
Chapter 13 
 
1 Introduction 
 

(a) Newton’s law of gravitation  
The attractive force between two point masses and its application to extended 
objects 

(b) The acceleration of gravity on the surface of the earth, above it, as well as below 
it 

(c) Gravitational potential energy outside and inside the Earth 
(d) Satellites (orbits, energy , escape velocity) 
(e) Kepler’s three laws on planetary motion 
(f) Bohr model for the electron in the hydrogen atom 
(g) Black-hole 

 
2 Newton’s law of universal gravitation 
2.1 Inverse-square law 

Every particle in the Universe attracts every other particle with a force that is directly 
proportional to the product of their masses and inversely proportional to the square of the 
distance between them 
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where G is the universal gravitational constant. 
 

G = 6.6742867 x 10-11 Nm2kg-2 
 
This is an example of an inverse square law; the magnitude of the force varies as the 
inverse square of the separation of the particles. The law can also be expressed in vector 
form 
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The forces form a Newton’s Third Law action-reaction pair. Gravitation is a field force 
that always exists between two particles, regardless of the medium between them. The 
force decreases rapidly as distance increases. 
 



 
 
F12 is the force exerted by particle 1 on particle 2. The negative sign in the vector form of 
the equation indicates that particle 2 is attracted toward particle 1. F21 is the force exerted 
by particle 2 on particle 1 
 
2.2 Cavendish balance 
 
Phys.427/527 Senior Lab and Graduate Lab of Physcs 

Henry Cavendish (1731 – 1810) measured the universal gravitational constant in an 
important 1798 experiment. Cavendish apparatus consists of two small spheres, each of 
mass m, fixed to the ends of a light, horizontal rod suspended by a fine fiber or thin metal 
wire. When two large spheres, each mass M, are placed near the smaller ones, the 
attractive force between smaller and larger spheres causes the rod to rotate and twist the 
wire suspension to a new equilibrium orientation. The angle of rotation is measured by 
the deflection of a light beam reflected from a mirror attached to the vertical suspension. 
 

 



 
 

 
 
The strength of the gravitational force depends on the value of G. The value of the 
gravitational constant can be determined using the Cavendish apparatus. Two small lead 
spheres of mass m are connected to the end of a rod of length L which is suspended from 
it midpoint by a fine fiber, forming a torsion balance. Two large lead spheres, each of 
mass M, are placed in the location indicated in Figure. The lead spheres will attract each 
other, exerting a torque on the rod. In the equilibrium position the gravitational torque is 



just balanced by the torque exerted by the twisted fiber. The torque exerted by the twisted 
wire is given by 
 

   
 
The torque exerted by the gravitational force is given by 
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where R is the equilibrium distance between the center of the large and the small spheres. 
If the system is in equilibrium, the net torque acting on the rod is zero. Thus 
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All of a sudden the large spheres are rotated to a new position (position B in Figure). The 
net torque acting on the twisted fiber is now not equal to zero, and the system will start to 
oscillate. The period of oscillation is related to the rotational inertia I and the torsion 

constant 
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The angle between the two equilibrium positions is measured to be 2. This, combined 

with the measured torsion constant, is sufficient to determine the torque  acting on the 
torsion balance due to the gravitational force. Measurements show that G = 6.67 x 10-11 
Nm2/kg2. 
 
Link: see the article at the URL 

http://www.leydenscience.org/physics/gravitation/cavend.htm 
 
3 The potential energy 

The attractive force (conservative) is given by 
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This force is called a central force, since the direction of the force is radial. 
  



 
 
We now consider the potential energy U defined by 
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Then we have 
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Here we choose U = 0 at r = ∞. Then we have final form of U as 
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Note that the sign of the attractive potential is negative. 

In general, the potential energy of a localized mass distribution is given by 
 

1
1

1)(
)( r

rr

r
r dGmU  




 

 

where ( 1r ) is the mass density at 1r  and dr1 is the volume element. 

 



 
 
 
4. Typical calculations of gravitational forces and potentials 
 
4.1 Example 
 
Problem 13-16***  (SP-13)  (10-th edition) 
 

In Fig., a particle of mass is a distance cm from one end of a uniform rod with length 
and mass. What is the magnitude of the gravitational force on the particle from the rod? 
 

 
 
((Solution)) 
For simplicity, we change this figure into the following figure. 
 

 
 
Calculation of the force 



 

dr
L

M
dm  . 

 
The direction of the resultant force is along the positive x axis. 
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Calculation of the potential energy 
 
The potential energy U is given by 
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3.2 Gravitational force from a semicircle-shaped mass 

Mass M is distributed uniformly over a semicircle of radius r. Find the gravitational 
force (magnitude and direction) between this semicircle mass and a particle of mass m 
located at the center of the semicircle. 
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Calculation of the force for the particle with mass m0 at the origin. 
 

2
0

2/
02

0

2/

0
2

0

2
0

2

]cos[
2

sin
2

sin2

r

GMm
r

GMm

d
r

GMm

r

dmGm

dFF yy































 

 
Fx = 0  from the symmetry. 

 
3.3 Gravitational force from a disk-shaped mass 

Mass M is distributed uniformly over a disk of radius a. Find the gravitational force 
(magnitude and direction) between this disk-shaped mass and a particle of mass m 
located a distance z above the center of the disk. 
 



 
 
Calculation of the force 
 
In this figure 
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In the limit of z→∞,  
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We make a plot of  
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Fig. Red line for the force from the disk. Blue line for the force from a particle 
with mass m at z = 0. 

 
 
Calculation of the potential energy 
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The force Fz is obtained as 
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((Mathematica)) 
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3.4 Gravitational force from the planet 

Several planets (Jupiter, Saturn, Uranus) are encircled by rings, perhaps composed of 
material that failed to form a satellite. In addition, many galaxies contain ring-like 
structures. Consider a homogeneous thin ring of mass M and outer radius R (Fig.). (a) 
What gravitational attraction does it exert on a particle of mass m located on the ring’s 
central axis a distance x from the ring center? (b) Suppose the particle falls from rest as a 



result of the attraction of the ring of matter. What is the speed with which it passes 
through the center of the ring? 
 

 
 
 

 
 
 
Ring of Saturn 
Link: see the article at the URL 
http://en.wikipedia.org/wiki/Rings_of_Saturn 



 
In this figure 
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First we calculation the potential energy 
 

2/122 )(
2

2 Rx

GMm

L

GMm
R

R

M

L

Gm
Rd

L

Gm
dUU


  


  

 
The total energy E is given by 
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The energy conservation law: 
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When v(x) = 0, then we have 
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((Note)) Calculation of the force 
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((Note)) Direct calculation 
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4. Potential energy and force between a point mass and a solid shell 
4.1 The potential energy outside a shell 

The force on a point test mass m (= M1 in the Fig.) distant from the center of a 
uniform thin spherical shell of radius R is exactly the same at points r>R out side the shell 
as if the entire mass of the shell were concentrated its center. For points r<R inside the 
shell the force on the point mass is zero. 
 
Let s be the mass per unit area of the shell. The total mass of the ring is 
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The potential energy U of the test mass (M1= m) is obtained as 
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where r1 is the distance between the test mass and the ring, 
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The total potential energy U is 
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where  24 RM  . 
 
4.2 The potential energy and the force inside a shell 



If the test charge lies anywhere within the shell, the derivation is identical except that 

the range of summation of r1 in U is from R - r to R + r. 
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U is independent of r. 
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From the definition, the force F is obtained as 
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for the spherical shell with radius R. 
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Fig. Force is equal to zero everywhere inside the spherical shell. 
 
5. Potential energy and force between a point mass and a solid sphere 
5.1 Gauss’s theorem for gravitational force 
 
The case of r<R. 



We may build up a solid sphere of mass M and radius R by adding up a series of 
concentric shells. For points outside the sphere, the force on the test mass m for r>R is 
given by 
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The case of r<R. 

We now consider the case when a point mass is inside a solid sphere. We know that 
the mass in any spherical shell outside the test mass has no contribution to the force on 
the test mass. Only the mass in all spherical shell inside the test mass contributes. Then 
the force will be directed toward the center of the sphere and will be 
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In conclusion, the force F between the test mass m and the center of sphere is given by 
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where Menclosed is the total mass inside the spherical surface area (radius r). 
 
Gauss’s theorem 
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where da is the surface element (with radius r) and is normal to the surface. 
 
5.2 Application of Gauss’s law to the gravitational force around sphere 

We now calculate the gravitational force on a mass m outside and inside the sphere 
(Mass M, and radius R) such as Earth, using the above theorem. This theorem is 
applicable to the system such as sphere which is highly symmetric. 
 
(a) Outside the sphere 
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The potential energy U(r) is given by 
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(b) Inside the sphere 
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If the sphere is of uniform density  then 
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where 
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Then we have 
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The potential energy is then given by 
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5.2 Advanced Problem: gravity train 

First consider a body of mass m outside the Earth. (a) What is the magnitude and 
direction of the gravitational force for the mass outside the Earth? Here r is the distance 
between the center of Earth and the body, RE is the radius of the Earth, ME is the mass of 
the Earth, and G is the gravitational constant. (b) What is the potential energy U for the 
mass outside the Earth? Note that U = 0 at r = ∞. 

Next, see Fig.1, we consider the body of mass m inside the Earth. The density  of the 

Earth is homogeneous and is given by  = ME/(4RE
3/3). (c) What is the magnitude and 

direction of the gravitational force for the mass inside the Earth? Here r is the distance 
between the center of Earth and the body. (d) What is the potential energy U for the mass 
inside the Earth? Note for r = RE, U inside the Earth equals to U outside the Earth.  

Imagine that a hole is drilled through the center of the Earth to the other side along 
the x axis in Fig.1. An object of mass m at a distance r from the center of the Earth is 
pulled toward the center of the Earth only by the mass within the sphere of radius r. (e) 
Write Newton’s second law of gravitation for an object at the distance r from the center 

of the Earth, and show that the force on it is of Hooke’s law form kxFx  , where the 

effective force constant is Gmk )3/4( .  

 



 
 
Fig. 1 

 
((Solution)) 

We consider the gravitational force and the potential energy inside the Earth 
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(a) For r>RE, the force is directed toward the center. 
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(b) For r>RE 
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(c) For r<RE, the force is directed toward the center. 
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(d) For r<RE 
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Fig. Plot of the potential energy and the gravitational force as a 
function of r/R 

 
(e) The force is directed toward the center. 
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The equation of motion for the particle on the tunnel along the x-axis. 
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((Note)) Use of Mathematica 
Suppose that the expression for the force is given as a function of r for each region (r<R 
and r>R). We need to get the expression for the potential energy U, such that 
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The use of the Mathematica makes it easier to calculate the form of U and to make a plot 
of U as a function of r. We add constant such that the potential energy becomes zero at 
the infinity. 
 



Clear"Global`";

f1  Which0  x  1, x, 1  x,
1

x2
;

f2  Integratef1, x
0 x  0
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x
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Plotf2  3  2, x, 0, 5, PlotStyle  Red, Thick
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Plotf1, x, 0, 5, PlotStyle  Red, Thick
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5.3 Gravitational force on Earth 
Consider an object of mass m near the earth’s surface. The gravitational field at some 

point has the value of the free fall acceleration 
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or 
 

2
2 /8.9 sm
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M
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where 

ME = 5.9736 x 1024 kg and RE = 6.372 x 106 m 
 

The average density E of the Earth can be estimated as follows. 
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5.4 Example 

A hole is drilled from the surface of the earth to its center of the earth. Ignore the 
earth’s rotation and air resistance. If the particle is dropped from rest at the surface of the 
earth, what is its speed when it reaches the center of the earth? 
 
((Solution)) 
The energy conservation: 
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E
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1 2  ,  at the center of the earth 

 

E

E
S R

GmM
E    at the surface of the earth, 

 

where Cv  is the velocity  



 

Since CS EE   (the energy conservation), we get 
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or 
 

E
E

E
C gR

R

GM
v   = 7.90493 km/s. 

 
5.5 Escape velocity 

The total energy of the system is given by 
 

r

mGM
mvE E 2
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where v is the velocity. 
 

 
 

Suppose that v = 0 in the limit of r→∞. Then we have E = 0. The escape velocity vesc 
can be estimated as 
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2
  = 11.187 km/s 

 
Similarly the escape velocity for the sun is given by 
 

Sun

Sun
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2
  = 617.5 km/s 

 
5.6 Circular motion (satellite) 

The mechanical energy of the satellite (E) is given by 
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Newton’s second law (condition of the circular orbit): 
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Then E is derived as 
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 <0  (circular orbit) 

 



The velocity is obtained as 
 

r

GM
v E . 

 
When r = RE, we have 
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The period T is 
 

43.50612
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
E

EE

GM

R

v

R
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 sec = 1 hour 24 min 21 s 

 
((Note)) 
A.R.P. Rau, The Beauty of Physics: Patterns, Principles, and Perspective (Oxford 
2014). p.12-13 
 
Since 
 

EE GMgR 2

, 
 
the period T can be rewritten as 
 

g

R
T E2 . 

 
This time period is that of a pendulum of length l equal to the radius of the Earth. This 
coincides with the time it takes a near-Earth satellite such as the International Space 
Station to go once around in a circular orbit.  
 
5.7 Evaluation of the physical quantities by Mathematica 



Physconst  G  6.6742867 1011,

Mea  5.9736 1024, Rea  6.372 106 ,

Msun  1.988435 1030, Rsun  6.9599 108
G  6.674291011,

Mea  5.97361024, Rea  6.372 106,

Msun  1.988441030, Rsun  6.9599 108
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5061.43  
 
 
5.8 Simple harmonic oscillation of the apple inside the earth 



Suppose we make a tunnel inside the earth. This tunnel passes through the center of 
the earth. The apple is dropped from rest at the surface of the earth without any resistance 
including air. We assume that the density is uniform inside the earth. We find that the 
apple undergoes the motion of simple harmonics.  
 

 
 
Inside the earth, we have a force directed toward the center, 
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where we use x instead of r. We set up the equation of motion for the system inside the 
tunnel of the earth.  
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where 
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So we find that the system undergoes the motion of simple harmonics with the period 
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The total energy is a sum of the kinetic energy and the potential energy, 
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The velocity of the apple at the center of the earth can be obtained as 
 

E
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E
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from the energy conservation law; 
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5.9 Geosynchronous orbit 

A geosynchronous orbit (sometimes abbreviated GSO) is an orbit around the 
Earth with an orbital period of one sidereal day, intentionally matching the Earth's 
sidereal rotation period (approximately 23 hours 56 minutes and 4 seconds). The 
synchronization of rotation and orbital period means that, for an observer on the 
surface of the Earth, an object in geosynchronous orbit returns to exactly the same 
position in the sky after a period of one sidereal day.  
 



 
https://i.ytimg.com/vi/sj7zsGkpZxg/maxresdefault.jpg 
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We also note that 
 

2
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on the Earth surface. From these two equations, we get 
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((Example)) 
 



Period:  T = 23 hours 56 min 4 sec = 86164 s 
 

Radius: r = 42,149.1 km 
 

Height: 35777.1 km =22,235.6 mile 
 

Velocity 3.07356 km/s (1.90982 mile/s = 6875 miles/hour) 
 
6 The Potential energy in many-body system 

If the system contains more than two particles, the principle of superposition applies. 
In this case we consider each pair and the total potential energy is equal to the sum of the 
potential energies of each pair. In calculating the total potential energy of a system of 
particles one should take great care not to double count the interactions. The total 
potential energy of a system of particles is sometimes called the binding energy of the 
system. The total potential energy is the amount of work that needs to be done to separate 
the individual parts of the system and bring them to infinity. 
 
6.1 The system of two particles 

The potential energy associated with any pair of particles of mass m1 and m2 
separated by a distance r12 is given by  
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r
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6.2 The system of three particles 
 

 
Figure: A system of three particles.  

The total potential energy of the three-particle system is given by  
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where the factor 2 is needed because of double counting. 
 
6.3 General case (many body systems) 

The potential energy of N discrete masses due to their mutual gravitational attraction 
is equal to the sum of the potential energy of all pairs of masses. 
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((Example)) Estimation of the gravitational energy of the galaxay. 

We approximate that the gross composition of the galaxy by N stars of mass M, and 
with each pair of stars at a mutual separation of the order of R. Then we have 
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where 
2
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


NN
Cn  

Here we assume that 
 

N = 1.6 x 1011, R = 1021 m, and M = 2 x 1030 kg. 
 
Then we have 
 

JU 51104.3   
 
((Mathematica)) 
 

Physconst  G  6.6742867 1011, M  2.0 1030, N  1.6 1011, R  1.0 1021
G  6.674291011, M  2. 1030, N  1.6 1011, R  1. 1021
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7 Kepler’s laws 
 



Johannes Kepler (December 27, 1571 – November 15, 1630) 
 

 
 
Johannes Kepler (December 27, 1571 – November 15, 1630) was a German 
mathematician, astronomer and astrologer, and key figure in the 17th century 
astronomical revolution. He is best known for his eponymous laws of planetary motion, 
codified by later astronomers based on his works Astronomia nova, Harmonices Mundi, 
and Epitome of Copernican Astronomy. 
http://en.wikipedia.org/wiki/Johannes_Kepler 
 
 
Tycho Brahe (14 December 1546– 24 October 1601) 
 



 
 
Tycho Brahe (14 December 1546– 24 October 1601), born Tyge Ottesen Brahe, was a 
Danish nobleman known for his accurate and comprehensive astronomical and planetary 
observations. He was born in Scania, then part of Denmark, now part of modern-day 
Sweden. Tycho was well known in his lifetime as an astronomer and alchemist and has 
been described more recently as "the first competent mind in modern astronomy to feel 
ardently the passion for exact empirical facts." 
http://en.wikipedia.org/wiki/Tycho_Brahe 
 
 
((Kepler’s First Law)) 

Each planet in the Solar System moves in an elliptical orbit with the Sun at one focus 
(F1). 
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Fig. Two focal points F1 (sun) and F2. The planet (Q) on the ellipse orbit (green).  
 
((Kepler’s Second Law)) 

The radius vector drawn from the Sun to a planet sweeps out equal areas in equal 
time intervals. It is a direct consequence of the law of conservation of angular 
momentum. 

 



 
 

 
 
((Kepler’s Third Law)) 

The square of the orbital period of any planet is proportional to the cube of the 
semimajor axis of the elliptical orbit. 
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For Earth, T = 1 year and a = 1 AU = 1.49597870 x 1011 m (astronomical units). 
 
In other words, 
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Then the Kepler’s third law can be rewritten as 
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((Mathematica)) 



 

Physconst   G  6.6742867 1011, Msun  1.988435 1030,

Rsun  6.9599  108, AU  1.49597870 1011,

year  365.25  3600  24;
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year2 . Physconst

9.958821014  
 

 
 

Figure: [a(AU)]3 vs [T(year)]2 for the solar system 



 
 
8 Kepler problem 
8.1 Definition of ellipsoid 

The Sun is at the one focus of the ellipse (the Earth orbit). The ellipse orbit is 
described by 
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a is the semimajor axis. 
b is the semiminor axis 
e is the eccentricity (0<e<1) 

 
The essentricity e is defined by 
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The focus is at (ae,0) and (-ae,0). For simplicity, we assume that Sun is located at focus 
(ae,0). p is the semi latus rectum and is defined by 
 

).1( 2eap   

 
Sun is at the focal point (F1). 
 

)1( earp  ,  )1( eara  . 

 
Perihelion (rp)  the point nearest the Sun 
Aphelion (ra)  the point farthest the Sun 

 

From the Pythagorean theorem for 1OPF , we have 
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We note that the area of the ellipse orbit is given by 
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We now discuss the dependence of r1 on the angle . 



 
 
In the triangle F1F2P, we have 
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from the definition of the ellipse. Using the cosine law, we get 
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From these two equations, we have 
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Note that r1 is an even function of .  
 
(i) For θ = 0 the planet is at the perihelion at minimum distance 
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(ii) For θ = 90°: pr 1 .  

 
(iii) For θ=π,  the planet is at the aphelion at maximum distance, 
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((The semi latus rectum, p)) 

The chord of an ellipse which are perpendicular to the major axis and pass through 
the focal point F1 is called the dr,i latus rectum of the ellipse. In this Fig. p is the length of 
PF1. The value of p can be obtained from the Pythagorean theorem for the triangle 
OF1F2. 
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In this figure, we get the relation, 
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9 The angular momentum 
9.1 Central force problem 

In general case 
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Since the gravitational force is directed toward the origin (so called central field),  
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In other words,  
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9.2 Angular momentum 
The angular momentum is defined as 
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since F is a central force (r//F), zL  is a constant of motion. 
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((Note-1)) 
In general (Chapter 10), we have 
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((Note-2)) 
The velocity v  is given by 
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9.3 Physical meaning 

What is the physical meaning of the constant angular momentum? We now consider 
the dA/dt, where dA is the partial area of the ellipse. 
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dA (the area of the triangle OPQ ) is given by 
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since const2  mrl . The period T is evaluated as 
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where GMmk  . Using this relation we have the Kepler’s third law, 
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10. The effective potential 

The total energy is a sum of the kinetic energy and the potential energy 
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where k = GMm. The energy is dependent only on r (actually one dimensional problem). 
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The effective potential energy Ueff has a local minimum  
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Since E = constant, we have an equation of motion 
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______________________________________________________________________ 



Plot of the effective potential as a function of r 
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Figure The effective potential vs r with l = 0.1 – 0.5 
________________________________________________________________________ 
11. Perihelion and aphelion 

When 0r  for the perihelion (nearest from the Sun) and the aphelion (farthest from 
Sun) rp and ra are the roots of Eq.(1). 
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There are the relations between r1 and r2. 
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From this we have 
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For e>1 (E>0)     hyperbola 
For 0<e<1 (E<0),   ellipse 
For e = 0 [E = -mk2/(2l2)],  circle 

 
((Note)) 

The eccentricity of the Earth's orbit is currently about 0.0167, meaning that the 
Earth's orbit is nearly circular, the semiminor axis is 98.6% of the semimajor axis. Over 
thousands of years, the eccentricity of the Earth's orbit varies from nearly 0.0034 to 
almost 0.058 as a result of gravitational attractions among the planets.  
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12 Kepler’s Third Law 

The period T is given by 
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13 Derivation of the Kepler's First Law 

We start with  
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Here we have 
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Note that r depends only on .  
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The solution of this equation is given by 
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where e is the eccentricity. Note that r (or u) is an even function of . There is no sine-

term. Since )1( earp  for  = 0, and )1( eara   for  = we get 
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Fig. Ellipse orbits with various eccentricity e (0<e<1). The focus is located at the 

origin. The focus is located at the origin. 
 
14. Black-hole 

The escape velocity is the velocity at which a projectile (or particle) would have to be 
fired straight up so that it will eventually (infinitely far in the future) escape the gravity 
(come to rest at zero velocity infinitely far away). The escape velocity can be calculated 
from the energy equation: 
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For escape, v = 0 at r = ∞, so therefore in such an orbit E = 0. Therefore, at the surface 
(or any radius r), the escape velocity is given by: 
 

r
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Note that this velocity is higher than the (circular) orbital speed given by the centripetal 
velocity: 
 

r

GM
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by a factor 2 . If the speed of the Earth in its orbit is increased by more than the factor 

2 , then it would no longer be bound in orbit about the Sun and would be free to fly 
about the galaxy.  

If a mass M is compressed to a radius 
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or smaller, then the escape velocity at the radius RSW will equal the speed of light. This 
radius is called the Schwarzschild Radius for the astrophysicist Karl Schwarzschild who 
calculated it soon after the publication of Einstein's theory in 1916. 

An object with a radius equal to or less than the Schwarzschild Radius RSW is called a 
black hole. Light, nor anything else, can ever escape the surface of such an object, and it 
will appear dark. Note that this calculation uses only Newton's theory for gravity. In fact, 
the possibility for the existence of "dark stars" was postulated as early as 1783. 

The Schwarzschild radius for 1 Msun is  
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- if the Sun were to suddenly (and inexplicably) collapse to this radius it would become a 
black hole - though our orbit would remain unchanged since the gravitational force 
depends only on the mass and distance, not the size of the mass. 

The effective radius of a black hole, the Schwarzschild radius, depends only on the 
mass itself, not on the actual density the mass has (beyond the fact that it must be within 
its own Schwarzschild radius. As you increase the mass, the radius of the black hole 
increases proportionally to the mass. Furthermore, since nothing can escape, even light, 
the mass and size of a black hole can only increase with time. 

The spherical "surface" surrounding a black hole of mass M at distance of the 
Schwarzschild radius RSW is called the event horizon. Once within the event horizon, 
matter (or radiation) is lost forever from contact with the universe outside the event 
horizon. The event horizon is the boundary between what we can know about and what 
we cannot at outside the horizon. Of course, someone unlucky to be inside the event 
horizon of the black hole can receive news of the outside world in a one-way information 
transfer. 
 
15. Hodographic solution to the Kepler’s problem 

In order to see the detail of the following discussion, see the note in the web site, 
http://bingweb.binghamton.edu/~suzuki/GeneralPhysLN.html 



 
15.1 Geometry of ellipse orbit 
(a) Definition of ellipse 

An ellipse is the curve that can be made, by taking one string and two tracks and 
putting a pencil here and going around. Or mathematically, it is the locus, such that the 
sum of the distance SQ and the distance FQ remains constant (see Fig.1), where S (the 
Sun) and F are the two fixed points. One may have heard another definition of an ellipse: 
these two points are called the foci, and this focus means that the light emitted from S 
will bounce to F from any point on the ellipse (ellipse optic theorem). 

Suppose that the Earth undergoes an orbital motion of ellipse where the Sun (S) is 
one of the focus of the ellipse, and F is another focus. We consider the point Q on the 
ellipse orbit. 
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Fig. Hodograph diagram. Q (the Earth) is on the ellipse. F and S (the Sun) are foci. FQ 

+ QS = 2 a. SQCFQC   (ellipse optic theorem). The point P is on the circle 

(radius 2a) centered at S. FP is proportional to the velocity at the point Q. The 
direction of the velocity is parallel to the tangential line at Q. 

 
From the property of the ellipse, we have 
 



aSQFQ 2 , 

 
aeOSOF  , 

 
where a is the semi-major axis and e is the eccentricity; 0<e<1. When QPFQ  , we 

have 
 

aSP 2 . 
 
The point P is located at the circle with radius 2a centered at the focal point S.  
 
(b) Ellipse optic theorem 

First we demonstrate the equivalence of these two definitions for ellipse. The light is 
reflected as though the surface were a plane tangent to the actual curve. We know that the 
law of reflection for the light from a plane is that the angle of incidence and reflection are 
the same. In other words, the angles made with the two lines FQ and SQ are equal, that 
that line is then tangent to the ellipse. 
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Fig. Q (the Earth) on the ellipse with foci S (the Sun)  and F. The green circle (radius 

a) centered at the origin O. FS = 2ae. 
 
((Proof)) 

First we extend the perpendicular from F to the tangential line at the point Q, the 
same distance on the other side, to obtain P, the image of F; Now connect the point Q to 
P. Two right triangles are exactly the same (see Fig.2). Thus we have 
 

PQHFQH  , FQPQ  . (ellipse optic theorem) 

 
So we get 
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Suppose that we takes any other point on the tangent, Q'. We take the sum of distances, 
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where 
 

'' PQFQ  . 

 
It is clear that the inequality 
 

aSPSQPQ 2''  , 

 
in the triangle SPQ' .In other words, for any point on the tangential line, the sum of the 

distances from Q' to F and from Q' to F is greater than it is for a point Q on the ellipse. 
 
15.2 The velocity on the ellipse orbit ((J.C. Maxwell)) 

Here we show the discussion on the velocity, which was given by J.C. Maxwell (see 
Fig.3). The physics given by Maxwell is very clear for me. We consider the ellipse 
A0QP0 with foci F and S (S standing for the Sun, A0 the aphelion, and P0 the perihelion). 
Let Q be any point on the ellipse, and draw SP through Q, such that SP = A0P0 = 2a. In 
order to avoid the confusion, we use A0 and P0 for the aphelion and perihelion. Draw a 
line from F to P. It remains to be shown that PF is perpendicular to, and proportional to, 
the velocity at point Q, and that the locus of P is a circle. 
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Fig. The direction of the velocity vector. The magnitude of the velocity is proportional 

to the distance FP. 
 
((Proof)) 

In the ellipse, PF is perpendicular to the velocity at the point Q. Draw a tangent from 
Q to intersect PF at H. Then by the ellipse optical theorem, 
 

FQHSQH  ' , 

 
and 



 
PQHFQH  . 

 
We also have 
 

FQQSaQSPSPQ  2 . 

 
where 
 

aPS 2 . (2a: the distance between the perihelion and aphelion) 
 
So HQ is perpendicular to PF. Then the direction of PF is perpendicular to the tangent, 
and hence the velocity at Q. 

In the ellipse, PF is proportional to the velocity at Q. Draw a perpendicular line from 
S to the tangent to intersect the tangent at H'. Let v be the velocity at Q, of the magnitude 
v. By the conservation of angular momentum, we get 
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where l is a constant. Using the geometrical theorem 
 

2' bSHHF  , 
 
we get  
 

2'

1

b
HF

l
mv

SH
 , 

 
or 
 

PFv
l

mb
HF

2

12

 , 

 
so PF is proportional to v. 

Since SP is always equal to the major axis, it follows that the locus of P is a circle, 
with common origin of the velocity vectors at F; this circle is the hodograph turned 
through 90° because PF is perpendicular to v. Then we have 
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 is the scaling factor and the unit is [1/s]. 

 
Note that this scaling factor. We consider the aphelion and the perihelion 
(i) At the aphelion 
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Then we have 
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The scaling factor is obtained as 
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(ii) At the perihelion, 
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where b is the minor axis distance, 
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and p is the semi-latus rectum; 
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15.3. Centripetal acceleration 

First we discuss the velocity vectors at the point Q1 and Q2 on the same ellipse, where 
Q1 and Q2 are very close. The velocity at the point Q1 is proportional to the length FP1.  
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The velocity is directed along the tangential line at the point Q1. The rotation of the 

vector 1FP  around the point F by /2 in a counterclockwise leads to the direction of the 

velocity. For this rotation we use the geometrical rotation operator )
2

,(


z . 

 

11 )
2

,(
2

FPz
map

l 
v . 

 

When the particle rotates from Q1 to Q2' on the ellipse during the time t, the 
instantaneous acceleration a is 
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where 
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In the limit where the point P2 is very close to P1. the vector 21PP  is perpendicular to the 

vector 1SP . Then the acceraltion is directed toward the Sun (one of the focus in the 

ellipsoid). 
 



 
 
Fig. The points P1 and P2 are on the circle (radius 2a) centered at S. The point P1’ and 

P2' are on the circle (radius 2a) centered at F. The points H1, H2, H1', and H2' are 

on the circle (radius a) centered at the origin O. K1Q1H1Q1. K2Q2H2Q2. 
 
15.4. Centripetal acceleration: central-force problem 



If PP' is the arc described in unit of time, then PP' represents the acceleration, and 
since P P' is on a circle whose center is S, the distance of arc PP' will be a measure of 
angular velocity,  
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where  is the angular velocity at the point Q, 
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Note that the angular momentum l is conserved and is given by 
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The acceleration a is obtained as 
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z  is the geometrical rotation operator (counter-clockwise rotation of the 

system around the z axis by . 
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The acceleration is inversely as the square of the distance SQ. Hence the acceleration of 
the planet is in the direction of the Sun, and is inversely as the square of the distance from 
the Sun. 

This, therefore, is the law according to which the attraction of the Sun on a planet 
varies as the planet moves in the orbit and alters its distance from the Sun. 
 
16. Advanced problems 
16.1 13-57 Serway 

Two stars of masses M and m, separated by a distance d, resolve in circular orbits 
about their center of mass. Show that each star has a period given by 
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Proceed by applying Newton’s second law to each star. Note that the center-of-mass 

condition requires that 12 mrMr  , where drr  21 . 

 

 
 
((Solution) 

The origin is the center-of-mass of the two stars. 
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For each mass,  
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_______________________________________________________________________ 
16.2. Advanced problem-2 
Serway 13-23 

Compute the vector gravitational field at point P on the perpendicular bisector of the 
line, joining two objects of equal mass separated by a distance 2a. (b) Explain physically 
why the field should approach zero as r→0. (c) Prove mathematically why the magnitude 
of the field should approach 2GM/r2 as r . (e) Prove mathematically that the answer 
to part (a) behaves correctly in this limit. 
 



 
 
((Solution)) 
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(b) The gravitational force gx is defined by  
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Then f(x) has a local maximum at 
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17 Bohr model 
 
Niels Bohr 

Niels Henrik David Bohr in Danish; October 7, 1885 – November 18, 1962) was a 
Danish physicist who made fundamental contributions to understanding atomic structure 
and quantum mechanics, for which he received the Nobel Prize in Physics in 1922. Bohr 
mentored and collaborated with many of the top physicists of the century at his institute 
in Copenhagen. He was also part of the team of physicists working on the Manhattan 
Project. Bohr married Margrethe Nørlund in 1912, and one of their sons, Aage Niels 
Bohr, grew up to be an important physicist who, like his father, received the Nobel prize, 
in 1975. Bohr has been described as one of the most influential physicists of the 20th 
century. 
 



 
 

We now consider the Bohr model shown in this figure. The system consists of a 
proton and an electron. These two particles are coupled with an attractive Coulomb 
interaction. 
 

 
 
The total energy is a sum of kinetic energy and potential energy (CGS units are used 
here) 
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Note that in SI units, the energy is given by 
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The de Broglie relation: 
 



 
 
 
Fig. Acceptable wave on the ring (circular orbit). The circumference should be equal 

to the integer n (=1, 2, 3,…) times the de Broglie wavelength . The picture of 
fitting the de Broglie waves onto a circle makes clear the reason why the orbital 
angular momentum is quantized. Only integral numbers of wavelengths can be 
fitted. Otherwise, there would be destructive interference between waves on 
successive cycles of the ring. 
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where n is integer. 
 
de Broglie relation 
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The angular momentum Lz: 
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The angular momentum is quantized. 
 
From Eqs.(1) and (2), 
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Then the total energy is obtained by 
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where R=13.6 eV (Rydberg constant). 
 
The energy is quantized. The ground state is a state with n = 1. 

Note that the magnetic moment  due to the orbital motion is also quantized. 
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the current is opposite to the direction of velocity of electron because the charge is 
negative. We assume that the electron has a charge –e (e<0). 
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The Bohr magneton B  is defined as 
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where emu = erg/G 



 
The spin magnetic moment is given by 
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18. HW and SP 
 
18.1  
 
Problem 13-28** (SP-13)  (8-th edition) 
Problem 13-26** (SP-13)  (8-th edition) 
 

Consider a pulsar, a collapsed star of extremely high density, with a mass M equal to 
that of the Sun (1.98 x 1030 kg), a radius R of 12 km, a rotational period T of 0.041 s. By 
what percentage does the free-fall accelerating g differ from the gravitational acceleration 
ag at the equater of this spherical star? 
 
((Solution)) 
M = 1.98 x 1030 kg 
R = 12 km 
T = 0.41 s 
 



 
N: Normal force 
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The value of g (free-fall acceleration) is defined as 
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The gravitational acceleration g0  
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________________________________________________________________________ 
18.2  
 
Problem 13-59 (SP-13)***  (10-th edition) 
 
 

Three identical stars of mass M from an equilateral triangle that rotates around the 
triangle’s center as the stars move in a common circle about that center. The triangle has 
edge length L. What is the speed of stars? 
 
((Solution)) 
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or 
 

L

GM

R

MG
v 

3
 

 
18.3 
 
Problem 13-82 (HW-13)  (10-th edition) 
 

A satellite is in elliptical orbit with a period of 8.00 x 104 s about a planet of mass 
7.00 x 1024 kg. At aphelion, at radius 4.4 x 107 m, the satellite’s angular speed is 7.158 x 
10-5 rad/s. What is its angular speed at perihelion? 
 
((Solution)) 
 

 
 

 
 
T = 8.0 x 104 s,  M = 7.00 x 1024 kg 

meara
7105.4)1(   for aphelion (farthest) 

srada /10158.7 5  



rp = a(1-e)   for the perihelion (nearest) 
 
where e is the essentricity. 
 
 

What is the value of p? 
 
Kepler’s third law 
 

22

3

4
GM

T

a
  

 

Since constmr  2  (angular momentum conservation), we have 
 

ppaa mrmr  22   

 
 
19 Link 
 
Ring of Saturn 
http://en.wikipedia.org/wiki/Rings_of_Saturn 
 
Gauss’ law for gravity 
http://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity 
 
Escape velocity 
http://en.wikipedia.org/wiki/Escape_velocity 
 
Kepler’s law of planetary motion 
http://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion 
 
Kepler’s law 
http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html 
 
Black hole 
http://en.wikipedia.org/wiki/Black_hole 
 
Bohr model 
http://en.wikipedia.org/wiki/Bohr_model 
 



de Broglie relation 
http://en.wikipedia.org/wiki/De_Broglie_hypothesis 
 
The Bohr model of the atom 
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/BohrModel/BohrModel.html 
 
Orbital magnetic moment 
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/orbmag.html 
 
Spin magnetic moment 
http://en.wikipedia.org/wiki/Spin_magnetic_moment 
 
Lecture Note (University of Rochester) 
http://teacher.pas.rochester.edu/phy121/LectureNotes/Contents.html 
 
___________________________________________________________________ 
Youtube: 
Carl Sagan: Kepler’s law 
http://www.youtube.com/watch?v=XFqM0lreJYw 
 
 
________________________________________________________________________ 
Appendix-1 Contour map of equipotential surface 
 
(1) Contour map of equipotential surface between two equal masses at (-a,0) and the 

point (a, 0) 
 



 
 
(2) Contour map of equipotential surfaces between mass M at (-a,0) and 3M at the 

point (a, 0). 
 

 



 
(3) Contour map of equipotential surfaces between there identical masses (M) at the 

origin, the point (a, 0), and the point (a/2, )2/3a  

 

 

 



 
APPENDIX II Terminology 
 
(a) Eccentricity e 

From Medieval Latin eccentricus, derived from Greek ekkentros "out of the center", 
from ek-, ex- "out of" + kentron "center". Eccentric first appeared in English in 1551, 
with the definition "a circle in which the earth, sun. etc. deviates from its center." Five 
years later, in 1556, an adjective form of the word was added. 
 
(b) Semi latus rectum p 

The chord through a focus parallel to the conic section directrix of a conic section is 
called the latus rectum, and half this length is called the semi latus rectum (Coxeter 1969). 
"Semi latus rectum" is a compound of the Latin semi-, meaning half, latus, meaning 
'side,' and rectum, meaning 'straight.'  
 
(c) Perihelion 

The perihelion is the point in the orbit of a planet, asteroid or comet where it is 
nearest to the sun. The word perihelion stems from the Greek words "peri" (meaning 
"near") and "helios" (meaning "sun"). 
 
(d) Aphelion 

Derivative terms are used to identify the body being orbited. The most common are 
perigee and apogee, referring to orbits around the Earth (Greek γῆ, gê, "earth"), and 
perihelion and aphelion, referring to orbits around the Sun (Greek ἥλιος, hēlios, "sun").  
 
APPENDIX-III Method of Lagrangian (advanced topics) 

Mathematica program for the Kepler’s problem. I use the method of Lagrangian for 
this Kepler’s problem. See the advanced textbook of classical mechanics such as H. 
Goldstein, Classical Mechanics). 

 



Method of Lagrangian
Clear"Global`";  "VariationalMethods`"

Lagrange equation

L 
1

2
m r't2  rt2 't2  Vrt;

eq1  EulerEquationsL, rt, t, t;

Note that the central force is expressed by
f(r)= - V'(r)

eq11  frt  m rt t2  m rt  0;

eq2  EulerEquationsL, rt, t, t
Vrt  m rt t2  m rt  0, m rt 2 rt t  rt t  0

FirstIntegral[f] = constant = l Angular momentum conservation
FirstIntegral[t] = constant = E Energy conservation

eq3  FirstIntegralsL, rt, t, t  Simplify

FirstIntegral  m rt2 t,
FirstIntegralt 

1

2
2 Vrt  m rt2  rt2 t2

eq4  eq11 .  t 
l

m rt2
  Simplify

frt  l2

m rt3  m rt
 



m d2

dt2
r - l2

m r3  = f(r)

m l

m r2  d

df
 ( l

m r2  d

df
) r -  l2

m r3  = f(r)

l

r2
d

df
 l

m r2
d

df
 r - l2

m r3 = f r

We notice that

d

df
 1

r
 = - 1

r2  dr

df

We put

u = 1
r

Then we have

 l2 u2

m
 d

df
 (- du

df
)  -  l2

m
u3 = f( r

u
)

 or

 

 l2 u2

m
[ d2 u

df2    + u ] = - f( 1

u
) 

  
  or

  

  
d2 u
df2    + u  = -  m

l2
 1

u2  f  1
u

)

    



ü  
Solution of Kepler's problem

Clear"Global`";

eq1  u''  u  
m

l2 u2
f 1

u ;

forceRule  V  
k


& , f 1

u   V 'r, r 
1

u;

eq2  eq1 . forceRule  ExpandAll;

eq3  DSolveeq2, u'0  0, u,   Simplify  Flatten;

cRule  C1 
e k m

l2
;

usol  eq3 . cRule  Simplify;

eq31  eq3 . cRule  FullSimplify;

elRule  Solvek m

l2


1

a 1  e2
, l2  Simplify;

u1_  u . eq311 . elRule1;

x_ : Cosu1; y_ : Sinu1;  



0<e<1: ellipse (e=0.5)

values  a  1, e  0.5;

ParametricPlotEvaluatex, y . values, , 0, 100 ,

PlotStyle  Red, Thick, Background  LightGray,

Epilog  Blue, Thick, Locator0, 0

e >1: hyperbola ( e =1.5) 

values  a  1, e  1.5;

ParametricPlotEvaluatex, y . values, , 0, 100 ,

PlotStyle  Red, Blue, Background  LightGray

-6 -4 -2 2 4

-4

-2

2

4

 



e = 0: circle

values  a  1, e  0.0;

ParametricPlotEvaluatex, y . values, , 0, 100 ,

PlotStyle  Red, Thick, Background  LightGray

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

PolarPlot

e = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

PolarPlotEvaluateTable1u1 . a  1, e, 0, 0.9, 0.1, , 0, 2 ,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10, PlotStyle  Red, Thick,

Background  LightGray  



-1.5 -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

PolarPlot
e = 1.5, 2, 2.5, 3

PolarPlotEvaluateTable1u1 . a  1, e, 1.5, 3, 0.5, , 0, 2 ,

PlotStyle  TableHue0.2 i, Thick, i, 0, 5, PlotStyle  Red, Thick,

Background  LightGray

-8 -6 -4 -2 2 4
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2
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APPENDIX-IV 
 
Derivation of the expression of the potential energy 



 
 
We now calculate the potential energy at the point A outside the sphere (with the mass M 
and the radius R). We assume that the density of the sphere is uniform inside the sphere. 
Then we have 
 




dddrr
rssr

Gm
dV sin

cos2

2

22 
 , 



 
where s is the distance between the point A and the center of the sphere. The potential 
energy at the point A is obtained as 
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where  is the density of sphere with the total mass M and radius R. Using Mathematica 
we can calculate the integral 
 

s

R

rssr

d
drr

R

3

2

cos2

sin 3

0
22

0

2 
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





 

 
for s>R. Thus the potential energy at the point A outside the sphere, is obtained as 
 

s

GMm
s

R
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d
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d
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R
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22
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







 

 
((Mathematica)) 
 

Clear"Global`"; f1 
r2 Sin

r2  s2  2 r s Cos
;

h1  Integratef1, , 0,  
Simplify, s  r  0 &;

h2  Integrateh1, r, 0, R 
Simplify, R  0, s  R &

2 R3

3 s  
 
_______________________________________________________________________ 



APPENDIX V Proof of Kepler’s laws 
 
(a) Conserved angular momentum 
 

prL  , 
 

Fr
L

τ 
dt

d
. 

 
For the central field, Fr //  leading to 
 

0
dt

dL
τ , 

 
which means that the angular momentum L is conserved. We assume that L is directed 
along the z axis. 
 
Since 
 

0)(  prrLr  
 
the motion occurs in the x y plane. 
 

zrr errrr  )  ( 2 
  eeeL  

 
or 
 

lrLz   2  =constant 
 
where  is the reduced mass, 
 

Mm

111



. 

 
(b) Kepler’s second law 
 
The rate which a line from the sum to a planet sweeps out area is 
 




22

1 2 l
r

dt

dA
   

 
which is constant. This is the Kepler’s second law. 
 
(c) The period T 



 
The total area of the ellipse orbit A is given by 
 

22 1 eaabA    
 
The period T is 
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(d) The semi latus rectum 
From the geometry of the ellipse, we have 
 

)1( 2eap   
 
(e) The semi minor axis 
From the geometry of the ellipse, we have 
 

21 eab   
 
(f) The energy conservation 

The total energy is given by 
 

r

k
rrEE  )(

2

1
|| 222    

 
where k is given by 
 

mMGk   
 
Using the relation  
 

2 
r

l


  ,  

 
the total energy can be rewritten as 
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Note that E is negative for the bound state (such as ellipse orbit). 
 



(g) The effective potential 
The effective potential is defined by 
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(h) Determination of pr  and ar  

 
When 0r , 
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l
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or 
 

0
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l
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The solution of this quadratic equation is given by 
 

)1( eara    (aphelion), 

 
)1( earp    (perihelion) 

 
The sum and product of ar  and pr  are obtained as 
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The semi latus  
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(i) total energy (bound state) 
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The circular orbit corresponds to the case of e = 0. 
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(i) Kepler’s third law 
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where 
 

Mm
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
 . 

 
This is the Kepler’s third law. 
 


