Lecture Note
Chapter 15

Harmonic Oscillation

1 Simple harmonics
1.1  Equation of motion

We consider an equation of motion given by

2
md—;(: F = —kx
dt
d?x .
a -
where
k
w=,—



X = A cos(at) + B, sin(wt)

% =—-Awsin(at) + B,wcos(at)
dZX 2 2 :
i —Aw’ cos(at) — B sin(awt)

=—"X
We note that x can be rewritten as
X = A cos(at) + B, sin(at) = Acos(at + @)
where A, w and ¢ are constants, independent of time. The quantity A is called the
amplitude of the motion and is the maximum displacement of the mass. The time-
varying quantity (ot + ¢) is called the phase of the motion and ¢ is called the phase

constant. The phase constant is determined by the initial conditions.

The angular frequency o is a characteristic of the system, and does not depend on the
initial conditions. The unit of angular frequency is rad/s.

The period T of the motion is defined as the time required to complete-one oscillation.
Therefore, the displacement X(t) must return to its initial value after one period

X(t)=x(t+T)
This is equivalent to

Acos(at + @) = Acos(at + oT + @)
Using the relation

cos(a) =cos(a +2r)
it is immediately clear that

ol =27

The number of oscillations carried out per second is called the frequency of the
oscillation. The symbol for frequency is f and its unit is the Hertz (Hz):

1 Hz = 1 oscillation per second = 1 s™!

The period T and the frequency f are related as follows



1.2 Energy conservation law

dx d?*x dx
m———=—kx—
dt dt dt

or
d 1 (dx). d. 1
Ciim & = ke
ato (dtj] at 2
or
2
i[l (%j lk ’1=0
dt 2 | dt
or

E=K+U= %mvz + %kx2 = %kA2 (energy-conservation law)

since V=0 at x=A.

or

E=K+U= %mv2 + %kx2 = %mvmax2 (energy conservation law)

since X = Xmax at v = 0.

((Note))
The amplitude A can be estimated from the initial condition (X = Xo, V = Vo at t = to).

Now we consider
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((Note)) Derivation of the equation of motion from the energy conservation law
E = Lmx’ 1 %kx2

Taking the derivative of this with respect to t, we have

%—E:O: MXX + kxX = X(mX + kx) =0
mX+kx=0
2 Simple harmonics

2.1 Configuration-1




kq, L
1.4 ka, Ly

f
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kq, L kg, L
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fi=k(x-L)
f,=k,(L-x-L,)
mX=f,—f,
or
mX=k,(L-x-L,)-k(xX-L,)
=—(k, +k,)x+kL, +k,L-k,L,
or

:_(k1+k2)x+lel+k2L—k2L2
m m

The resultant spring constant K is
k =Kk, +k,

2.2 Configuration-2
Simple harmonics

Problem 15-24%%* (SP-15) (10-th edition)
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f1 = k1(X1 - L1)
f1 = kz(xz —X - Lz)
mX, = —f|

or

(kl + kz)xl - kzxz = k1L1 - kz'—z
X = kzxz + k1|—1 — ksz
Yok +k, k, +k,

Then we have an equation of motion for the mass m,
mX, = -k (x, — L)
— _kl( kzxz + lel _k2L2)+ lel
k, +k, k, +k,
- _ klkzxz _ kl(lel _kzl—z) + lel
k, +k, k, +k,
kik,

=— X, —L —L
kl+k2(2 1~ L)

The resultant spring constant K is

k1 k2
k, +k,

k =

The solution of this differential equation is given by
X, =L, +L, + Acos(at + @)

where



k +k, |1
o= ||—=|—
k,+k, /m

2.3 Configuration-3

We now consider the case shown above.

mX=—f —f,
f =k, (x—L)
f,=k,(x-L)
or
I GRd.S) R S P
m
where
. k, +k,
m
The period T is given by
T=2%_9r | M



2.4  Mass hanging from the ceiling (advanced topics)

Equation of motion

mX=f +f,—f,—mg
f,=1f,=k(2a—x-a)=k(a—-x)
f,=k(x—a)

or

mX = 2k(a—Xx) —k(x—a)—mg = -3k(x—a) —mg
At equilibrium,

-3k(x,—a)-mg =0

m
x0=a——g

3k



X = —%(x -X,)
m

This indicates the simple harmonic oscillation with an angular frequency

The solution for X is
X =X, + Acos(at + @)

3. Two-body oscillations
3.1

We imagine the molecules to be represented by two particles of masses m; and mz
connected by a spring force constant K, as shown below. Here we examine the motion of
this system.

mX = f (1)
m,X, =—f ()
f=k(x,—x —L)

From the calculation of m2 x Eq(1) —mi x Eq(2), we have
mm, (X, —X,) = k(m1 +M,)(X, —% — L)

Here we introduce a new variable X defined by



X=X —-X,—L

and the reduced mass u defined as

mlm2
H=———""
m, +m,
Then we get
X = —hx =—w’X
7
where
k
0=_|—
7

This indicates that two particles connected (with a spring constant K) can be replaced by a
single particle (with a spring constant K) with a mass equal to the reduced mass of the
system.

3.2  Longitudinal oscillations of two coupled masses

We find the modes and their frequencies for the coupled springs and masses sliding on a
frictionless surface. At equilibrium the springs are relaxed.

k1, a
k1, a
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We set up equations of motion for mass m; (= m) and mz (= m).



mX, = fz - fl

mzxz = f3 - fz

f1 = kl(X1 —-a)

fz = kz(xz =X —-a)
f, =k (Ba-x,)

or

mlxl = kz(xz —X - a)— k1(x1 -a)= kzxz _(kl + kz)x1 + (kl - kz)a
m,X, =k (3a—X,)—k,(x, —x, —a) =—(k, +k,)X, + k,x, + 3k, +k,)a

First we find the solutions of ¥, =X, =0
kzxzo —(k, + kZ)XIO +(k; —k,)a=0
—(k, + k)%, +k,x + 3k +k,)a=0
From these equations, we have

XO _ a(kl +3k2)
bk +2k,
0 a(3k1 +5k2)
X, =———1——22
k, + 2k,

For convenience, we introduce new variables Y1 and Y2 defined by

Y =X — Xlo
Y, =X, — Xzo
Then
mlyl = kzyz _(kl + kz)yl
mzYz = _(kl + kz)yz + kzyl

We assume that

Y, = -0’ Yi

y, = ~a’ Y,

which leads to



- mla)zyl = kzyz _(kl + kz)yl
- m2w2y2 =—(k, +k,))y, +Kk,y,

or

[ma” —(k1+k,)]y, +k,y, =0
K.Y, +[m2a)2 —(k +k;)]y, =0

For the nontrivial solutions of y1 and y2, we have the condition

me® — (K, +k,) K,

det = = 0
k, m2w2 —(k; +k;)

When m; = m2 = m, we have two mode frequencies

2 kl
W =—
m
2 kl Sl 2k2
: m
((Physical meaning))

We start from the differential equations

my, = kzyz _(kl + kz)Y1
myz = _(kl + kz)yz + kzyl

These equations can be rewritten as

2

d k
F(yl + yz) = _Hl(yl + yz) = _a)lz(y1 + yz)

d? (k +2ky)

F(yl_yz): m (yl_yz):_a)zz(yl_yz)

or

Y, +Y,=Acos(ot +4)
Yi—= Y, = Az cos(a)zt + ¢2)

Finally we get



Yy, = %cos(a)lt +¢)+ %cos(a)zt +d,)
A A,

y, = 7cos(a)1t +4)— 7005(%t +0,)

In conclusion, there are two modes, since there are two degrees of freedom.

4 Simple pendulum
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or

2
c(thf’ = —%siné’ =@, siné
In the limit of 6—0,
d*e 2
e =~ —m, 0
or

0 = A cos(a,t + @)

In the large 6, we have a nonlinear differential equation. We can solve the problem
numerically using Mathematica (see the Section 12).

((Note)) A different derivation of the equation of motion for the simple pendulum is
presented in Section 12.

5 Physical Pendulum
5.1



Armis lengt

Fg. sin @

In the real world pendulums are far from simple. In general, the mass of the
pendulum is not concentrated in one point, but will be distributed. Figure shows a
physical pendulum. The physical pendulum is suspended through point O. The effect of
the force of gravity can be replaced by the effect of a single force, whose magnitude is m
g, acting on the center of gravity of the pendulum (which is equal to the center of mass if

the gravitational acceleration is constant). The resulting torque (with respect to O) is
given by

7 =—mghsiné

where h is the distance between the rotation axis and the center of gravity. In the limit of
small angles (6= 0), this torque can be rewritten as

7 =-mghé

The angular acceleration « of the pendulum is related to the torque 7 and the rotational
inertia |



T=la
We therefore conclude that

d’6  mgh
a = = ——
dt? I

This is again the equation for harmonic motion with an angular frequency given by

Note that the simple pendulum is a special case of the physical pendulum: h=L and | =
m L2. The period of the oscillation is then given by

T=2x /L =27Z'\/E
mgh g

5.2 Ring (hula hoop)

Mg

16 =7 =-RMgsiné



where R is the distance between the pivot point and the center of mass. | is the moment of
inertia around the pivot point P,

| =1, +MR’>=MR?+ MR? = 2MR? (parallel-axis theorem)
In the limit of small angle 6, the motion undergoes a simple harmonic oscillation,
0=-w6

Here we have

5.3  Bifilar pendulum

04

/ —90°-a

\ /
—

For simplicity, the extended mass is described by a simple rod in this figure. We have

ha:%&’, and T =Mg



where =0 or 8= 0. The equation of motion for the bifilar pendulum is described by

1 =-2T cos(z - 05)L
2 2

=-2Mg Lsin a

2
=—MgLsin Lo
2h
0

—mg
%o

or

10 = -0 (simple harmonic oscillation)

27 Mgl
w=—-= :
T 21h

The moment of inertia | can be derived as

where

| Mol
87°h

6 The torsion pendulum

UFixed end

Suspension wire

Reference line




The operation of a torsion pendulum is associated with twisting a suspension wire. The
motion described by the torsion pendulum is called angular simple harmonic motion.
The restoring torque is given by

T =-k0
where « is a torque constant that depends on the properties of the suspension wire (its

length, diameter and material). This equation is essentially a torsional equivalent to
Hooke's law. For a given torque we can calculate the angular acceleration &

T=la
or
2
(80 5k,
dt | |

where | is the moment of inertia of the disk (about a perpendicular axis through its centre).
Comparing this equation with the relation between the linear acceleration and the linear
displacement of an object, we conclude that

The period of the torsion pendulum is given by

T=2—7[:27z\/I
w K

7 Damped oscillation

So far we have discussed systems in which the force is proportional to the
displacement, but pointed in an opposite direction. In these cases, the motion of the
system can be described by simple harmonic motion. However, if we include the friction
force, the motion will not be simple harmonic anymore. The system will still oscillate,
but its amplitude will slowly decrease over time.

We now consider the simple harmonics with a damping constant b,
mx(t) + bx(t) + kx(t) =0
with the initial conditions

X(0) =V, and X(0) = X,



The differential equation can be written as
X(t) + b X(t) + K X(t)=0
m m

We introduce

Then we get
(1) + 28%(t) + @, X(t) = 0
The solution of this differential equation is classed into three types,

(1) underdamping: B —w; <0
(2) critical damping B -w; =0
(3)  overdamping B —w >0

The solution for the overdamping is given by
x(t) = e ?[C, cos(a,t) + C, sin(e,t)]
with
D) =+ a)oz -p ?

From the initial condition, we have

Ci=X
C2 — VO + ﬁxo
o
The final form is given by

Vo + %

@,

X(t) = e "[x, cos(a,t) + ( Jsin(a)lt)]

=e X, cos(wt +¢)



where ¢ is the phase factor and Xmax is the amplitude. The period Ti is

_z_ 27

Tl

((Mathematica))



second-order differential equation for a simple harmonics with damping

Clear["Global *"];
eql = {x""[t] +2Bx"[t] + w0% X[T] =0, x"[0] = VO, x[0] = x0};

eq2 = DSolve[eql, x[t], t] // Simplify

¢ (p] 2-002 —
{{X[t]%—l et[B ool ((—1+92t 62_WOZ]VO+

2/ 32 - w02

x0 ((1 + eth) B+ (1+ eZt\/BZ'“OZ ) \//32 - w0?

I

x[t_] = Simplify[x[t] /. eq2[[1]] /. { B? - wO® » -w1?}, wl>O0];

x1[t_ ] =Exp[Bt] xX[t] // ExpToTrig // Simplify

X0wl Cos[twl] + (VO +Xx0pB) Sin[twl]
wl

X11[t ] = Exp[-Bt] x1[t]

et? (xOwlCos[twl] + (VO +x0pB3) Sin[twl])
wl

Limit[xll[t] /. wl >\ wo? - g2, B—>w0] /7 Simplify

et (x0 + t (VO + x0 w0))




v11[t ] =D[x11[t], t] // Simplify

e '? (vOwlCos[twl] - (VOB +x0 (B%+wl?)) Sin[twl])
wl

Limit[vll[t] /-0l w0? - g2, B—uoO] /7 Simplify

e (VO - tv0 w0 - t x0 w0?)

X2[t ] = x11[t] /- wl > w0? - g2 /7 Simplify;

V2[t ] =vI1[t] /. wl -\ wO? - B2 // Simplify;
rulel = {w0-1, x0-1, vO->1};

x3[t , A ]1=x2[t] /- rulel// Simplify;

v3[t , 4 1=D[x3[t, B], t] /. rulel // Simplify;

Plot[Evaluate[Table[x3[t, B], {B, 0.001, 1, 0.05}1],

{t, 0, 8}, PlotStyle » Table[{Hue[0.051 1], Thick}, {i, 0, 20}],
AxesLabel -» {""time", "amplitude"},

PlotRange -» {{0, 8~x}, {-1.5, 1.5}}, Background -» LightGray]



amplitude
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1‘ ’ 20 25

Plot[Evaluate[Table[x3[t, B], {3, 0.001, 1, 0.05}]1],

{t, 0, 3x}, PlotStyle » Table[{Hue[0.051 1], Thick}, {i, 0, 20}],
AxesLabel » {""time™, "amplitude™},

PlotRange » {{0, 3x}, {-1.5, 1.5}}, Background - LightGray]

-1.5t

amplitude
L5¢

1.0/

0.5F

0.0 time
-0.5¢

-1.0}

—15L



Plot[Evaluate[Table[x3[t, B], {B, 1.1, 3, 0.1}1], {t, O, 3x},
PlotStyle » Table[{Hue[0.051 1], Thick}, {1, O, 20}],
AxesLabel » {"time", "amplitude™},

PlotRange -» {{0, 3x}, {0, 1.5}}, Background -» LightGray]

amplitude
1.2 —
Lol
0.8 —
0.6 —
0.4 —

02f

0.0l ‘ ‘ ‘ time
0 2 4 6 8

Plot[Evaluate[Table[v3[t, B], {8, 0.001, 1, 0.1}]1], {t, O, 4},
PlotStyle » Table[{Hue[0.051 1], Thick}, {1, O, 10}],
AxesLabel -» {""time', "velocity"}, Prolog - AbsoluteThickness[2],
Background -» LightGray]

velocity

1.0}

0.5F

-05}

-1.0}

ParametricPlot[
Evaluate[Table[{x3[t, 8], Vv3[t, B1}, {B, 0.001, 1, 0.1}11],
{t, 0, 4n}, PlotStyle » Table[{Hue[0.051 1], Thick}, {1, O, 10}],
AxesLabel » {"amplitude™, "velocity"}, Background - Gray,
AspectRatio - 1]



ParametricPlot[
Evaluate[
Table[{x2[t], v2[t]} /- {B>»1.1, wO>1, XO->Cos[©], VO - Sin[e]},
{e, 0, 2x, n/10}]], {t, O, 4},
PlotStyle -» Table[{Hue[0.051 1], Thick}, {i, 0, 10}],
AxesLabel -» {"'t", "v'"}, Background - Gray, PlotRange -» All]






ParametricPlot[
Evaluate[
Table[{x2[t], v2[t]} /. {B->»1.1l, wO->1, xO->Cos[e], vO-»Sin[E]},
{6,0, 2n, n/10}1], {t, O, 4},
PlotStyle -» Table[{Hue[0.051 1], Thickness[0.01]}, {i, O, 10}],
AxesLabel -» {""x", "v""}, Prolog - AbsoluteThickness[2],
Background - Gray, PlotRange -» All]




ParametricPlot[
Evaluate[
Table[{x2[t], v2[t]} /. {B->0.5, wO->1, xO0->Cos[e], vO-»Sin[e]},
{6,0, 2n, n/10}1], {t, O, 4},
PlotStyle » Table[{Hue[0.051 1], Thick}, {i, 0, 10}],
AxesLabel -» {"'x'", "v'"}, Background - Gray, PlotRange - All]




ParametricPlot[
Evaluate][
Table[{x2[t], v2[t]} /- {B>»2, wO~>1, XO->Cos[e], VO-»Sin[e]},
{6, 0, 2n, n/10}11, {t, O, 4},
PlotStyle » Table[{Hue[0.051 1], Thick}, {1, O, 10}],
AxesLabel -» {"'x'", "v'}, Background - Gray, PlotRange -» All]




Total energy which cahnges with time
1 2 1 2
E1=Emv3[t, B1?% + Ekx3[t, B12/-{k>1, mo1};
Plot[Evaluate[Table[El /- rulel, {3, 0.01, 1.5, 0.1}]1],

{t, 0, 4}, PlotStyle » Table[{Hue[0.08 1], Thick}, {i, 0, 10}],
AxeslLabel -» {""t"", "E'}, Background - LightGray, PlotRange -» All]

0.2}

Overdamping, phase space

, . v2[t] [ .2 > . . . i,
ratio[t ] := /- { -B° + w0° > 1 p} // TrigToExp // FullSimplify
X2 [1]

ratio[t]

pvO Cosh[pt] - (VOB +x0w0?) Sinh([p t]
px0Cosh[pt] + (vO+x03) Sinh[p t]

Al = Limit[ratio[t], t-> o, Assumptions- {p>0}]/.p~><\ B? - w0?

~v0 B - X0 w0? + vO/ 32 - w02

B+ /327w02)

vO + x0

Solve[a = Al /. {vO - ax0}, a]

({a>-8-V5 00t} fa-s+ V6P - u0? })

8 Forced oscillation (steady state solution)



X"(t) + 2 X' (t) + @,"X(t) = &, cos(at)
We assume that X(t) can be given by
X(t) = Re[Ae'™]
Re denotes a real part. A is in general a complex number. | (= V-1 ) is a pure imaginary

((Note))
Euler’s equation

e'’ = cos@ +isinf

R.P. Feynman: This is the most remarkable formula. This is our jewel (22-10 volume-1,
Feynman’s lecture on physics.)

Then we have

(1) + 25X(t) + @, X(t) = Re[(—0” + 2 fiw + w, ) Ae'™ ] = Re[£,e" ]
or

A= é:O — é:O e—i¢
(-0’ +0,")+2fiw \/(—a)z +w, ) + 450"

B

2pw

(@02 -02)
Then X is obtained as



So NESY

x(t)=Re[AeM]:Re[J( + @) +4f
—0"+®,) + 2

= %0 cos(at — @)
\/(—a)2 + ) +4p0°
or
Al 1 ~ 1

2 252 2 2 2 2 2

So \/(—a) +w,) +4fw woz\/(a)z_l)2+4,82w2

@ @y @,
or

Now we calculate the value of Y as a function of X when a parameter ¢'is changed.

w
X=-—
29
s
="
29

((Mathematica))



1

\/ (x2-1)% + 482 %2
1
\/(—1+x2)2+4x2§2

Y =

Plot[Evaluate[Table[Y, {¢, 0,1, 0.02}11, {x, 0.5, 1.5},

PlotRange » {{0.5, 1.5}, {0, 20}},
PlotStyle » Table[{Hue[0.1 1], Thick}, {i, O, 10}],

Background -» LightGray, AxesLabel - {% Y}]
w

Y
20

15|

10 -

0.6 0.8 1.0 1.2 1.4 w0

Yvs < where ¢ (= —) is changed as a parameter. {= 0 — 1.0.
20 @,



!il b=0
:/Undampcd

/Small b

Large b

0 @y

#5004 Thompon ok Coi

((Note)) Simple explanation for the resonance

We consider the special case (b=0, or f=0).
(1) + @, X(t) = &, cos wt
We assume that the solution of X(t) is given by
X(t) = A, cos wt

Then we have

- Aba’z + Aoa)o2 =&,

or
4

A =——

W, -

We note that

4

|Ab|: 20 2

W, -

becomes divergent as @ approaches a.

9. Energy consideration in the forced oscillation
We start from



(1) + 28%(t) + @,"X(t) = &, cos(at) _
Multiplying X(t) on both sides, we have
X' (D)%(t) + 2 B[X(D] + @, X(H)X(t) = &, cos(at)X(t)

or

a{z[ ) +— x(t)] b+ 2BIXOT = & cos(at)X(t) .

This equation can be rewritten as

2 2 t

5 Lx + 2 [X(OF ——[X(t—0>] DXt =0)F + [24[x(t)Fdt, = [ cos(etx(t,)dt

0

Here we introduce the instantaneous energy &(t) which is defined by
1 . 2 a)oz 2
&) =S [XOF +=-[x()]
2 2 _
We take an average of the above equation over a one period T,

Tl{g(t =T)—e(t=0)} + Tl ! 2 BIX(t)TPdt, —Tl { &, cos(at,)X(t)dt, =0

We now calculate the second and third terms using our steady-state solution

X(t) = Re[ Ae']
X(t) = Re[A(iw)e' ]

with

o _ Sgo[(_a)z + woz) - 2piw]

(—d*+ @) +2fi0 (-0 +w,) +4B0°

— Zv_iZu

and



iA = i _ Cfo[i(_a’2 +a’02)+2ﬂ0)]
(-0 + a)02)+ 20 (—0* + a)oz)2 +45°0’

where »' and y" are the real part and imaginary part of A.

The calculation of the second term:

T

—J2pmec)r e -

0

“iat,
Lt

28 ] [All0)e'™ + A" (-iw)e ' [Aliw)e'™ + A" (-iw)e
T 4

= %[2A(ia))A*(—ia))]

I A +w,)) +4p%0°

_ ‘500)2 "
4r d

The calculation of the third term:

T A(i@)e'™ + A’ (—iw)e M ]

lT ' _iT (ei{utl +e
= J & cos(t )X (t,)dt, =2 J 4 dt,
_i . .o
= [A(lo) + A (mlw)]
_ S -
=T Re[A(iw)]
_ $o@ &2 pw
2T (—0* + @)’ + 450"
_ B e o
270 (—a)2 + w02)2 + 4ﬂ2a)2
_ éjoa)z "
 4x d

Then it is found that the second term is equal to the third term. These terms are

proportional to »" (imaginary part of A). The energy absorbed by the system from the
external force is dissipated through the resistive damping. Then we have

et=T)=e(t=0).



The sum of the kinetic energy and the potential energy is a periodic function of t with a
period of T.

10 Example
10.1 Example-1:

Problem 15-26***(SP-15) (10-th edition)

In Fig., two blocks (m = 1.8 kg and M = 10 kg) and a spring (k = 200 N/m) are
arranged on a horizontal, frictionless surface. The coefficient of static friction between
the two blocks is 0.40. What amplitude of simple harmonic motion of the spring—blocks
system puts the smaller block on the verge of slipping over the larger block?

FIGURE 15-34 Problem 24.

m=18kg, M=10kg, k=200N/m

For the small mass,



mxX =—f,
N, = mg ()
fi < 4N, = mg

For the large mass,

MX = f, —kx 2
N, =N, +Mg=(M +m)g
From Egs.(1) and (2),
(M +m)X =—kx
X =—w’X
with
w* = k
M +m

The solution of the differential equation is

X = Acos(at + @)

with w=4.11rad /s

or

X< %Q(M +m)=0.23m

10.2 Example-2
Problem 15-25%** (10-th edition)
In Fig., a block weighing 14.0 N, which can slide without friction on an incline at angle &

= 40°, is connected to the top of the incline by a massless spring of un-stretched length
0.450 m and spring constant 120 N/m. (a) How far from the top of the incline is the



block’s equilibrium point? (b) If the block is pulled slightly down the incline and released,
what is the period of the resulting oscillations?

mg = 14.0 N, 0=40°, Xo = 0.450 m, k=120 N/m

(2)

mgsind = f
f= k(Xl —X,)

or

X, =X, +%sin0 =0.525m

(b)



mX =mgsinéd — f
f =k(X—Xx,)

or

X= —h(x— X, —msme) = —h(x - X))
m k m

The solution of this equation is

X =X, + Acos(at + ¢)

with o= h
m
) ) 27
The period T is T =—=0.686s
1)

10.3 Example-3 Simple harmonics in fluid mechanics

Gl

F“ !

—_—

] l

Wy

—

Simple harmanics
Equilibrium P

In equilibrium

F, = Apgh, = Mg
or
oM
Ap

Simple harmonics



My =G, —Mg = (h, —y)pAg — Mg
where Gp is the buoyant force.

My = (h, — y)pAg — Mg = —ypAg

. A (simple harmonics)
j=-L3y=—ay

M

where

o= PA

M
T=2x M

PAY

10.4 Simple harmonics in fluid mechanics
V: volume of liquid with the density p
m = pV: mass of liquid
L = V/A: total length of the liquid column

my = F = ~(2ypg)A

m=pV = pLA

or
g QyedA _ 29 >
y= ALA L y=-o'y

where



W= 2—9, T=2—”:2ﬂ L
L 0] 29

((Example)) Oscillation of liquid in a U-tube

The mass m (= 9 kg) of mercury is poured into a glass U-tube as shown in Fig. The
tube’s inner diameter is 1.2 cm and the mercury oscillates freely up and down about its
position of equilibrium (X = 0). Compute (a) the effective spring constant k for the
oscillation, and (b) the period of oscillation. The density of mercury is p = 13.6 x 10°
kg/m’. Ignore frictional and surface tension effects.

2x
1x
((Solution))
r=0.6cm. p=13.6x10°kg/m’.
m = 9.0 kg.

When the mercury is displace X from its equilibrium position, the restoring force is the
weight of the unbalanced column of mercury with height 2x. The restoring force F is
described by

F =-pA(2x)g,

where A is the area of U-tube (A = 7r?). Then the mercury undergoes a simple harmonic
oscillation,

mX = F =—pA(2x)g = —kx,

where

2
k=2PA9 _27P9 _ 36\
m m

This equation can be rewritten as

X =—w’X



where w is the angular frequency,

The period of the oscillation, T, is

T =27r\/E =34s.
k

10.5 Example-4 (Serway 12-75)

Imagine that a hole is drilled through the center of the Earth to the other side. An
object of mass m at a distance r from the center of the Earth is pulled toward the center of
the Earth only by the mass within the sphere of radius r (the reddish region in Fig.).

(a) Write Newton’s second law of gravitation for an object at the distance r from the
center of the Earth, and show that the force on it is of Hooke’s law form F = —kr ,
where the effective force constant is K = (4/3)zpGm. Here r is the density of the
Earth assumed uniform, and G is the gravitational constant.

(b) Show that a sack of mail dropped into the hole will execute simple harmonic
motion if it moves without friction.

(c) When will it arrive at the other side of the Earth.




ME ZT R3
Mr=4?”pr3
M, r
M. R’

The force is directed toward the center.

3
~ GmM, f:_GmME r f:_GmME F - EF

F =
2 2 3 3 r
r r Re Re

The equation of motion for the particle on the tunnel along the X-axis.

mX = F, cost9=—Gm'\:|E rcos<9=—Gm|\§|E X
RE E
or
X =—w"X (Simple harmonics)
where
M
w- |G e |9
Re Re
T =27 22z [Re _ 5061 435
@ g
or

% =2530.75s =42.2min

((Note)) Period of satellite

M.G
RE

V= =7.910km/s =4.9miles/s =17640miles/h

T= 2—” =2 & =5061s = lhour24initues21sec
V g

v



10.6 Example-5

Problem 15-41 (SP-15) (10-th edition)

In Fig., the pendulum consists of a uniform disk with radius r = 10.0 cm and mass
500 g attached to a uniform rod with length L = 500 mm and mass 270 g. (a) Calculate
the rotational inertia of the pendulum about the pivot point. (b) What is the distance
between the pivot and the center of mass of the pendulum? (c) Calculate the period of
oscillation.

1, LY 1., ,
l=—mL +m — | +=Mr "+ M(L+T)
12 2 2

:%mLz +%Mr2 +M(L+r)* =0.205kgm’

where M is the mass of disk and m is the mass of the rod

The equation of motion
.. L. .
10=—M(L+r)+ mE]g sin @
L
~—M(L+r)+ mE]ge
10.7 Example-6

Problem 15-51** (SP-15) (10-th edition)

In Fig. a stick of length L = 1.85 m oscillates as a physical pendulum. (a) What value
of distance x between the stick’s center of mass and its pivot point O gives the least
period? (b) What is the least period?



r=1,0 =—-Mgxsiné

l, ENVIESRYY
12

or
—0=-w'6 (simple harmonics)

where @is the angle between the vertical axis and the thin rod, and @ is defined by

mgx ox

imL2+mx2 iL2+x2
2 12

10.8 Example-7
Problem 15-53** (HW-15) (10-th edition)

In the overhead view of Fig., a long uniform rod of mass 0.600 kg is free to rotate in a
horizontal plane about a vertical axis through its center. A spring with force constant k =
1850 N/m is connected horizontally between one end of the rod and a fixed wall. When
the rod is in equilibrium, it is parallel to the wall. What is the period of the small
oscillations that result when the rod is rotated slightly and released?



Wall

Rotation axis

k,d

(Lsirfpu2 Cl

r=la=10= —KLSiHQECOSH __k Lzlsin(ZH)
2 2 4 2

2 2
10 = —kisin(ze) ~ —kie
8 4

10.9 Example-8



- (=]
E




10.10
Problem 15-52%* (SP-15) (10-th edition)

The 3.00 kg cube in Fig. has edge lengths d = 6.00 cm and is mounted on an axel
through its center. A spring (k = 1200 N/m) connects the cube’s upper corner to a rigid
wall. Initially the spring is at its rest length. If the cube is rotated 3° and released, what is
the period of the resulting simple harmonic oscillation?

((Solution))
k=1200 N/m
M =3 kg

The moment of inertia is
1 2 2 1 2
l=—M@d“ +d")=—Md
12 6

around the axis through its center for the cube with the side d.

The equation of motion:

16 = —kx(gd) - —k(%d)&(%d) - —k%dze

or



Tvazi=—kLa2
6 >

or
0= —Mé’ =-00 (simple harmonics)
where
@ 21/i =34.641 rad/s
M
The period T is given by

T :27r‘/M =0.181s
3k

The initial condition: &0) = 3° and 6(0) =0
Using this condition, we get the time dependence of fas

0(t) = Acos(awt) + Bsin(wt)

O(t) = —Awsin(wt) + Bocos(at)
0(0)=A

0(0)=Bw=0

or
O(t) = 6(0)cos(wt)
12. Advanced problems

12.1 Serway 15-73 ((numerical calculation))

Consider a bob on a light stiff rod, forming a simple pendulum of length L = 1.20 m.
It is displaced from the vertical by an angle nax and then released. Predict the subsequent
angular positions if fmax 1s small or if it is large. Proceed as follows: Set up and carry out
a numerical method to integrate the equation of motion for the simple pendulum;

da(t .
dtz( ) - —%sm&(t)



Take the initial conditions to be = Gnax and d@/dt = 0 at t = 0. On one trial, choose Gnax
= 5.00° and on another trial take fmax = 100°. In each case, find the position At) as a
function of time t. Using the same values of 6hax, compare your results for & with those
obtained from At) = Gmax cos(wt). How does the period for large values of fmax compares
with that for the small value of Gmax?

((Solution)) We use the Mathematica for the solution.

O[t]/6max
1.0

0.5+

—0.5+

-1.0F

Fig.1 Red: At)/Gmax for Gnax = 100°: Green: cos(an t), where o, = \/% =2.8577 rad/s.

0[t]/6max
1.0

0.5

-0.5¢

-1.0F

Fig.2 Red: At)/Onax for Gmax = 100°. Blue: At)/Onax for 6Gmax = 5.00°:, where

@, = \/g =2.8577 rad/s.
L

12.2  Serway 15-56



A solid sphere (radius = R) rolls without slipping in a cylindrical trough (radius = 5
R) as shown in Fig. Show that, for a small displacements from equilibrium perpendicular
to the length of the trough, the sphere executes simple harmonics with a period.

((Solution))

Fig. 00i1=4R,O/H=R.s=R¢#=4R 6.

Kinetic energy K;
K :lmvc2 Lo,
2 2

| is the moment of inertia for the sphere with radius R, | =2 MR’ . Qis the angular

velocity, £2= d¢/dt. From the rollinc of the ball without slipping, we have
s=4R6 =Ry,

or



v =E=4R9‘=RQ.
dt

c

Then K can be rewritten as

K =lm(RQ)2 2R = LR :lmR2(49)2 _% R,
2 25 10 10 5

The potential energy U is given by

U =mg(5R—-4Rcos8),

where the reference point is at the bottom of the cylindrical trough. Since the total energy
E is independent of t, we have

E=K+U =5—56mR292 +mg(5R —4R cos 8) =const

or

[% mR?6 + mg(4Rsin )]0 = 0

This is a differential equation for the simple harmonics, when sin@ = 6.

O+0°0=0
with
=29
28R
The period T is

T=2Z oy 2R
W 59

13. Exact measurement of the period for the simple pendulum with small
maximum angle

"The history of the physics of the pendulum stretches back to the early moments of
modern science itself. We might begin with the story, perhaps apocryphal, of Galileo’s
observation of the swinging chandeliers in the cathedral at Pisa. By using his own heart



rate as a clock, Galileo presumably made the quantitative observation that, for a given
pendulum, the time or period of a swing was independent of the amplitude of the
pendulum’s displacement. Like many other seminal observations in science, this one was
only an approximation of reality. Yet it had the main ingredients of the scientific
enterprise; observation, analysis, and conclusion. Galileo was one of the first of the
modern scientists, and the pendulum was among the first objects of scientific enquiry."
(G.L. Baker and J.A. Blackburn, Oxford University Press, 2005).

O

max

A

Fig. Simple pendulum with a point mass M. Gnax is the maximum of the angle 6.
We consider the motion of the simple pendulum. The kinetic energy is given by
K=t m(19)>
2 2

The potential energy:

U =mgl(1-cos®)



The energy conservation
E=K+U =%m|2¢92 +mgl(1—cos )

or

%a)2 +%(1 —cos @) = const

with
w=0

We now start with
1,
Ea) +e(l-cos@)=¢(l-cosb )

where

We note that

(1) =0 for 0= Gmax
(i1) ar= an for 8=0

So we have

max

%a)2 +g(1—0056’):%a)02 =g(1-cosb. ).

From this, we get

%a)2 =—&(1-cos@)+&(1-cosb, )

or

o = 0% = g(cos —cos O

max )

Using a formula,



cos¢9=1—2sin2§

we have

. dé o o
9:—:2\/2\/sin2ﬂ—sin2—
dt 2 2

Then the period T is given by

T 1 ef dé
4 e \/sinzem‘""‘—sinze
2 2
Here we put
sin 0
7= (92 = lsing
sin —max. k
with
k =sin O .
2
Note that

10 1 . I
dz = cos?do="1 |1-sin?%do = L 1-Kkz2do
2k ST T T R T

Then we have

2 2kdz

T="_
w

or

T =% EllipticK[k?]

Je

where

ij :ij dz
\/;ole—zzx/l—kzz2 \/;0\/1—22 1-kz> e

4

K (k%)



2 Y'max

g==, k* =sin

Note that K(&) is the complete elliptic integral of the first kind and is defined by

1 dz
K(&) =
) !\/1—22\/1—522

In the Mathematica, this function corresponds to EllipticK[E]. When k — 0, we have

2 I
T="L_21 |-
G

The series expansion of T around k = 0 is given by

T:Z—ﬁ(1+lk2+ik4+ 25 k® + 1225 kg+.—3969 k' +
\/Z 4 64 256 16384 65536

We make a plot of the deviation (T - To)/To (denoted by %) as a function of Gmax, where

Toz%:%z\/é:

It is clear that the deviation starts to occur when 6max is larger than 6 =2°.

08L (T/To=1) (%)

0.6 -

0.4+




Fig. The deviation AT/To x 100 (%) as a function of the maximum angle 6_, . The
deviation is defined by that AT /T, =(T —T,)/T,.

We note that the period is independent of € _ only for a few degrees. The period

becomes dependent of 8, as €, increases. The deviation is 0.19 % for € = 10° and

X X

0.77% for 6_, = 20°. So if one want to measure the exact period (To), one needs to use

the small value of €__ below a few degrees.

max

Table The value of the deviation AT /T, x 100 % for typical values of &, where

X

AT =T -T,
O (T/To- 1) x 100 %
0 0.

5 0.0476172

10 0.190719
15 0.430058
20 0.766903
25 1.20306
30 1.74088
35 2.38334
40 3.13405
45 3.99733
50 4.9783

14. Simple pendulum in an accelerated reference frame
We consider a simple pendulum in an accelerated frame using the two examples.

These examples come from (P.T. Tipler and G. Mosca, Physics for Scientists and
Engineers, 6-th edition W.H. Freeman and Company, 2008) Chapter 14.

((Example-1)) A simple pendulum suspended in the moving cart (with
constant acceleration)
A simple pendulum of length L suspended from the ceiling of a cart (C) that has

acceleration a.; . Find the period of oscillation for small oscillations of this pendulum.



f!*'

1 {
& ¥ mu Sl = M T

:?mf;Jmf-JLJ o e e ke

We start with an equation of motion given by

T+mg=mag,

where T is the tension and m is the mass of bob of the simple pendulum. The acceleration
of the bob relative to the ramp is equal to the acceleration of the bob(B) relative to the
cart plus the acceleration of the cart (C) relative to the ground (G),

Ap = Agc T acg.

Then we get

T+mg=mag;+a.s),

or
T+M(g—ags) =Magc.
We define 0. as
Qert =9 —cq.
Then we have

T+mg,, =mag.



Jeff g

Fig. O =0—8g. U =49 +acs - ZQOP = 4.

The magnitude of getr is obtained as

et :\/92+acez

where

a
tan = —&
g



An equation for the motion of the bob draw the free-body diagram is given by
mlg = —mg,, sin ¢

where | is the length of the string. This can be written as

§=-Fsing -2y — o'y

where

2_geff

@

Then the period T is obtained as



T=27 |—
geff

with
Oett =1/ 92 + acG2

((Example-2))
Simple pendulum on the moving cart (with constant acceleration) on the ramp

Lﬁ R

A simple pendulum of length L is attached to a massive cart that slides without friction
down a plane inclined at angle & = o with the horizontal, as shown in Figure. Find the
period of oscillation for small oscillations of this pendulum

(P.T. Tipler and G. Mosca, Physics for Scientists and Engineers, 6-th edition W.H.
Freeman and Company, 2008) Problem 14-65 p.491

The cart accelerates down the ramp with a constant acceleration of gsin « . This

happens because the cart is much more massive than the bob, so the motion of the cart is
unaffected by the motion of the bob oscillating back and forth. The path of the bob is
quite complex in the reference frame of the ramp, but in the reference frame moving with
the cart the path of the bob is much simpler—in this frame the bob moves back and forth
along a circular arc. To solve this problem we first apply Newton’s second law (to the



bob) in the inertial reference frame of the ramp. Then we transform to the reference frame
moving with the cart in order to exploit the simplicity of the motion in that frame.

Apply Newton’s 2™ law to the bob, labeling the acceleration of the bob (B) relative to
the ramp (R), ag;

T +mg = mag,



The acceleration of the bob relative to the ramp is equal to the acceleration of the bob
relative to the cart plus the acceleration of the cart relative to the ramp,

dgr =dgc T acr
Then we get

T+mg=m(ag; +acg)
or

T+M(g—acg) =Magc
We define 0. as

Ot =9~ A
Then we have

T+mg. =mag..

The magnitude of gefr is obtained as

geff = gCOS@),

from the geometry of the figure below.



g Jeft

Fig. 0, =g—-ax. PQ =|aCR| =gsina. 0Q=g,, = gcosa. ZOQP =90°.
Suppose that az. =0
T =-mg.
An equation for the motion of the bob draw the free-body diagram is given by
mlg = -mg,, sing,

where | is the length of the string. This can be written as



¢=-

where

, Qcosa

Then the period T is obtained as

T=2x L=27z ! .
\/ Ot Vgcosa

When =0, T is equal to the conventional value of T,

T=27z\/I.
g

15 Link

Tacoma Narrows Bridge collapse (forced oscillation)
http://www.youtube.com/watch?v=j-zczJ X Sxnw

Simple harmonics motion Wikipedia
http://en.wikipedia.org/wiki/Simple_harmonic_motion

Simple pendulum:
Physics of simple pendulum, a case study of nonlinear dynamics
http://physics.binghamton.edu/Sei_Suzuki/suzuki.html

Lecture Note (University of Rochester)
http://teacher.pas.rochester.edu/phy121/LectureNotes/Contents.html

Appendix Nonlinear oscillation (Challenging topics)

A.l Formulation



We consider the motion of mass m hanging from a ceiling with a string. The mass of
the string is neglected. We set up an equation of motion,

16 =-mglsin & (1)
where | is the moment of inertia and is given by

| =ml?

Equation (1) can be rewritten as

O +esinfd=0
where

82%26002. or W, = Ig
For small 6,

.. 5 &’ 3
0+ 0——+—+..)=0
@ ( 6 120 )

The solution of this equation is given by the nonlinear terms

0 = a,cos(at + 0) + a; cos(Bat + 0) + s cos(Sat +0) + ...

where |a1| > |a2| > |053| and Jis a phase factor;



=0 (=)

27 2w, o’ a’
T=—"-=—+—)=T,(01+—
Y~ o (g =T+ )
1 |

a, ® o, a, =

—90’ +, 24 192

T0=2—7[=27r\/I.
) g

In the limit of 6 —0,

with

0+ a)oze =0
corresponding to a simple harmonics,
0 = a, cos(w,t + )

A.2  Energy conservation
The multiplication of & on both sides and integration with respect to t lead to

00 + £sin 00 = 0
or

d 1.

E[EGZ +&(1—cosf)]=0
or

E :%92 +¢&(l-cos )

= %Vz +&(l—cos0)

where the first term is the kinetic energy and the second term is a potential energy
defined by

U=¢c(-cosb)



Ule
3

> ¢ ¢ 6
U=se(-Z4—n
2 24 720 40320

+...)

Here we use an initial condition

O(t=0)=0,
O(t =0) =,

Then the total energy E is expressed by

E= %VOZ +&(l—cosb,)

In other words, E increases as Vo increases and it also increases as éb. increases.

A.3  Phase space of Ovs v =dadt

From
v=20 V=-gsind
we have
ﬂ = 1 = —fsinﬁ
de o6 Y,

This is a differential equation (separation variable type). So we can solve easily as



Jvdv = —SI sin@d @

lv2 —¢cosd=C
2
From the energy conservation law,
1,
E =§v +&(l-cos@)=C +¢

or
C=E-¢

(a) ContourPlot of
15
EV +&(l—cosf)=E

in the @ vs v plane, where E = 2¢ and the parameter ¢ is varied as a parameter. The
character of the orbit inside and outside of the curve are rather different. Such a family of
curve is called sepratrices.

Ln
T
=

Ln

(b) ContourPlot of



%vz +¢&(l-cos@)=E

in the #vs v plane, where =1 and the parameter E is changed as a parameter.
=1

Fig, Phase space (vvs @) fore=1.E=0.5,1.0,1.5,2.0,2.5,3.0,and 3.5. E=2&=21is
the highest energy of the potential.

B. Numerical calculation using Mathematica for simple pendulum
B.1  Formulation
For convenience, the differential equation is separated into two parts

v=0 V=-gsind

1. First we solve this differential equation using numerical method (Mathematica,
NDSolve)

2. We analyze the Fourier component by using fast Fourier transform (FFT)

(Mathematica , Fourier).

a. We choose the N (= 2") data, typically the data between 0 and T (= tmax).
b. The minimum time division is A =T /N , which corresponds to the maximum

Wmax =
27

a)max R N
T



c. The Fourier spectrum is plotted as a function of the channel number scaled by
2m)/T.

For simplicity, we consider the case of & = 0. Then we have

1
E ZEVO

When Vvo<2 e (or E<2¢), the value of € is limited between —7z and 7. When
vo>2+/e (or E>2¢), the value of #is unlimited.

B.2  Time dependence (6 vs t)
We show the time dependence of € as a function of t with vo being changed as a
parameter. Here we choose. €= 1

(a) Vo=0.1,0.2,0.3,0.4,0.5

Al AL AL AL AL AL AL A

VIRV IRV Y IR

(b) Vvo=14,15,16




(c) Vvo=191,192,1.93

(d)  vo=1.982,1.984, 1.986, 1.988, 1.990

(e) Vo =1.9992, 1.9993, 1.9994, 1.9995, 1.9996, 1.9997

6] vo = 1.999992, 1.999993, 1.999994, 1.999995, 1.999996, 1.999997, 1.999998,
1.999999



As Vo approaches 2.0, the shape of @ vs t curve becomes square-like. This means that
the effect of the nonlinearity is enhanced.

(g w=2

In this case, the total energy E is equal to the peak height of the potential energy.

(h) vo = 2.00001, 2.00002, 2.00003, 2.00004, 2.0005, 2.0006, 2.0007, 2.00008,
2.00009, 2.0001
For vo>2, the value of @ increases with increasing t. In other words, the pendulum
rotates around the rotational axis.



(1) vo= 2.02,2.03, 2.04, 2.05, 2.07. 2.08,

B.3  Phase space (v vs 6)
We make a plot of the phase space for £= 1, when Vo is changed as a parameter.

(a) wvo=10,1.1,12,1.3,14,1.5



(b) vo=1.6,1.7,18,1.9

=

iy
)
N~

(c) vo=1.91,1.92,1.93,1.94,1.95, 1.96, 1.97




(d)  vo=1.980, 1,981, 1.982, 1.983, 1.984, 1.985, 1.986, 1.987, 1.988, 1.989, 1.990.

(e) Vo=2.0

)  vo=2.01



B.4  Fourier analysis using Fast Fourier transform (FFT)
The time dependence of q can be analyzed using the FFT analysis. The Fourier

spectrum is the square of th absolute amplitude as a function of angular frequency @. In
the small limit of vo = 0,

o, =+ .
0

In the present case, an = 1 since = 1.
As Vo approaches 2+e , the time dependence of & changes from sinusoidal wave to a

square wave, indicating the enhancement of nonlinearity in the system. There appear 3,
Sw, 7w, .. components. The frequency of the fundamental mode rapidly decreases.

e=1.
(a) vo=0.5
@ (= 1) component is mainly observed.
1000 ¢
10+
0.1
0.001
10—5 . . . | )
0 1 2 3 4 5

Fig.  Fourier spectrum obtained from the FFT analysis of the € vs t. The x axis is the
angular frequency w and the y axis is the squares of the absolute value of complex
amplitude. The fundamental harmonic is observed at o= 1.

(b) Vo=1.6
® and 3 @ component are mainly observed.



1000

100
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@, 3w, and 5@ component are mainly observed.
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(d) Vo= 1.981
®, 3w, Sw, and 7@ component are mainly observed.
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(e) Vo = 1.9962
o, 3w, So, 7w, and 9@ component are mainly observed.
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(f) Vo=1.9991
0,30, 50, To, 90, 11w, and 13 ® component are mainly observed.
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(2) Vo = 1.999995
w,3m,50, 7o, 90, 11w, 130, 150, and 17 @ component are mainly observed.
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The Fourier spectrum drastically changes at vo = 2. The transition of the behavior occurs
from oscillatory to non-oscillatory.

G)  Vo=2.001
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