and reflection are
the same. In other words, the angles made with the two lines FQ and SQ are equal, that
that line is then tangent to the ellipse.



Fig. Q (the Earth) on the ellipse with foci S (the Sun) and F. The green circle (radius
a) centered at the origin O. FS = 2qe.

((Proof))

First we extend the perpendicular from F to the tangential line at the point Q, the
same distance on the other side, to obtain P, the image of F; Now connect the point Q to
P. Two right triangles are exactly the same (see Fig.2). Thus we have

/ZFQH =/PQOH, PQ=FQ. (ellipse optic theorem)

So we get



FO+0S=PO+0S=SP=2a,
Suppose that we takes any other point on the tangent, Q'. We take the sum of distances,
FO+0'S = PO+0'S ,
where
FQ'=PQ".
It is clear that the inequality
PO+Q'S >SP =2a,

in the triangle APQ'S .In other words, for any point on the tangential line, the sum of the

distances from Q' to F and from Q' to F is greater than it is for a point Q on the ellipse.

15.2 The velocity on the ellipse orbit ((J.C. Maxwell))

Here we show the discussion on the velocity, which was given by J.C. Maxwell (see
Fig.3). The physics given by Maxwell is very clear for me. We consider the ellipse
AoQPo with foci F and S (S standing for the Sun, Ao the aphelion, and Po the perihelion).
Let Q be any point on the ellipse, and draw SP through Q, such that SP = AoPo = 2a. In
order to avoid the confusion, we use Ao and Po for the aphelion and perihelion. Draw a
line from F to P. It remains to be shown that PF is perpendicular to, and proportional to,
the velocity at point Q, and that the locus of P is a circle.



Fig. The direction of the velocity vector. The magnitude of the velocity is proportional
to the distance FP.

((Proof))
In the ellipse, PF is perpendicular to the velocity at the point Q. Draw a tangent from
Q to intersect PF at H. Then by the ellipse optical theorem,
/SOH'= /FQH ,

and



/FQOH = /PQOH .
We also have

PO=PS-0S=2a-0S=FQ.
where

PS =2a. (2a: the distance between the perihelion and aphelion)
So HQ is perpendicular to PF. Then the direction of PF is perpendicular to the tangent,
and hence the velocity at Q.

In the ellipse, PF is proportional to the velocity at Q. Draw a perpendicular line from

S to the tangent to intersect the tangent at H'. Let v be the velocity at Q, of the magnitude
v. By the conservation of angular momentum, we get

mvH'S =1,

where / is a constant. Using the geometrical theorem

HF -H'S =b’,
we get
L _mv _ HE
HS | b~
or
_mb2 1

HF = v=—PF,
[ 2

so PF is proportional to v.

Since SP is always equal to the major axis, it follows that the locus of P is a circle,
with common origin of the velocity vectors at F; this circle is the hodograph turned
through 90° because PF is perpendicular to v. Then we have

y= ! HF or V:L2
2mb

" mb? ’ Pr




> is the scaling factor and the unit is [1/s].

mb

Note that this scaling factor. We consider the aphelion and the perihelion
(1) At the aphelion

[=mv,r,,

v,=aa(l-e), ry=a(l+e)
Then we have

l=maa’(1+e)(1—e)=maa’*(1—e*) = amb”.
The scaling factor is obtained as

/
mb*

o =

(11) At the perihelion,

[ =mvpr,,

v,=aa(l+e), r,=a(l—e).
Then we have

l=maa*(1-e)1+e)=maa’*(1—e’)=mab’,
or

o [ / |
mb*  ma’(1-€*) map’

where b is the minor axis distance,

b=aJl-é*,



and p is the semi-latus rectum;
p=a(l—¢e).
15.3. Centripetal acceleration

First we discuss the velocity vectors at the point Qi and Q2 on the same ellipse, where
Q1 and Q2 are very close. The velocity at the point Q1 is proportional to the length FPi.

The velocity is directed along the tangential line at the point Qi. The rotation of the

vector F—R around the point F by 772 in a counterclockwise leads to the direction of the

. . . . . V4
velocity. For this rotation we use the geometrical rotation operator ER(Z,E) .

|
2map

¢!

SR(Z,%)FTI{ :

When the particle rotates from Qi to Q2 on the ellipse during the time Af, the
instantaneous acceleration a is

_ ﬂ Vv [
At At 2map,At

/AN r=rgiii——g /AN
R DIFE - FR] = ﬁfﬁ(z,a)[ﬁpz] :

ap,
where

1
2map,

v, fR(z,z)F—P; .
2
In the limit where the point P2 is very close to Pi. the vector @ is perpendicular to the

vector S_P; Then the acceraltion is directed toward the Sun (one of the focus in the

ellipsoid).



Fig. The points P1 and P2 are on the circle (radius 2a) centered at S. The point P1” and
P>' are on the circle (radius 2a) centered at F. The points Hi, H2, Hi', and H>' are
on the circle (radius a) centered at the origin O. KiQi1LH1Q1. KoQ2LH2Qx.

15.4. Centripetal acceleration: central-force problem



If PP' is the arc described in unit of time, then PP' represents the acceleration, and
since P P' is on a circle whose center is S, the distance of arc PP' will be a measure of
angular velocity,

2al

2
mr

PP'=2aA0 = 2awAt = At,

where w is the angular velocity at the point Q,

Note that the angular momentum / is conserved and is given by
do
l=mr’—=mr'e.
dt

The acceleration a is obtained as

Av
a=—
At
=L D) PP
2map,At 2
[ 7. 2al
=———R(z, )7 Are, ]
2map, At 2" mr
[ al 7
= 7 R(z,7)le,]
map, mr 2
or
2
F =ma=- ! e, ,
mpr

where SR(Z,E) is the geometrical rotation operator (counter-clockwise rotation of the

system around the z axis by

m(z,g)[eg] =—e,,



and

p=a(l-¢&*).

The acceleration is inversely as the square of the distance SQ. Hence the acceleration of
the planet is in the direction of the Sun, and is inversely as the square of the distance from
the Sun.

This, therefore, is the law according to which the attraction of the Sun on a planet
varies as the planet moves in the orbit and alters its distance from the Sun.

16. Advanced problems
16.1 13-57 Serway

Two stars of masses M and m, separated by a distance d, resolve in circular orbits
about their center of mass. Show that each star has a period given by

e Ar*d’

" G(M +m)

Proceed by applying Newton’s second law to each star. Note that the center-of-mass
condition requires that Mr, = mr;, where 1, +r, =d .

v2

((Solution)
The origin is the center-of-mass of the two stars.



0= Mr, + m(-1)

Mr, = mr,

where d =r, +71,.

For each mass,

, GmM , GM
mn” = FE o' =—
, or
, GmM , Gm
MI’ZCO 27 rnw =?
or
GM +m
(r +rz)w2=%
G(M +m)
COZZT

) 2
Since T'=—, we have
@

4’ _ G(M +m)

T’ d’
) Ar*d’
G(M + m)

16.2. Advanced problem-2
Serway 13-23

Compute the vector gravitational field at point P on the perpendicular bisector of the
line, joining two objects of equal mass separated by a distance 2a. (b) Explain physically
why the field should approach zero as »—0. (c) Prove mathematically why the magnitude
of the field should approach 2GM/7* as r — o . () Prove mathematically that the answer
to part (a) behaves correctly in this limit.



((Solution))

(a)
FX =-2Fcos@=-2 (Z;Mmz P al N2 ZZGM}ZH);/Z
(x*+a’) (x*+a) (x"+a’)

(b) The gravitational force gx is defined by

_i__ 2GMx
8, m (x2+a2)3/2

In the limit of x >>a,

2GM
8=~ 2
X
(d)
8 _ _ X
I IR
2(x2_ai)
' _ 2
f'(x)= (x2+a2)5/2

Then f(x) has a local maximum at x = % and a local minimum at x = ——

ek



gx/(2Gm)

0.5}

X/a

-0.5r

17 Bohr model

Niels Bohr

Niels Henrik David Bohr in Danish; October 7, 1885 — November 18, 1962) was a
Danish physicist who made fundamental contributions to understanding atomic structure
and quantum mechanics, for which he received the Nobel Prize in Physics in 1922. Bohr
mentored and collaborated with many of the top physicists of the century at his institute
in Copenhagen. He was also part of the team of physicists working on the Manhattan
Project. Bohr married Margrethe Norlund in 1912, and one of their sons, Aage Niels
Bohr, grew up to be an important physicist who, like his father, received the Nobel prize,
in 1975. Bohr has been described as one of the most influential physicists of the 20th
century.



We now consider the Bohr model shown in this figure. The system consists of a
proton and an electron. These two particles are coupled with an attractive Coulomb
interaction.

The total energy is a sum of kinetic energy and potential energy (CGS units are used
here)



E=—my ——

2 r

Vil

2 2
m—=—, mvr=e
ror
or

le* & e’
E-_-° _ < __°

2r r 2r

Note that in SI units, the energy is given by

The de Broglie relation:

(1)



Fig.
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Acceptable wave on the ring (circular orbit). The circumference should be equal
to the integer n (=1, 2, 3,...) times the de Broglie wavelength A. The picture of
fitting the de Broglie waves onto a circle makes clear the reason why the orbital
angular momentum is quantized. Only integral numbers of wavelengths can be
fitted. Otherwise, there would be destructive interference between waves on
successive cycles of the ring.



2mr =nl
where # is integer.

de Broglie relation
_h
=7

pQmr)= %2727/ =nh

The angular momentum Lz:
Lz

nh
L = y=—=
=P 2

The angular momentum is quantized.

From Eqgs.(1) and (2),
mvr e’ e’
=—, or y=—
mvr  nh nh
(ez jz 2 n’h’
m—|r=e, or r=—7
nh me

Then the total energy is obtained by

nh  or mvr = nh

2)



E —_ e’ _ me' R

" 2[,127@2} onn . w

2
me

where R=13.6 eV (Rydberg constant).

The energy is quantized. The ground state is a state with n = 1.
Note that the magnetic moment x due to the orbital motion is also quantized.

where 4 is the area: 4=, [ is the current: 1=~ =— = %Y The direction of
T Qmlv)y 2w
the current is opposite to the direction of velocity of electron because the charge is

negative. We assume that the electron has a charge —e (¢<0).

A

IA  ev , evw emvr e eh L.
ﬂz = = ﬂ]/' = = = LZ = _—
c 2me 2¢c  2mc 2mc 2mce h

The Bohr magneton g, is defined as

eh
2mce

=9.27410x 10" emu

Hp =

where emu = erg/G



The spin magnetic moment is given by

28

V4

h

Hs = Hp

18. HW and SP

18.1
Problem 13-28%* (SP-13) (8-th edition)
Problem 13-26%* (SP-13) (8-th edition)

Consider a pulsar, a collapsed star of extremely high density, with a mass M equal to
that of the Sun (1.98 x 10°° kg), a radius R of 12 km, a rotational period T of 0.041 s. By
what percentage does the free-fall accelerating g differ from the gravitational acceleration
ag at the equater of this spherical star?

((Solution))
M=198x10 kg
R=12km
T=041s



N: Normal force

y
FR - N = mE
2
N =F ~m>—
R
where
mMG
Fp= R?

The value of g (free-fall acceleration) is defined as



N=mg=F,-m—= (R2 _E)
_MG_ v

& R> R

—AZZG—RCUZ

MG

2
—R(%T] —9.17256 10" m /s>

The gravitational acceleration go

g = MG 9 1753810 m/s*

=

Ag_g -8 _ 0.031%
£ 8o

18.2
Problem 13-59 (SP-13)*** (10-th edition)

Three identical stars of mass M from an equilateral triangle that rotates around the
triangle’s center as the stars move in a common circle about that center. The triangle has

edge length L. What is the speed of stars?

((Solution))



()  L=2Rcos30°=+/3R

(b)

MG 3 _M’G _, v
(3R 2 3R? R

F, =2Fcos30°=2



or

V3RV L
18.3
Problem 13-82 (HW-13) (10-th edition)
A satellite is in elliptical orbit with a period of 8.00 x 10* s about a planet of mass

7.00 x 10**kg. At aphelion, at radius 4.4 x 107 m, the satellite’s angular speed is 7.158 x
107 rad/s. What is its angular speed at perihelion?

((Solution))
& @
T=8.0x10%s, M=7.00x 10** kg

r,=a(l+e)=4.5x10"m for aphelion (farthest)
w, =7.158x10"rad / s



rp=a(l-e) for the perihelion (nearest)

where e is the essentricity.

What is the value of ay?

Kepler’s third law

a GM

T 4

Since ¢ = mr’w = const (angular momentum conservation), we have

g_ 2 _ 2
=mr, 0, =mr,’o,

19 Link

Ring of Saturn
http://en.wikipedia.org/wiki/Rings of Saturn

Gauss’ law for gravity
http://en.wikipedia.org/wiki/Gauss%27s law_for gravity

Escape velocity
http://en.wikipedia.org/wiki/Escape_velocity

Kepler’s law of planetary motion
http://en.wikipedia.org/wiki/Kepler%27s laws of planetary motion

Kepler’s law
http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html

Black hole
http://en.wikipedia.org/wiki/Black hole

Bohr model
http://en.wikipedia.org/wiki/Bohr model




de Broglie relation
http://en.wikipedia.org/wiki/De Broglie hypothesis

The Bohr model of the atom
http://www.upscale.utoronto.ca/Generallnterest/Harrison/BohrModel/BohrModel.html

Orbital magnetic moment
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html

Spin magnetic moment
http://en.wikipedia.org/wiki/Spin_magnetic_moment

Lecture Note (University of Rochester)
http://teacher.pas.rochester.edu/phy121/LectureNotes/Contents.html

Y outube:
Carl Sagan: Kepler’s law
http://www.youtube.com/watch?v=XFqMO0lreJYw

Appendix-1 Contour map of equipotential surface

(1) Contour map of equipotential surface between two equal masses at (-a,0) and the
point (a, 0)
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(2) Contour map of equipotential surfaces between mass M at (-a,0) and 3M at the
point (a, 0).
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Contour map of equipotential surfaces between there identical masses (M) at the

3)
origin, the point (a, 0), and the point (a/2, V3a/ 2)
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APPENDIX II Terminology

(a) Eccentricity e

From Medieval Latin eccentricus, derived from Greek ekkentros "out of the center",
from ek-, ex- "out of" + kentron "center". Eccentric first appeared in English in 1551,
with the definition "a circle in which the earth, sun. etc. deviates from its center." Five
years later, in 1556, an adjective form of the word was added.

(b) Semi latus rectum p

The chord through a focus parallel to the conic section directrix of a conic section is
called the latus rectum, and half this length is called the semi latus rectum (Coxeter 1969).
"Semi latus rectum" is a compound of the Latin semi-, meaning half, /atus, meaning
'side,’ and rectum, meaning 'straight.’

(©) Perihelion

The perihelion is the point in the orbit of a planet, asteroid or comet where it is
nearest to the sun. The word perihelion stems from the Greek words "peri" (meaning
"near") and "helios" (meaning "sun").

(d) Aphelion

Derivative terms are used to identify the body being orbited. The most common are
perigee and apogee, referring to orbits around the Earth (Greek vij, gé, "earth"), and
perihelion and aphelion, referring to orbits around the Sun (Greek fjiog, Aélios, "sun").

APPENDIX-III Method of Lagrangian (advanced topics)

Mathematica program for the Kepler’s problem. I use the method of Lagrangian for
this Kepler’s problem. See the advanced textbook of classical mechanics such as H.
Goldstein, Classical Mechanics).



Method of Lagrangian

Clear["Global ™ %"]; << "VariationalMethods™"

Lagrange equation
1
L= m(rrie?srie®¢7 %) - virel;

eql = EulerEquations[L, {r[t], ¢[t]}, t];
Note that the central force is expressed by
fry=- V'(r)
eqll = F[r{t]] +mr[t] ¢'[t]?-mr”[t] = O;
eq2 = EulerEquations[L, {r[t], ¢[t]}, t]

2

{(-VIr[t]]+«mr[t] ¢'[t]°-mr’[t] =0, -mr[t] (2r' [t] ¢'[t] +r[t] ¢"[t]) = O}

FirstIntegral[¢] = constant =1 Angular momentum conservation
FirstIntegral[t] = constant = E Energy conservation

eq3 = Firstintegrals[L, {r[t], ¢[t]}, t] // Simplify
{Firstlntegral (6] > -mr[t]2 ¢ [t],

Firstintegral [t] e% (2vire)] «m (re?erie?e e?)))

eq4 = eqll /. {qb'[t] > 2} /7 Simplify

mr[t]




/ d / d
a a . L =
" mr dp (mr2 do : mr (1)
[ d [ d
Zalamd)ammro

Then we have

2.2 d
m  dg dg m
or

lzuz[dzu

ol e SO Bt (G

or
d?u _ m 1
W UTT R

u

&) B



Solution of Kepler's problem

Clear["Global «"];

eql = u™"[¢] + U[d] . | ! E
= + == - ;
12uf¢1?2 ‘ulel]
k 1 1
forceRule = {V-> [-— &), f[ ]-»-V'[r], r - };
# ulel ulel

eq2 = eql //. ForceRule // ExpandAll;

eq3 = DSolve[{eg2, u"[0] =0}, u[¢], ¢] // Simplify // Flatten;
ekm
cRule = {C[l] —)? },

usol =eq3 /. cRule // Simplify;

eq3l = eg3 /. cRule // FullSimplify;

K m 1
elRule = Solve|— == ——— |] [[2]1] // Simplify;
12 a (1-e2)

ul[¢ ] =u[¢] /- eq31[[1]] /- elRule[[1]];

X[#_]1 1= Cos[g] /ul[g]; y[4 1 :=Sin[g] /ul[#];



0<e<l1: ellipse (e=0.5)
values = {a>» 1, e - 0.5};

ParametricPlot[Evaluate[{x[¢], Y[#]} /- values], {¢, O, 100 r},
PlotStyle » {Red, Thick}, Background - LightGray,
Epilog » {Blue, Thick, Locator[{0, 0}]1}]

e >1: hyperbola (e =1.5)
values = {a» 1, e »1.5};

ParametricPlot[Evaluate[{x[¢], Y[¢]1} /- values], {¢, O, 100 x},
PlotStyle » {Red, Blue}, Background - LightGray]




e = 0: circle
values = {a-» 1, e - 0.0};

ParametricPlot[Evaluate[{Xx[¢], Y[¢]} /- values], {¢, O, 100 r},
PlotStyle » {Red, Thick}, Background - LightGray]

0.5 -

PolarPlot
e=0,0.1,0.2,0.3,04, 0.5, 0.6, 0.7, 0.8, 0.9

PolarPlot[Evaluate[Table[1/ul[¢] /- {a> 1}, {e, 0, 0.9, 0.1}1]1, {¢, O, 2},
PlotStyle » Table[{Hue[0.1i], Thick}, {i, 0, 10}], PlotStyle » {Red, Thick},
Background - LightGray]



PolarPlot
e=1.5,2,25,3

PolarPlot[Evaluate[Table[1l/ul[¢] /. {a> 1}, {e, 1.5, 3, 0.5}11, {¢, O, 2=},
PlotStyle - Table[{Hue[0.2 i], Thick}, {i, 0, 5}], PlotStyle » {Red, Thick},
Background - LightGray]

APPENDIX-IV

Derivation of the expression of the potential energy



We now calculate the potential energy at the point A outside the sphere (with the mass M
and the radius R). We assume that the density of the sphere is uniform inside the sphere.
Then we have

dv = Gm

=— pridrsinGdadg
Vrt+5* —2rscosd




where s is the distance between the point A and the center of the sphere. The potential
energy at the point A is obtained as

sin 4d 0 ngﬁ

R T
V(s)=—pGm|r’dr
'('). '([x/r2+s2—2rscoseo

R V4 .
= —ZﬁmeIrzer. sin 416
0 o\t +s%—2rscos

where p is the density of sphere with the total mass M and radius R. Using Mathematica
we can calculate the integral

R
J.rzdr

7 sin 0d 0 2R?
0 A2 +s2—2rscos@ 3

for s>R. Thus the potential energy at the point A outside the sphere, is obtained as

T sin 440 T
V(s)=—pGm|r’dr d¢
I[ '([\/r2+s2—2rscos<9£
3
= —27mpGm 2R
3s
__ GMm
s
((Mathematica))

r2Sin[e]

Clear["Global +"]; fl =

\/r2 + s?2 - 2rsCos[o]
hl = Integrate[Tl, {6, O, x}] //
Simplify[#, s>r >0] &;
h2 = Integrate[hl, {r, O, R}] //
Simplify[#, {R>0, s>R}] &

2R8
3s




APPENDIX V Proof of Kepler’s laws

(a) Conserved angular momentum

L=rxp,
r:d—L:er.
dt

For the central field, r//F leading to

== -0,
dt

T

which means that the angular momentum L is conserved. We assume that L is directed
along the z axis.

Since
r-L=r-(rxp)=0
the motion occurs in the x y plane.
L=re x(we +rfe))=urbe.
or
L. = ur*0 = [ =constant

where g is the reduced mass,

1 1 1
—=—+—.
u m M

(b) Kepler’s second law
The rate which a line from the sum to a planet sweeps out area is

dA

ad _1 .5 1
dt 2

2u
which is constant. This is the Kepler’s second law.

(c) The period T



The total area of the ellipse orbit 4 is given by

A=mb=m*\1-¢e*

The period T'is

2 2
po A _mANl-e 2u o5
d4 s !
dt 2u

(d) The semi latus rectum
From the geometry of the ellipse, we have

p=al-¢’)

(e) The semi minor axis
From the geometry of the ellipse, we have

b=aVl-¢

® The energy conservation
The total energy is given by

E=-|E |:ly(r'2 +r292)—5
2 r
where £ is given by

k=mMG

Using the relation

the total energy can be rewritten as

1, 1P k1,
| | 2/1 2 2 7’ 2/1 eff()

Note that £ is negative for the bound state (such as ellipse orbit).



(g)  The effective potential
The effective potential is defined by

17 k
Uy(r)=——5-—
2 r
¥

- mn

Energy —»

(h) Determination of », and 7,
When 7 =0,

I’k

—|E|=
IIZW2 p

or

2

|E |7 —kr+2l—’u:0.

The solution of this quadratic equation is given by
r,=a(l+e) (aphelion),
r,=a(l—e) (perihelion)

The sum and product of 7, and r, are obtained as

k

2 2
r+r =2a=—— rarpza(l—e):

Y | E]

12

2u|E|



or
2

a*(1— e)_E“ (1—e2)=ylka
The semi latus
o _ I
p=a(l-e)=—
Lk

(i) total energy (bound state)

k ok’ ) k )
El=—= l-e)=—(1-
| E| y 212( e’) 2p( e’)
or
k Lk’ 2
E=—=- l-e’)= 1-
2a 212( e) ( <)

The circular orbit corresponds to the case of e = 0.

“l-e’ " Tlte’ l—-e

(i) Kepler’s third law

o e [T

or
=4 a0 2 = dn’a’ z4ﬂ-2a3
k mMG (M +m)G MG
where
. mM
m+M

This is the Kepler’s third law.



