
Lecture Note 
Chapter 15 
 
Harmonic Oscillation 
 
 
1 Simple harmonics 
1.1 Equation of motion 
 

 
 
 

 
 
We consider an equation of motion given by 
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We note that x can be rewritten as 
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where A, w and  are constants, independent of time. The quantity A is called the 
amplitude of the motion and is the maximum displacement of the mass. The time-
varying quantity (t + ) is called the phase of the motion and  is called the phase 
constant. The phase constant is determined by the initial conditions.  

The angular frequency  is a characteristic of the system, and does not depend on the 
initial conditions. The unit of angular frequency is rad/s.  

The period T of the motion is defined as the time required to complete-one oscillation. 
Therefore, the displacement x(t) must return to its initial value after one period  
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This is equivalent to  
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Using the relation 
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it is immediately clear that  
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The number of oscillations carried out per second is called the frequency of the 
oscillation. The symbol for frequency is f and its unit is the Hertz (Hz):  

1 Hz = 1 oscillation per second = 1 s-1  

The period T and the frequency f are related as follows  
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1.2 Energy conservation law 
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since v = 0 at x = A. 
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since x = xmax at v = 0. 
 
((Note)) 
The amplitude A can be estimated from the initial condition (x = x0, v = v0 at t = t0). 
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Now we consider 
 



)(
2

1 22 xAkK   

 

 
 
((Note)) Derivation of the equation of motion from the energy conservation law 
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Taking the derivative of this with respect to t, we have 
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2 Simple harmonics 
2.1 Configuration-1 
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The resultant spring constant k is 
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2.2 Configuration-2 
Simple harmonics 
 
Problem 15-24*** (SP-15)  (10-th edition) 
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Then we have an equation of motion for the mass m, 
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The resultant spring constant k is 
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The solution of this differential equation is given by 
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2.3 Configuration-3 
 

 
 
We now consider the case shown above. 
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The period T is given by 
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2.4 Mass hanging from the ceiling (advanced topics) 
 

 
Equation of motion 
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At equilibrium, 
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This indicates the simple harmonic oscillation with an angular frequency 
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The solution for x is 
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3. Two-body oscillations 
3.1 

We imagine the molecules to be represented by two particles of masses m1 and m2 
connected by a spring force constant k, as shown below. Here we examine the motion of 
this system. 
 

 
 
 
We apply the Newton’s second law to the system with two masses m1 and m2. 
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From the calculation of m2 x Eq(1) –m1 x Eq(2), we have 
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Here we introduce a new variable x defined by 
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and the reduced mass  defined as 
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Then we get  
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This indicates that two particles connected (with a spring constant k) can be replaced by a 
single particle (with a spring constant k) with a mass equal to the reduced mass of the 
system. 
 
3.2 Longitudinal oscillations of two coupled masses 
 
We find the modes and their frequencies for the coupled springs and masses sliding on a 
frictionless surface. At equilibrium the springs are relaxed. 
 
 

 
 
We set up equations of motion for mass m1 (= m) and m2 (= m). 
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First we find the solutions of 021  xx   
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From these equations, we have 
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For convenience, we introduce new variables y1 and y2 defined by 
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We assume that 
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which leads to 
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For the nontrivial solutions of y1 and y2, we have the condition 
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When m1 = m2 = m, we have two mode frequencies 
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((Physical meaning)) 
We start from the differential equations 
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These equations can be rewritten as 
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Finally we get 
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In conclusion, there are two modes, since there are two degrees of freedom. 
 
 
4 Simple pendulum 
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In the limit of →0,  
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In the large , we have a nonlinear differential equation. We can solve the problem 
numerically using Mathematica (see the Section 12). 
 
((Note)) A different derivation of the equation of motion for the simple pendulum is 
presented in Section 12. 
 
5 Physical Pendulum 
5.1 



 

In the real world pendulums are far from simple. In general, the mass of the 
pendulum is not concentrated in one point, but will be distributed. Figure shows a 
physical pendulum. The physical pendulum is suspended through point O. The effect of 
the force of gravity can be replaced by the effect of a single force, whose magnitude is m 
g, acting on the center of gravity of the pendulum (which is equal to the center of mass if 
the gravitational acceleration is constant). The resulting torque (with respect to O) is 
given by  
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where h is the distance between the rotation axis and the center of gravity. In the limit of 
small angles ( ≈ 0), this torque can be rewritten as 

 mgh  

The angular acceleration  of the pendulum is related to the torque  and the rotational 
inertia I  
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This is again the equation for harmonic motion with an angular frequency given by 
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Note that the simple pendulum is a special case of the physical pendulum: h = L and I = 
m L2. The period of the oscillation is then given by 
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5.2 Ring (hula hoop) 
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where R is the distance between the pivot point and the center of mass. I is the moment of 
inertia around the pivot point P, 
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In the limit of small angle , the motion undergoes a simple harmonic oscillation, 
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5.3 Bifilar pendulum 
 

 
For simplicity, the extended mass is described by a simple rod in this figure. We have 
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where  = 0 or  = 0. The equation of motion for the bifilar pendulum is described by 
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6 The torsion pendulum 

 



The operation of a torsion pendulum is associated with twisting a suspension wire. The 
motion described by the torsion pendulum is called angular simple harmonic motion. 
The restoring torque is given by  
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where  is a torque constant that depends on the properties of the suspension wire (its 
length, diameter and material). This equation is essentially a torsional equivalent to 
Hooke's law. For a given torque we can calculate the angular acceleration   
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where I is the moment of inertia of the disk (about a perpendicular axis through its centre). 
Comparing this equation with the relation between the linear acceleration and the linear 
displacement of an object, we conclude that 
 

I

 2  

 
The period of the torsion pendulum is given by 
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7 Damped oscillation 

So far we have discussed systems in which the force is proportional to the 
displacement, but pointed in an opposite direction. In these cases, the motion of the 
system can be described by simple harmonic motion. However, if we include the friction 
force, the motion will not be simple harmonic anymore. The system will still oscillate, 
but its amplitude will slowly decrease over time. 
 

We now consider the simple harmonics with a damping constant b, 
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The differential equation can be written as 
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The solution of this differential equation is classed into three types, 
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The solution for the overdamping is given by 
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From the initial condition, we have 
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where  is the phase factor and xmax is the amplitude. The period T1 is 
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second-order differential equation for a simple harmonics with damping
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t, 0, 8 , PlotStyle  TableHue0.051 i, Thick, i, 0, 20,
AxesLabel  "time", "amplitude",
PlotRange  0, 8 , 1.5, 1.5, Background  LightGray  
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PlotEvaluateTablex3t, , , 0.001, 1, 0.05,
t, 0, 3 , PlotStyle  TableHue0.051 i, Thick, i, 0, 20,
AxesLabel  "time", "amplitude",
PlotRange  0, 3 , 1.5, 1.5, Background  LightGray
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PlotEvaluateTablex3t, , , 1.1, 3, 0.1, t, 0, 3 ,
PlotStyle  TableHue0.051 i, Thick, i, 0, 20,
AxesLabel  "time", "amplitude",
PlotRange  0, 3 , 0, 1.5, Background  LightGray
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PlotEvaluateTablev3t, , , 0.001, 1, 0.1, t, 0, 4 ,
PlotStyle  TableHue0.051 i, Thick, i, 0, 10,
AxesLabel  "time", "velocity", Prolog  AbsoluteThickness2,
Background  LightGray  
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ParametricPlot
EvaluateTablex3t, , v3t, , , 0.001, 1, 0.1,
t, 0, 4 , PlotStyle  TableHue0.051 i, Thick, i, 0, 10,
AxesLabel  "amplitude", "velocity", Background  Gray,

AspectRatio  1  
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ParametricPlot
Evaluate
Tablex2t, v2t .   1.1, 0  1, x0  Cos, v0  Sin,
, 0, 2 ,   10, t, 0, 4 ,

PlotStyle  TableHue0.051 i, Thick, i, 0, 10,
AxesLabel  "t", "v", Background  Gray, PlotRange  All
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ParametricPlot
Evaluate
Tablex2t, v2t .   1.1, 0  1, x0  Cos, v0  Sin,
, 0, 2 ,   10, t, 0, 4 ,

PlotStyle  TableHue0.051 i, Thickness0.01, i, 0, 10,
AxesLabel  "x", "v", Prolog  AbsoluteThickness2,
Background  Gray, PlotRange  All
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ParametricPlot
Evaluate
Tablex2t, v2t .   0.5, 0  1, x0  Cos, v0  Sin,
, 0, 2 ,   10, t, 0, 4 ,

PlotStyle  TableHue0.051 i, Thick, i, 0, 10,
AxesLabel  "x", "v", Background  Gray, PlotRange  All
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ParametricPlot
Evaluate
Tablex2t, v2t .   2, 0  1, x0  Cos, v0  Sin,
, 0, 2 ,   10, t, 0, 4 ,

PlotStyle  TableHue0.051 i, Thick, i, 0, 10,
AxesLabel  "x", "v", Background  Gray, PlotRange  All
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Total energy which cahnges with time

E1 
1

2
m v3t, 2 

1

2
k x3t, 2 . k  1, m  1;

PlotEvaluateTableE1 . rule1, , 0.01, 1.5, 0.1,
t, 0, 4 , PlotStyle  TableHue0.08 i, Thick, i, 0, 10,
AxesLabel  "t", "E", Background  LightGray, PlotRange  All
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Overdamping, phase space

ratiot_ :
v2t
x2t .  2  02   p   TrigToExp  FullSimplify

ratiot
p v0 Coshp t  v0   x0 02 Sinhp t
p x0 Coshp t  v0  x0  Sinhp t

A1  Limitratiot, t  , Assumptions  p  0 . p  2  02

v0   x0 02  v0 2  02

v0  x0   2  02 

Solvea  A1 . v0  a x0, a
a    2  02 , a    2  02 

 
 
 
8 Forced oscillation (steady state solution) 
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We assume that x(t) can be given by 
 

]Re[)( tiAetx   
 
Re denotes a real part. A is in general a complex number. i (= 1 ) is a pure imaginary 
 
((Note)) 
Euler’s equation 
 

 sincos iei   
 
R.P. Feynman: This is the most remarkable formula. This is our jewel (22-10 volume-1, 
Feynman’s lecture on physics.)  
 
 
Then we have 
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Then x is obtained as 
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Now we calculate the value of Y as a function of x when a parameter  is changed. 
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((Mathematica)) 
 



Y 
1

x2  12  4 2 x2

1

1  x22  4 x2 2

PlotEvaluateTableY, , 0, 1, 0.02, x, 0.5, 1.5,
PlotRange  0.5, 1.5, 0, 20,
PlotStyle  TableHue0.1 i, Thick, i, 0, 10,
Background  LightGray, AxesLabel  " 
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Y vs 
0
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 where  (= 
0


) is changed as a parameter.  = 0 – 1.0. 

 



 
 
((Note)) Simple explanation for the resonance 
 

We consider the special case (b = 0, or 0 ). 
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We assume that the solution of x(t) is given by 
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Then we have 
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We note that  
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becomes divergent as  approaches 0. 
 
9. Energy consideration in the forced oscillation 

We start from 
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Multiplying )(tx on both sides, we have 
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This equation can be rewritten as 
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Here we introduce the instantaneous energy (t) which is defined by 
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We take an average of the above equation over a one period T, 
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We now calculate the second and third terms using our steady-state solution 
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where ' and " are the real part and imaginary part of A. 
 
The calculation of the second term: 
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The calculation of the third term: 
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Then it is found that the second term is equal to the third term. These terms are 
proportional to " (imaginary part of A). The energy absorbed by the system from the 
external force is dissipated through the resistive damping. Then we have 
 

)0()(  tTt  . 



 
The sum of the kinetic energy and the potential energy is a periodic function of t with a 
period of T. 
 
10 Example 
10.1 Example-1: 
 
Problem 15-26***(SP-15)  (10-th edition) 
 
 

In Fig., two blocks (m = 1.8 kg and M = 10 kg) and a spring (k = 200 N/m) are 
arranged on a horizontal, frictionless surface. The coefficient of static friction between 
the two blocks is 0.40. What amplitude of simple harmonic motion of the spring–blocks 
system puts the smaller block on the verge of slipping over the larger block? 

 
FIGURE 15-34 Problem 24. 

 
m = 1.8 kg, M = 10 kg, k = 200 N/m 

 
For the small mass, 
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For the large mass, 
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From Eqs.(1) and (2), 
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The solution of the differential equation is 
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10.2 Example-2 
 
Problem 15-25*** (10-th edition) 
 
In Fig., a block weighing 14.0 N, which can slide without friction on an incline at angle  
= 40°, is connected to the top of the incline by a massless spring of un-stretched length 
0.450 m and spring constant 120 N/m. (a) How far from the top of the incline is the 



block’s equilibrium point? (b) If the block is pulled slightly down the incline and released, 
what is the period of the resulting oscillations? 
 

 
 
mg = 14.0 N,   = 40°, x0 = 0.450 m,  k = 120 N/m 
 

 
 
(a) 
 

)(

sin

01 xxkf

fmg




 

 
or 
 

m
k

mg
xx 525.0sin01    
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The solution of this equation is 
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The period T is sT 686.0
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10.3 Example-3 Simple harmonics in fluid mechanics 
 

 
 
In equilibrium 
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Simple harmonics 



 
MgAgyhMgGyM b  )( 0  

 
where Gb is the buoyant force. 
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10.4 Simple harmonics in fluid mechanics 

V: volume of liquid with the density 
m = V: mass of liquid 
L = V/A: total length of the liquid column 
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((Example)) Oscillation of liquid in a U-tube 

The mass m (= 9 kg) of mercury is poured into a glass U-tube as shown in Fig. The 
tube’s inner diameter is 1.2 cm and the mercury oscillates freely up and down about its 
position of equilibrium (x = 0). Compute (a) the effective spring constant k for the 
oscillation, and (b) the period of oscillation. The density of mercury is  = 13.6 x 103 
kg/m3. Ignore frictional and surface tension effects.  

 
 
((Solution)) 
r = 0.6 cm.  = 13.6 x 103 kg/m3. 
m = 9.0 kg. 
 
When the mercury is displace x from its equilibrium position, the restoring force is the 
weight of the unbalanced column of mercury with height 2x. The restoring force F is 
described by 
 

gxAF )2( , 
 
where A is the area of U-tube (A = r2). Then the mercury undergoes a simple harmonic 
oscillation, 
 

kxgxAFxm  )2( , 
 
where 
 

m

gr

m

Ag
k

 222
  = 30 N/m. 

 
This equation can be rewritten as 
 

xx 2  
 



where w is the angular frequency, 
 

m

k
 . 

 
The period of the oscillation, T, is 
 

k

m
T 2  = 3.4 s. 

 
10.5 Example-4 (Serway 12-75) 

Imagine that a hole is drilled through the center of the Earth to the other side. An 
object of mass m at a distance r from the center of the Earth is pulled toward the center of 
the Earth only by the mass within the sphere of radius r (the reddish region in Fig.). 
(a) Write Newton’s second law of gravitation for an object at the distance r from the 

center of the Earth, and show that the force on it is of Hooke’s law form krF  , 
where the effective force constant is Gmk )3/4( . Here r is the density of the 
Earth assumed uniform, and G is the gravitational constant. 

(b) Show that a sack of mail dropped into the hole will execute simple harmonic 
motion if it moves without friction.  

(c) When will it arrive at the other side of the Earth. 
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The force is directed toward the center. 
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The equation of motion for the particle on the tunnel along the x-axis. 
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or 
 

xx 2   (Simple harmonics) 
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((Note)) Period of satellite 
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10.6 Example-5  
 
Problem 15-41 (SP-15)  (10-th edition) 
 
 

In Fig., the pendulum consists of a uniform disk with radius r = 10.0 cm and mass 
500 g attached to a uniform rod with length L = 500 mm and mass 270 g. (a) Calculate 
the rotational inertia of the pendulum about the pivot point. (b) What is the distance 
between the pivot and the center of mass of the pendulum? (c) Calculate the period of 
oscillation. 
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where M is the mass of disk and m is the mass of the rod 
 
The equation of motion 
 





g
L

mrLM

g
L

mrLMI

]
2

)([

sin]
2

)([





 

 
10.7 Example-6  
 
Problem 15-51** (SP-15)  (10-th edition) 
 

In Fig. a stick of length L = 1.85 m oscillates as a physical pendulum. (a) What value 
of distance x between the stick’s center of mass and its pivot point O gives the least 
period? (b) What is the least period? 
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or 
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mgx   (simple harmonics) 

 
where  is the angle between the vertical axis and the thin rod, and  is defined by 
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10.8 Example-7  
 
Problem 15-53** (HW-15)  (10-th edition) 
 

In the overhead view of Fig., a long uniform rod of mass 0.600 kg is free to rotate in a 
horizontal plane about a vertical axis through its center. A spring with force constant k = 
1850 N/m is connected horizontally between one end of the rod and a fixed wall. When 
the rod is in equilibrium, it is parallel to the wall. What is the period of the small 
oscillations that result when the rod is rotated slightly and released? 
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10.9 Example-8 
 



 
 
Equation of motion 
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or 
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where 
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The solution of the differential equation is given by 
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with 
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10.10  
Problem 15-52** (SP-15)  (10-th edition) 
 

The 3.00 kg cube in Fig. has edge lengths d = 6.00 cm and is mounted on an axel 
through its center. A spring (k = 1200 N/m) connects the cube’s upper corner to a rigid 
wall. Initially the spring is at its rest length. If the cube is rotated 3° and released, what is 
the period of the resulting simple harmonic oscillation? 
 

 
 
((Solution)) 
k = 1200 N/m 
M = 3 kg 
 
The moment of inertia is 
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around the axis through its center for the cube with the side d. 
 
The equation of motion: 
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where 
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  = 34.641 rad/s 

 
The period T is given by 
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The initial condition: (0) = 3° and 0)0(   
 
Using this condition, we get the time dependence of  as 
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12. Advanced problems 
 
12.1 Serway 15-73 ((numerical calculation)) 

Consider a bob on a light stiff rod, forming a simple pendulum of length L = 1.20 m. 
It is displaced from the vertical by an angle max and then released. Predict the subsequent 
angular positions if max is small or if it is large. Proceed as follows: Set up and carry out 
a numerical method to integrate the equation of motion for the simple pendulum; 
 

)(sin
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t
L
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dt

td 
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.
 

 



Take the initial conditions to be  = max and d/dt  = 0 at t = 0. On one trial, choose max 
= 5.00 , and on another trial take max = 100 . In each case, find the position (t) as a 
function of time t. Using the same values of max, compare your results for  with those 
obtained from (t) = max cos(t). How does the period for large values of max compares 
with that for the small value of max? 
 
((Solution)) We use the Mathematica for the solution. 
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Fig.1 Red: (t)/max for max = 100°: Green: cos(0 t), where 
L

g
0 2.8577 rad/s. 
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Fig.2 Red: (t)/max for max = 100°. Blue: (t)/max for max = 5.00°:, where 


L

g
0 2.8577 rad/s. 

 
12.2 Serway 15-56 



A solid sphere (radius = R) rolls without slipping in a cylindrical trough (radius = 5 
R) as shown in Fig. Show that, for a small displacements from equilibrium perpendicular 
to the length of the trough, the sphere executes simple harmonics with a period. 
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((Solution)) 

 
 

Fig. OO1 = 4R, O1H = R. s = R = 4R . 
 
Kinetic energy K; 
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I is the moment of inertia for the sphere with radius R, 2

5
2 mRI  .  is the angular 

velocity,  = d/dt. From the rollinc of the ball without slipping, we have 
 

 RRs  4 , 
 
or 
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Then K can be rewritten as 
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The potential energy U is given by 
 

)cos45( RRmgU  , 
 
where the reference point is at the bottom of the cylindrical trough. Since the total energy 
E is independent of t, we have 
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This is a differential equation for the simple harmonics, when  sin . 
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The period T is 
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13. Exact measurement of the period for the simple pendulum with small 

maximum angle 
 
"The history of the physics of the pendulum stretches back to the early moments of 
modern science itself. We might begin with the story, perhaps apocryphal, of Galileo’s 
observation of the swinging chandeliers in the cathedral at Pisa. By using his own heart 



rate as a clock, Galileo presumably made the quantitative observation that, for a given 
pendulum, the time or period of a swing was independent of the amplitude of the 
pendulum’s displacement. Like many other seminal observations in science, this one was 
only an approximation of reality. Yet it had the main ingredients of the scientific 
enterprise; observation, analysis, and conclusion. Galileo was one of the first of the 
modern scientists, and the pendulum was among the first objects of scientific enquiry." 
(G.L. Baker and J.A. Blackburn, Oxford University Press, 2005). 
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Fig. Simple pendulum with a point mass m. max is the maximum of the angle .  
 
 

We consider the motion of the simple pendulum. The kinetic energy is given by 
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The potential energy: 
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The energy conservation 
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We now start with 
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We note that 
 
(i) = 0  for  = max  
(ii) = 0  for  =  
 
So we have 
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From this, we get 
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Using a formula, 
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we have 
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Then the period T is given by 
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Here we put 
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Then we have 
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Note that K() is the complete elliptic integral of the first kind and is defined by 
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In the Mathematica, this function corresponds to EllipticK[]. When 0k , we have 
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The series expansion of T around k = 0 is given by 
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We make a plot of the deviation (T - T0)/T0 (denoted by %) as a function of max, where 
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It is clear that the deviation starts to occur when max is larger than max 2°.  
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Fig. The deviation T/T0 x 100 (%) as a function of the maximum angle max . The 

deviation is defined by that 000 /)(/ TTTTT  . 

 
We note that the period is independent of max only for a few degrees. The period 

becomes dependent of max  as max  increases. The deviation is 0.19 % for max  = 10° and 

0.77% for max  = 20°.  So if one want to measure the exact period (T0), one needs to use 

the small value of max  below a few degrees. 

 
________________________________________________________________________ 
Table  The value of the deviation 0/TT  x 100 % for typical values of max  where 

0TTT   

 
 

max  (T/T0 - 1) x 100 % 

 
 
_______________________________________________________________________ 
14. Simple pendulum in an accelerated reference frame 

We consider a simple pendulum in an accelerated frame using the two examples. 
These examples come from (P.T. Tipler and G. Mosca, Physics for Scientists and 
Engineers, 6-th edition W.H. Freeman and Company, 2008) Chapter 14. 
 
((Example-1)) A simple pendulum suspended in the moving cart (with 

constant acceleration) 
A simple pendulum of length L suspended from the ceiling of a cart (C) that has 

acceleration CGa . Find the period of oscillation for small oscillations of this pendulum. 

 



 
 
We start with an equation of motion given by 
 

BGmm agT   

 
where T is the tension and m is the mass of bob of the simple pendulum. The acceleration 
of the bob relative to the ramp is equal to the acceleration of the bob(B) relative to the 
cart plus the acceleration of the cart (C) relative to the ground (G), 
 

CGBCBG aaa  . 

 
Then we get 
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or 
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We define effg as 
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Then we have 
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Fig. CGeff agg  . 22
CGeff agg  . QOP . 

 
 
The magnitude of geff is obtained as 
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where 
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An equation for the motion of the bob draw the free-body diagram is given by 
 

 sineffmgml   

 
where l is the length of the string. This can be written as 
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where 
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Then the period T is obtained as 
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with 
 

22
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((Example-2))  

Simple pendulum on the moving cart (with constant acceleration) on the ramp 
 

  
 
A simple pendulum of length L is attached to a massive cart that slides without friction 
down a plane inclined at angle    with the horizontal, as shown in Figure. Find the 
period of oscillation for small oscillations of this pendulum 
(P.T. Tipler and G. Mosca, Physics for Scientists and Engineers, 6-th edition W.H. 
Freeman and Company, 2008) Problem 14-65 p.491 
 

The cart accelerates down the ramp with a constant acceleration of sing . This 

happens because the cart is much more massive than the bob, so the motion of the cart is 
unaffected by the motion of the bob oscillating back and forth. The path of the bob is 
quite complex in the reference frame of the ramp, but in the reference frame moving with 
the cart the path of the bob is much simpler—in this frame the bob moves back and forth 
along a circular arc. To solve this problem we first apply Newton’s second law (to the 



bob) in the inertial reference frame of the ramp. Then we transform to the reference frame 
moving with the cart in order to exploit the simplicity of the motion in that frame. 

T

mgeff

 
 

Apply Newton’s 2nd law to the bob, labeling the acceleration of the bob (B) relative to 

the ramp (R), BRa  

 
 

BRmm agT   

 



The acceleration of the bob relative to the ramp is equal to the acceleration of the bob 
relative to the cart plus the acceleration of the cart relative to the ramp, 
 

CRBCBR aaa   

 
Then we get 
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or 
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We define effg as 

 

cReffg ag  

 
Then we have 
 

BCeff mm agT  . 

 
The magnitude of geff is obtained as 
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from the geometry of the figure below.  
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Fig. CReff agg  . singPQ CR  a . cosggOQ eff  .  90OQP . 

 

Suppose that 0BCa  

 

effmgT   

 
An equation for the motion of the bob draw the free-body diagram is given by 
 

 sineffmgml  , 

 
where l is the length of the string. This can be written as 
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where 
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Then the period T is obtained as 
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When  = 0, T is equal to the conventional value of T, 
 

g

l
T 2 . 

 
15 Link 
 
Tacoma Narrows Bridge collapse (forced oscillation) 
http://www.youtube.com/watch?v=j-zczJXSxnw 
 
Simple harmonics motion Wikipedia 
http://en.wikipedia.org/wiki/Simple_harmonic_motion 
 
Simple pendulum: 
Physics of simple pendulum, a case study of nonlinear dynamics 
http://physics.binghamton.edu/Sei_Suzuki/suzuki.html 
 
Lecture Note (University of Rochester) 
http://teacher.pas.rochester.edu/phy121/LectureNotes/Contents.html 
 
 
Appendix Nonlinear oscillation (Challenging topics) 
 
A.1 Formulation 
 



 
 

We consider the motion of mass m hanging from a ceiling with a string. The mass of 
the string is neglected. We set up an equation of motion, 
 

 sinmglI   (1) 
 
where I is the moment of inertia and is given by 
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Equation (1) can be rewritten as 
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For small , 
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The solution of this equation is given by the nonlinear terms 
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where 321    and  is a phase factor;  
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In the limit of  →0, 
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corresponding to a simple harmonics, 
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A.2 Energy conservation 

The multiplication of on both sides and integration with respect to t lead to 
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where the first term is the kinetic energy and the second term is a potential energy 
defined by 
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For small , U can be approximated by 
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Here we use an initial condition 
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Then the total energy E is expressed by 
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In other words, E increases as v0 increases and it also increases as 0. increases.  
 
A.3 Phase space of  vs v = d/dt 

From 
v    sinv  

 
we have 
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This is a differential equation (separation variable type). So we can solve easily as 
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From the energy conservation law, 
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(a) ContourPlot of  
 

Ev  )cos1(
2

1 2   

 
in the  vs v plane, where E = 2 and the parameter  is varied as a parameter. The 
character of the orbit inside and outside of the curve are rather different. Such a family of 
curve is called sepratrices. 
 

 
 
(b) ContourPlot of 
 



Ev  )cos1(
2

1 2   

 
in the  vs v plane, where  = 1 and the parameter E is changed as a parameter. 

 
Fig, Phase space (v vs ) for  = 1. E = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5. E = 2 = 2 is 

the highest energy of the potential. 
 
B. Numerical calculation using Mathematica for simple pendulum 
B.1 Formulation 

For convenience, the differential equation is separated into two parts 
 

v    sinv  
 
1. First we solve this differential equation using numerical method (Mathematica, 

NDSolve) 
 
2. We analyze the Fourier component by using fast Fourier transform (FFT) 

(Mathematica , Fourier). 
 

a. We choose the N (= 2n) data, typically the data between 0 and T (= tmax). 
b. The minimum time division is NT / , which corresponds to the maximum 

wmax = 
 

N
T

 2
max   

 



c. The Fourier spectrum is plotted as a function of the channel number scaled by 
(2p)/T. 

 
For simplicity, we consider the case of 0 = 0. Then we have 
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When v0<2  (orE<2, the value of  is limited between – and . When 

v0>2  (orE>2, the value of  is unlimited. 
 
B.2 Time dependence ( vs t) 

We show the time dependence of  as a function of t with v0 being changed as a 
parameter. Here we choose.  = 1 
 
(a) v0 = 0.1, 0.2, 0.3, 0.4, 0.5 
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(b) v0 = 1.4, 1.5, 1.6 
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(c) v0 = 1.91, 1.92, 1.93 
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(d) v0 = 1.982, 1.984, 1.986, 1.988, 1.990 
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(e) v0 = 1.9992, 1.9993, 1.9994, 1.9995, 1.9996, 1.9997 
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(f) v0 = 1.999992, 1.999993, 1.999994, 1.999995, 1.999996, 1.999997, 1.999998, 

1.999999 



As v0 approaches 2.0, the shape of  vs t curve becomes square-like. This means that 
the effect of the nonlinearity is enhanced. 
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(g) v0 = 2 

In this case, the total energy E is equal to the peak height of the potential energy. 
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(h) v0 = 2.00001, 2.00002, 2.00003, 2.00004, 2.0005, 2.0006, 2.0007, 2.00008, 

2.00009, 2.0001 
For v0>2, the value of  increases with increasing t. In other words, the pendulum 

rotates around the rotational axis. 
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(i) v0 =  2.02, 2.03, 2.04, 2.05, 2.07. 2.08, 
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B.3 Phase space (v vs ) 

We make a plot of the phase space for  = 1, when v0 is changed as a parameter. 
 
(a) v0 = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 
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(b) v0 = 1.6, 1.7, 1.8, 1.9 
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(c) v0 = 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97 
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(d) v0 = 1.980, 1,981, 1.982, 1.983, 1.984, 1.985, 1.986, 1.987, 1.988, 1.989, 1.990. 
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(e) v0 = 2.0 
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(f) v0 = 2.01 
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B.4 Fourier analysis using Fast Fourier transform (FFT) 

The time dependence of q can be analyzed using the FFT analysis. The Fourier 
spectrum is the square of th absolute amplitude as a function of angular frequency . In 
the small limit of vo = 0,  
 

 0 . 

 
In the present case, 0 = 1 since  = 1. 

As vo approaches 2  , the time dependence of  changes from sinusoidal wave to a 
square wave, indicating the enhancement of nonlinearity in the system. There appear 3, 
5, 7, .. components. The frequency of the fundamental mode rapidly decreases. 
 
 = 1. 
 
(a) v0 = 0.5 
 (≈ 1) component is mainly observed. 
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Fig. Fourier spectrum obtained from the FFT analysis of the  vs t. The x axis is the 

angular frequency w and the y axis is the squares of the absolute value of complex 
amplitude. The fundamental harmonic is observed at  = 1. 

 
(b) v0 =1.6 
 and 3 component are mainly observed. 
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(c) v0 = 1.9 
, 3, and 5 component are mainly observed. 
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(d) v0 = 1.981 
, 3, 5, and 7 component are mainly observed. 
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(e) v0 = 1.9962 
, 3, 5, 7, and 9 component are mainly observed. 
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(f) v0 = 1.9991 
, 3, 5, 7, 9, 11, and 13 component are mainly observed. 
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(g) v0 = 1.999995 
, 3, 5, 7, 9, 11, 13, 15, and 17 component are mainly observed. 
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(h) v0 = 1.9999985 
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(i) v0 = 1.9999999 
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The Fourier spectrum drastically changes at v0 = 2. The transition of the behavior occurs 
from oscillatory to non-oscillatory. 
 
(j) v0 = 2.001 
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