
Chapter 14 
Fluid 
 
In this chapter we will explore the behavior of fluids. In particular we will study the 
following: 
 
Static fluids 
Pressure exerted by a static fluid  
Methods of measuring pressure 
Pascal’s principle Archimedes’ principle, buoyancy 
Real versus ideal Fluids in motion: fluids 
Equation of continuity 
Bernoulli’s equation 
 
1 Pressure 

The pressure is a scalar quantity, not a vector. In a fluid at rest the pressure is the 
same in all directions at a given point. 
 
1.1 Units 

Pressure is transmitted to solid boundaries or across arbitrary sections of fluid normal 
to these boundaries or sections at every point. It is a fundamental parameter in 
thermodynamics and it is conjugate to volume. 
 
Pressure is a scalar, and has SI units of pascals 
 

1Pa = 1 N/m2 = 10 dyn/cm2 
1 mbar =100 Pa = 103 dyn/cm2 

1 bar = 105 Pa 
 
Atmospheric pressure 
 

P0 = 1 atm = 1.01325 x 105 Pa 
P0 = 760 mmHg = 760 Torr 

 
1.2 Mercury manometer 
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1 Torr = 1.0 mmHg 
 
1 atm = 760 mmHg = 760 Torr 

 
which means 
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1.3 Water suction 

Suppose that one attempts to drink water through a very long straw. With his great 
strength he achieves maximum possible suction. The walls of the tubular straw do not 
collapse. What is the maximum height through which he can lift the water? 
 



 
 
We imagine one to produce a perfect vacuum in the straw. Take point 1 at the water 
surface in the basin and point 2 at the water surface in the straw. 
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((Note)) Walter Levin (Sucking cranberry) 
 



 
 
There is a very interesting experimental demonstration. 
https://www.youtube.com/watch?v=Hlmpoo32QPE&index=29&list=PLUdYlQf0_sSsb2t
NcA3gtgOt8LGH6tJbr 
 
1.4 Pressure under water 
 
The pressure P in the water increases with increasing the depth of water. In fact, the 
change of pressure P is given by 
 

hgP   . 
 
When P = 1 atm = 1.013 x 105 Pa, h is evaluated as 
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This means that the pressure at 100 m under the sea level is (100/10.3) +1 = 10.7 atm. 
1.5 Units of psi (conventional units in the experiment in the U.S.A.) 
 
psi: Pounds per square inch (redirected from Pound-force per square inch). 
 
The pound per square inch or, more accurately, pound-force per square inch (symbol: psi 
or lbf/in²) is a unit of pressure or of stress based on avoirdupois units. It is the pressure 
resulting from a force of one pound-force applied to an area of one square inch: 
 

1 psi = 6,894.75729 Pa 
1 psi = (6894.75729/101325) x 760 = = 51.715 Torr 
1 mbar = 10-3 bar = 1.4503774 x 10-2 psi 
1 bar = 106 dyn/cm2 = 105 Pa = 14.503774 psi 



1 atm = 14.69594554 psi 
 

 
https://en.wikipedia.org/wiki/Pounds_per_square_inch 
 
 
1.6 Hemisphere of Magdeburg 
 
Problem 14-7**  (10-th edition) 
 
 

In 1654, Otto von Guericke, inventor of the air pump, gave a demonstration before 
the noblemen of the Holy Roman Empire in which two teams of eight horses could not 
put apart two evacuated brass hemispheres. (a) Assuming the hemispheres have (strong) 
thin walls, so that R in Fig. may be considered both the inside and outside radius, show 
that the force F required to pull apart the hemisphere has magnitude  
 

pRF  2  
 
where p is the difference between the pressures outside and inside the sphere. (b) 
Taking R as 30 cm, the inside pressure as 0.10 atm, and the outside pressure as 1.00 atm, 
find the force magnitude the team of horses would have to exert to pull apart the 
hemispheres. (c) Explain why one team of horses could have proved the point just as well 
if the hemispheres were attached to a sturdy wall. 
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We use 1 atm = 1.01  105 Pa to show that p = 0.90 atm = 9.09  104 Pa. The sphere 
radius is R = 0.30 m, so  
 

Fh = (0.30 m)2(9.09  104 Pa) = 2.6  104 N. 
 
2. Variation of pressure with depth 

Fluids have pressure that varies with depth. If a fluid is at rest in a container, all 
portions of the fluid must be in static equilibrium. All points at the same depth must be at 
the same pressure. Otherwise, the fluid would not be in equilibrium 
 



 
 
A is the area of the cylinder and P(y) is the pressure at the depth y from the surface of 
liquid. 
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In the limit of dy→0, we have 
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When )(y  is independent of y, one can get 
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where P0 is the atmospheric pressure at y = 0. 
 



 
 
2.2 Example 
 
Problem 14-24** (SP-14)  (10-th edition) 
 

In Fig., water stands at depth D = 35.0 m behind the vertical upstream of a dam of 
width W = 314 m. Find (a) the net horizontal force on the dam from the gauge pressure of 
the water and (b) the net torque due to that force about a line through O parallel to the 
width of the dam. (c) Find the moment arm of this torque. 
 
 

 
 



 
((Solution)) 
D = 35 m, W = 314 m 
g = 9.8 m/s2 
 = 103 kg/m3 
 

The total horizontal force and the net torque are evaluated as follows; 
 
The pressure: 
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The force: 
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    = 1.885 x 109 N 

 
The torque: 
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The average arm’s length of torque 
 

3
2

1
6

2

3

D

DgW

D
gW

F
r 




 = 11.7 m. 

 
3 Variation of pressure with height 
 
Problem 14-27 (10-th edition) 
 

What would be the height of the atmosphere if the air density (a) were uniform and 
(b) decreased linearly to zero with height? Assume that at sea level the air pressure is 1.0 
atm and the air density is 1.3 kg/m3. 
 
P0 = 1 atm = 1.01325 x 105 Pa, Pa = 1 N m2. 

3/3.1 mkgair   

 

 
 



 
 
where Mg is the weight of air; 
 
In equilibrium 
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Then we have 
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(a) In the case of 0)(  yair  
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When P(y) = 0, we have 
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(b) In the case of )1()( 0 h

y
yair   : h is a height to be determined. 
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When P(h) = 0, we have 
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(c) We assume that at any given height the density of air proportional to pressure; 
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______________________________________________________________________ 
((Note)) Here we assume that air is an ideal gas.  
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Then we have 
 

0
0)(

P

P
ggy

dy

dP    

 
or 
 

  dy
P

g
dP

P 0

01 
 

 
or 
 

)exp(
0

0
0 P

gy
PP


  

 
where 0 (= 1.1929 kg/m3) is the density of air at room temperature (P = P0 = 1 atm) 
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Fig. Red curve for the case (c) and the blue curve for the case (a). The straight line 

(blue) is a tangential line of the red curve at H = 0. 
 
4 Pascal’s principle 



((Pascals’ Principle)) 
Pascal's law or the principle of transmission of fluid-pressure (also Pascal's 

Principle) is a principle in fluid mechanics that states that pressure exerted anywhere in a 
confined incompressible fluid is transmitted equally in all directions throughout the fluid 
such that the pressure variations (initial differences) remain the same.  
 

Here we derive the Pascal’s principle by using three approaches.  
 
(a) Approach I: Approach from the work-energy theorem 
 

 
 
Work-energy theorem: 
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This equation is valid for the case when the effect of fornce due to the potential  
 
(b) Approach II: Approach from the Bernoulli’s equation 
 

 
 
 

According to the Bernoulli’s equation, we have 
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When 021  vv , we get 
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Then we have 
 

12 PP  .  (Pascal’s principle) 
 
(c) Approach III: Standard approach 

The approach is essentially the same as the above approaches. 
 



 
 
The pressure at the height denoted by red line is 
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When )( 21 hhg   is much smaller than P1 and P2, the above equation is approximated by 
 

21 PP    (Pascal’s principle) 
 
((Example)) 

The hydraulic lift at a car repair shop is filled with oil. The car rests on a 25-cm-
diameter 



piston. To lift the car, compressed air is used to push down on a 6.0-cm-diameter piston 
What does the pressure gauge read when a 1300 kg car is 2.0 m above the compressed air 
piston? 
 
((Solution)) 
 

900  kg/m3 for oil 

31 r  cm, 5.122 r  cm. 
m = 1300 kg. 

4
2 10274.1  mgF  N. 

2h  m 
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(b) 
 

gh =900 x 9.8 x 2=1.764 x 104 Pa 
 

2F is the weight of the car pressing down on the piston:  
 

4
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The piston areas are  
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The pressure P2 is 
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The pressure P1 is 
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The force required to hold the car at height 2.0 m. 
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11.02 h  m,  89.11 h  m 

 
Note that P1 is not always equal to P2 because of the gravitational contribution. 
 
(d)  A proper understanding of the Pascal’s principle 

Here we discussed the derivation of the Pascal’s principle using the three approaches. 
The approach I is independent of the gravitational potential (horizontal configuration). 
Thus the Pascal’s principle is correctly derived. However, the approaches II and III are 
dependent on the gravitational potential because of the vertical configuration. The 
Pascal’s principle can be derived when the gravitational pressure is negligibly small 
compared with the magnitudes of P1 and P2. 

I checked several standard textbooks of general physics. It seems to me that there is 
some misunderstanding of the Pascal’s Principle. In almost textbooks, the gravitational 
contribution for the vertical configuration is neglected. There is one exception. The 
approach III is discussed in Knight’s book. It is noted that the Pascal’s principle is valid 
only when the gravitational contribution is negligibly small compared with the pressure 
P1 and P2. When we use the Pascal’s principle for the vertical configuration, we must 
make sure that gh  should be much smaller than P1 and P2. 

In conclusion, the Bernoulli’s equation is based on the work-energy theorem. So the 
approach based on this equation leads to the most appropriate result. 
 
5 Buoyant force 
((Archimedes’s principle)) 

Any object completely or partially immersed in a fluid is buoyed up by a force equal 
to the weight of the displaced fluid. 
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The buoyant force Fb is defined by 
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where Ah is a part of volume under the surface. 
 
Then the buoyant force is given by 
 

gVF Wb   

 
where AhV   is the volume of the cylinder under the water. 
 

 



((Iceberg)) 
Because the density of pure ice is about ice = 920 kg/m³, and that of sea water about sea 
= 1025 kg/m³, typically only one-tenth of the volume of an iceberg is above water. The 
shape of the underwater portion can be difficult to judge by looking at the portion above 
the surface.  
 

 
 
The mass of the iceberg, M, is given by 
 

icetotVM  , 

 
where Vtot is the total volume of the iceberg.  The condition that the iceberg floats in the 
seawater  leads to 
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where Vuw is the volume of the iceberg under the sea water. Then we have 
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This means that 90 % of the volume of the iceberg is under the sea level. 
 
 
6 Examples 
6.1  
 
Problem 14-48***(SP-14) (10-th edition) 
 



Figure shows an iron ball suspended by thread of negligible mass from an upright 
cylinder that floats partially submerged in water. The cylinder has a height of 6.00 cm, a 
face area of 12.0 cm2 on the top and bottom, and a density of 0.30 g/cm3, and 2.00 cm of 
its height is above the water surface. What is the radius of the iron ball? 
 

 
 
((Solution)) 
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where 

Vc1 = 48 cm3 = a part of volume under water 
Vc0 = 72 cm3 = total volume of cylinder 
Vb = (4/3)r3 = a volume of Fe ball 
b = Fe = 7.86 g/cm3 = a density of Fe ball 
0 = density of cylinder = 0.30 g/cm3 
W = density of water = 1/0 g/cm3, 
T1 = tension 

 
From the above equations, we have 
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r = 0.972 cm. 

 
6.2 Density of the wooden sphere 

A wooden sphere has a diameter of 1.20 cm. It floats in water with 0.40 cm of its 
diameter above water. Determine the density of the wooden sphere. 
 

 
 
((Solution)) 
z1 = 0.2 cm. 2 R = 1.20 cm 
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6.3 Simple harmonics in fluid mechanics 
 

 
 
In equilibrium 
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where Gb is the buoyant force. 
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From the measurement of the period T, one can determine the value of density . 
 
7 Equation of continuity 

 
Consider a fluid moving through a pipe of nonuniform size (diameter). The particles 
move along streamlines in steady flow. The mass that crosses A1 in some time interval is 
the same as the mass that crosses A2 in the same time interval. 
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2211 vAvA   
 
The equation of continuity for fluids. 
 
The product of the area and the fluid speed at all points along a pipe is constant for an 
incompressible fluid. 
 
8 Bernoulli equation 
 
8.1 Derivation of the Bernoulli equation 
 



As a fluid moves through a region where its speed and/ or elevation above the Earth’s 
surface changes, the pressure in the fluid varies with these changes. The relation between 
fluid speed, pressure, and elevation was first derived by Daniel Bernoulli. 
 

 
 

 
 

This figure comes from Feynman Lecture on Physics. 
 
 

 
 
 
((Note)) We use the Work-energy theorem to derive the Bernoulli’s equation. 
 
The equation of continuity: 



 

2211 vAvA  . 
 
Applying conservation of energy in form of the work-kinetic energy theorem we find that 
the change in KE of the system equals the net work done on the system; 
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where UWc  . The work done by the forces (= WF) is 
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Note that the direction of P2 is anti-parallel to that of v2. The change of potential energy is 
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where 
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Putting these together, 
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and 
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Then we get 
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After dividing by Δt, ρ and A1v1 (=A2v2) as the fluid is incompressible: 
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This equation is called a Bernoulli’s equation. This equation is in fact nothing more than 
a statement of the conservation of energy. 
 
((Typical example resulting from Bernoulli’s equation)) 
 

 
 

The pressure is the lowest where the velocity is the highest. 
 
Note that if the velocity is equal to zero, the level is independent of the cross sectional 
area.  
 
8.2 Example 
 
(a) How airplane wings generate lift 
 



                              
 

1. Over the wing, the flow tube decreases in size due to the compression of 
steam lines. The higher speed lowers the pressure to p<patmos. 

2. The pressure is patmos beneath the wing 
3. The pressure difference above and below the wing causes lift. 

 

 
Fig. Air flow past a wing. At (a) the flow is the same on both surfaces, so that no lift 

results. The lift at (c) is greater than that at (b) because of the greater pressure 
difference between upper and lower surfaces (the pressure is least where the 
streamlines are closest together). At (d) turbulence reduces the available lift. 

 
 



(b) Bernoulli ball 
 
Bernoulli's principle tells us that air that is moving at high speed has lower 
pressure than still air. The air moves around the ball to create a pocket around 
the ball of low pressure air. When the ball moves to the side of the pocket, it 
will be pushed back in. And the upward force from the air stream keeps the ball 
aloft.  

 
 

Fig. Bernoilli ball 
 
(c) Blowing along upper surface of paper 
 

 



 
Bernoulli’s equation is quoted, which states that larger velocities imply lower 

pressure and thus a net upwards pressure force is generated. Bernoulli’s equation is often 
demonstrated by blowing over a piece of paper held between both hands as demonstrated 
in the above Fig. As air is blown along the upper surface of the sheet of paper it rises and, 
it is said, this is because the average velocity on the upper surface is greater (caused by 
blowing) than on the lower surface (where the air is more or less at rest). According to 
Bernoulli’s equation, this should mean that the pressure must be lower above the paper, 
causing lift (H. Babinsky, How do wings work, w.w.w.iop.org.journals/physed) 
 
(d) Flow along the cross section of a sail 
 

 
 
The velocity of wind is different between the front side and back side of the sail. Because 
of the Bernoulli’s equation, the pressure difference occurs, leading the moving of yacht. 
 
(e) 



 
 

You may notice that when passing a truck on the highway, your car tends to veer 
toward it. The high velocity of the air between the car and the truck creates a region of 
lower pressure, and the vehicles are pushed together by greater pressure on the outside. 
(above Fig.). 
 
(e) Shower curtain 

Shower curtains have a disagreeable habit of bulging into the shower stall when the 
shower is on. The high-velocity stream of water and air creates a region of lower pressure 
inside the shower, and standard atmospheric pressure on the other side. The pressure 
difference results in a net force inward pushing the curtain in. 
 
http://cnx.org/contents/0c8ac66c-a41b-4861-8fc6-
e9633182091f@6/Bernoulli%E2%80%99s_Equation 
 
(f) Funnel ball 



 
 
The velocity of moving air from the upper part is faster than that around the lower part.  
 
 
9 Application of the Bernoulli’s equation 
9.1 Example-1 
 
(a) We consider the case when the area of the water tank (A) is relatively large. So 

that the level of water remains unchanged with time t. 
 
Bernoulli’s equation 
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where H is the level of water. v0 is the velocity of water at the hole of the bottom of the 
tank. 
 
(b) Next we consider the case when the area of the water tank (A) is relatively small. 

So the height of water decreases with increasing time.  



 
 
Bernoulli’s equation 
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where x is the level of water, as a function of t. v0 is the velocity of water at the hole of 
the bottom of the tank. 
 
Equation of continuity 
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where  is the area of the hole at the bottom. Then we have 
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Fig.  The time dependence of the level of the water tank. x0 =1 and 
2/12   

 
9.2 Example-2 

An enclosed tank containing a liquid of density  has a hole in its side at a distance y1 
from the tank’s bottom. The hole is open to the atmosphere, and its diameter is much 
smaller than the diameter of the tank. The air above the liquid is maintained at a pressure 
P. 
 

 
 



If we assume that the tank is large in cross section compared to the hole (A2>>A1), 
then the fluid will be approximately at rest at the top, point 2. 

Applying Bernoulli’s equation to points 1 and 2, and noting that at the hole 
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Here we use P0 = 1.013 x 105 Pa,  = 1.0 x 103 kg/m3, g = 9.8 m/s2. 
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Fig. velocity v vs reduced pressure P/P0. The height h is changed as a 

parameter. Red (h = 0). 
 
 
9.3 Example-3 
 
Problem 14-83 (SP-14)  (10-th edition) 
 



Figure shows a siphon, which is a device for removing liquid from a container. Tube 
ABC must initially be filled, but once this has been done, liquid will flow through the 
tube until the liquid surface in the container is level with the tube opening at A. The 
liquid has density 1000 kg/m3 and negligible viscosity. The distances shown are h1 = 25 
cm, d = 12 cm, and h2 = 40 cm. (a) With what speed does the liquid emerge from the tube 
at C? (b) If the atmospheric pressure is 1.0 x 105 Pa, what is the pressure in the liquid at 
the topmost point B? (c) Theoretically, what is the greatest possible height h1 that a 
siphon can lift water? 
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Equation of continuity 
 

vC = vB  
 
When vC = 0 (critical condition), the pressure PB should be positive. 
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10 Appendix: The principle of Archimedes is valid for volumes with any shape 

We consider a special case for the buoyant force. We show that the Archimedes’s 
principle is also valid for these special cases. 2/ah  . 
 
 

 
 
The force at the bottom: 
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The force from the top part: 
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The buoyant force is 
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11. HW and SP 
 
11.1  
 
Problem 14-71** (HW-14)  (10-th edition) 
 

Figure shows a stream of water flowing through a hole at depth h = 10 cm in a tank 
holding water to height H = 40 cm. (a) At what distance x does the stream strike the 
floor? (b) At what depth should a second hole be made to give the same value of x? (c) At 
what depth should a hole be made to maximize x? 
 

 
 
((Solution)) 

 

 
h = 10 cm, H=40 cm 
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When y = 0,  
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Bernoulli’s equation 
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We assume that  and  are two roots of the quadratic equation. 
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11.2  
 
Problem 14-41** (SP-14)  (10-th edition) 
 

What fraction of the volume of an iceberg (density 917 kg/m3) would be visible of the 
iceberg floats (a) in the ocean (salt water, density 1024 kg/m3) and (b) in a river (fresh 
water, density 1000 kg/m3)? (When salt water freezes to form ice, the salt is excluded. So, 
an iceberg could provide fresh water to a community.) 
 
((Solution)) 
salt water= 1024 kg/m3 
iceberg= 917 kg 
pure water = 1000 kg 
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(a) Salt water 
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  1-f = 0.104 

 
(b) Pure water 
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 1-f = 0.083 

 
12. Applcation 
 
12.1  
 
Problem 14-62** (HW-14)  (10-th edition) 

A pitot tube (Fig.) is used to determine the airspeed of an airplane. It consists of an 
outer tube with a number of small holes B (four are shown) that allow air into the tube; 



that tube is connected to one arm of a U-tube. The other arm of the U-tube is connected 
to hole A at the front end of the device, which points in the direction the plane is headed. 
At A the air becomes stagnant so that vA = 0. At B, however, the speed of the air 
presumably equals the airspeed v of the plane. (a) Use Bernoulli’s equation to show that 
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where  is the density of the liquid in the U-tube and h is the difference in the liquid 
levels in that tube. (b) Suppose that the tube contains alcohol and the level difference h is 
26.0 cm. What is the plane’s speed relative to the air? The density of the air is 1.03 kg/m3 
and that of alcohol is 810 kg/m3. 
 

 
 
((Solution)) 
air = 1.03 kg/m3,  = 810 kg/m3,  h = 0.26 m. 
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12.2  
 
Problem 14-72 (SP-14)***  (10-th edition) 
 

A very simplified schematic of the rain drainage system for a home is shown in Fig. 
Rain falling on the slanted roof runs off into gutters around the roof edge; it then drains 



through downspouts (only one is shown) into a main drainage pipe M below the 
basement, which carries the water to an even larger pipe below the street. In Fig., a floor 
drain in the basement is also connected to drainage pipe M. Suppose the following apply: 

1. the downspouts have height h1 = 11 m., 
2. the floor drain has height h2 = 1.2 m 
3. pipe M has radius 3.0 cm, 
4. the house has side width w = 30 m and front length L = 60 m. 
5. all the water striking the roof goes through pipe M, 
6. the initial speed of the water in a downspout is negligible, 
7. the wind speed is negligible (the rain falls vertically). 

At what rainfall rate, in centimeters per hour, will water from pipe M reach the height of 
the floor drain and threaten to flood the basement? 
 

 



 
 

w = 30m,  L = 60 m, h1 = 11 m,  h2 = 1.2 m, 
A=r2,  r = 0.03m 
 
Bernoulli’s equation 
 

20

2
01 2

1

ghPP

vPPgh

C

CC








 

 
or 
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The equation of continuity 
 
Suppose that V is the rainfall rate 
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13. Link 
 
Blaise Pascal 
http://en.wikipedia.org/wiki/Blaise_Pascal 
 
Archimedes 
http://en.wikipedia.org/wiki/Archimedes 
 
Bernoulli’s equation 
http://en.wikipedia.org/wiki/Bernoilli_equation 
 
Daniel Bernoulli 
http://en.wikipedia.org/wiki/Daniel_Bernoulli 
 
Bernoulli ball 
http://www.youtube.com/watch?v=fgHvC55AKig 
 
WileyPlus 
http://edugen.wiley.com/edugen/shared/alerts/timeout.uni 
 
 


