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1 Introduction 

 

1.1  Types 

There are two main types of waves. 

(i) Mechanical waves 

Some physical medium is being disturbed. 

The wave is the propagation of a disturbance through a medium. 

(ii) Electromagnetic waves 

No medium is required. 

Examples are light, radio waves, x-rays. All electromagnetic waves propagate in 

vacuum with the same speed c = 3.0 x 108 m/s. 

(iii) Matter waves (de Broglie wave in quantum mechanics). All microscopic particles 

such as electrons, protons, neutrons, atoms etc have a wave associated with them 

governed by Schrödinger’s equation. 

 

1.2 General feature of wave 

In wave motion, energy is transferred over a distance. Matter is not transferred over a 

distance. A disturbance is transferred through space without an accompanying transfer of 

matter. All waves carry energy. The amount of energy and the mechanism responsible for 

the transport of the energy differ. 

 

1.3 Transverse wave 

 

 
 

A traveling wave or pulse that causes the elements of the disturbed medium to move 

perpendicular to the direction of propagation is called a transverse wave. The particle 



motion is shown by the blue arrow, while the direction of the propagation is shown by the 

red arrow. 

 

1.4 Longitudinal waves 

 

 
 

A traveling wave or pulse that causes the elements of the disturbed medium to move 

parallel to the direction of propagation is called a longitudinal wave. The displacement of 

the coils is parallel to the propagation. The sound wave is one of examples. 

 

1.5 Phonon in the solid (quantum mechanics of lattice vibration) 

 

 
 

In solids, there are both longitudinal waves and transverse waves. 

 

2 Traveling pulse 

The shape of the pulse at t = 0 is shown. The shape can be represented by y = f(x). 

This describes the transverse position y of the element of the string located at each value 

of x at t = 0. The speed of the pulse is v. At some time, t, the pulse has traveled a distance 

vt. The shape of the pulse does not change. The shape of the pulse at t is given by y = f(x-

vt). 

 



  
 

For a pulse traveling to the right, 
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For a pulse traveling to the left,  
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The function is also called the wave function. The wave function represented the y 

coordinate of any element located at position x at any time t. The y coordinate is the 

transverse position. If t is fixed, then the wave function is called the waveform. It defines 

a curve representing the actual geometric shape of the pulse at that time 

 

((Example-1)) 

We consider the traveling of the Gaussian wave packet. 
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The Gaussian wave packet propagates along the x axis with the velocity v. The shape of 

the wave packet remains unchanged. 

 

  
Fig. Plot3D of Gaussian wave packet given by 
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((Example-2))  Propagation of wave packet along the x axis. 

 

 

 
Fig. Plot of Gaussian wave packet  
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as a function of x, where t is changed as a parameter, t = 0 – 1 with t = 0.25. 

 

((Note)) 

Propagation of the wave packet of the electron (quantum mechanics).  

The dispersion relation of the electron is rather different from that of light and sound. 

The energy is expressed by 
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where ħ (= h/2) is the Dirac’s constant and h is the Planck’s constant. In this case, the 

probability of finding the wave packet at (x, t) is described by 
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Fig. The plot of 
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),( tx as a function of x, where the time t is changed as a parameter. 

 

The position of center: 
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The velocity of center 
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The width of the wave packet increases with time t. 
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where  = 1/k. The amplitude of the wave packet decreases with time t, 
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The evolution of the wave packet is not confined to a simple displacement at a velocity v0. 

The wave packet also undergoes a deformation. 

The Heisenberg’s principle of uncertainty: 

 

2

1
)(1

2

1
))(( 4

22

2  k
m

t
kx

ℏ
. 

 

3 Wave function of the traveling waves 

A continuous wave can be created by shaking the end of the string in simple 

harmonic motion. The shape of the wave is called sinusoidal since the waveform is that 

of a sine curve. The shape remains the same but moves. We consider the wave function  
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for the travelling wave along the +x direction, where  
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Note that y(x, t) is the displacement, A is the amplitude, and )( tkx   is the phase. 

 

 

 

Fig. Plot3D of A sin(kx-t) with A = 1,  = 1, v = 1.4. 

 

We also have a wave function given by 
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for the travelling wave along the (-x) direction. 

 



 
Fig. Plot3D of A sin(kx+t) with A = 1,  = 1, v = 1.4. 

 

4 The speed of a traveling wave 

The displacement y(x, t) must remain constant when the phase factor is constant. 
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We take the derivative of this equation, getting 
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or 

 

vk . (so- called dispersion relation) 

 

5 Wave equation 

First we calculate the following from 
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Fig. Plot of y and yv  at t = 0, as a function of kx. 

 

From these equations, we get 
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In general, the wave function satisfies the wave equation given by 
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This applies in general to various types of traveling waves.  represents various 

positions. For a string, it is the vertical displacement of the elements of the string. For a 

sound wave, it is the longitudinal position of the elements from the equilibrium position. 

For electromagnetic waves, it is the electric or magnetic field components. 

The solution of this wave equation is as follows. 
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We introduce new variables 
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So that the equation for  becomes 
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The solution obviously has the form 
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where f1 and f2 are arbitrary function. 

 

or 
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The function f1 represents a plane wave moving in the positive direction along the x axis. 

The function f2 represents a plane wave moving in the negative direction along the x axis. 

 

((Another method)) using the Fourier transform 

We use the Fourier transformation technique. 
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Then we have 
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The solution of this equation is 
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where g() is an arbitrary function of . Finally, we get 
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This is an arbitrary function of )( vtx  . 

 

6 Wave traveling in the string (transverse wave) 

6.1 Simple model: the speed of waves on strings 

We consider a string symmetrical pulse moving from left to right along a string with 

speed v. We consider a reference frame, in which pulse remains stationary.  
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Fig. The element of string (s) under the tension T = Ts. OC OB R  . The element 

of string is denoted by thick green line. AOB   . CBA / 2  . ABD   . 

 

 



 

We consider one small string element of length s. The net force acting in the y 

direction (vertical line, toward to the origin, centripetal force) is 

 

2 sin 2y s sF T T   . 

 

Note that s is the mass of the element and that s is equal to 2R. At the moment, the 

string element s  is moving in an arc of circle. We apply the Newton’s second law to 

this element (centripetal force). 
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The velocity is obtained as 

 


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where tension: sT  (N=kg m/s2) and  (kg/m). 

 

6.2 More general case 

 

 
 

Fig. A snapshot of s travelling wave on a string at time t. Tension Ts on the string 

(denoted by thick green line). 

 

Suppose that a traveling wave is propagating along a string that is under a tension Ts. Let 

us consider one small element of length x. The ends of the element make small angle A 

and B with the x axis. The net force acting on the element along the y-axis is 
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where we use the Taylor expansion. We now apply the Newton’s second law to the 

element, with the mass of the element given by x
x

y
xm 











 
2

1 , 

 
2

2y y

y
F ma x

t



  


 

 

Then we have 
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which leads to a wave equation given by 

 

2

2

22

2

2

2 1

t

y

vt

y

Tx

y

s 








 

 

 

where  
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6.4 Energy density in wave motion 

Although no matter is transported down the string as the wave propagates, the energy 

is carried along by the wave with velocity v. As a piece of the string moves up and down 

executing simple harmonics, it has kinetic energy as well as potential energy (because the 

string is stretched like a spring). 

The infinitesimal mass of the string is m = x. The kinetic energy contribution K 

is given by 
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How about the potential energy? The potential energy U is given by 
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The derivation of the potential energy will be given in the APPENDIX because of some 

difficulty. Then the energy density is given by 
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7 Average power for the sinusoidal wave on a string 

Waves transport energy when they propagate through a medium. We can model each 

element of a string as a simple harmonic oscillator. The oscillation will be in the y 

direction. Every element has the same energy. 

Each element can be considered to have a mass of m (= x). Its kinetic energy is 

given by 
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elements, the total kinetic energy in one wavelength is 
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The potential energy is given by 
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Integrating over all the elements, the total potential energy in one wavelength is 
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Note that U is exactly the same as K (equi-partition law of energy). The total energy in 

one wavelength of the wave is the sum of the kinetic energy and the potential energy, 
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The power transmitted by a sinusoidal wave on a stretch string is given by 
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((Example)) Problem16-26 

A string along which waves can travel is 2.70 m long and has a mass of 260 g. The 

tension in the string is 36.0 N. What must be the frequency of travelling waves of 

amplitude 7.70 mm for the average power to be 85.0 W? 

 

((Solution)) 
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The velocity is given by 
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The average power is 

 

WATAvP savg 85
2

1

2

1 2222    

 

The angular frequency is 

 
31024.1   rad/s, 



 

or 

 

f = 198 Hz. 

 

8 Reflection and transmission of waves 

8.1 Reflection of a Wave, Fixed End 

When the pulse reaches the support, the pulse moves back along the string in the 

opposite direction. This is the reflection of the pulse. The pulse is inverted when it is 

reflected from a fixed boundary. 

 
 

8.2 Reflection of a wave, free end 

With a free end, the string is free to move vertically. The pulse is reflected. The pulse 

is not inverted when reflected from a free end. 

 

 
 

8.3  Transmission of a wave (I) 



Assume a light string is attached to a heavier string. The pulse travels through the 

light string and reaches the boundary. The part of the pulse that is reflected is inverted. 

The reflected pulse has a smaller amplitude 

 

 
 

8.4 Transmission of a wave (II) 

Assume a heavier string is attached to a light string. Part of the pulse is reflected and 

part is transmitted. The reflected part is not inverted 

 

 
 

((Note)) 

Conservation of energy governs the pulse. When a pulse is broken up into reflected 

and transmitted parts at a boundary, the sum of the energies of the two pulses must equal 

the energy of the original pulse 

 

9. Superposition of waves 

If two or more traveling waves are moving through a medium and combine at a given 

point, the resultant position of the element of the medium at that point is the sum of the 

positions due to the individual waves. Waves that obey the superposition principle are 

linear waves. In general, linear waves have amplitudes much smaller than their 

wavelengths 

 

 
Two pulses are traveling in opposite directions. The wave function of the pulse 

moving to the right is y1 and for the one moving to the left is y2. The pulses have the same 

speed but different shapes. The displacement of the elements is positive for both 

 



 
When the waves start to overlap (b), the resultant wave function is y1 + y2. When crest 

meets crest (c) the resultant wave has a larger amplitude than either of the original waves 

 

 
The two pulses separate. They continue moving in their original directions. The shapes of 

the pulses remain unchanged. 

 

((Mathematica)) 

Superposition of two Gaussian wave packets traveling in the +x and –x directions 

 

((Example-1)) 

 



 

 

Fig. Plot3D of superposition of two Gaussian wave packets which is expressed by 
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((Example-2)) 

 



 
 

Fig. Plot3D of superposition of two Gaussian wave packets which is expressed by 
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Fig. Plot of  as a function of x, where t is changed as a parameter. t = -1 to 1 with t 

= 0.1 

 

10 Interference of pulse waves 

Two traveling waves can pass through each other without being destroyed or altered. 

A consequence of the superposition principle. The combination of separate waves in the 

same region of space to produce a resultant wave is called interference 



 

Constructive interference occurs when the displacements caused by the two pulses are 

in the same direction. The amplitude of the resultant pulse is greater than either 

individual pulse.  

Destructive interference occurs when the displacements caused by the two pulses are 

in opposite directions. The amplitude of the resultant pulse is less than either individual 

pulse. When they overlap, their displacements partially cancel each other. 

 

 
 

((Example)) 

 

 

 



Fig. Plot3D of superposition of two Gaussian wave packets which is expressed by 
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11. Superposition of sinusoidal waves: phasor diagram 

Assume two waves are traveling in the same direction, with the same frequency, 

wavelength and amplitude. The waves differ in phase. 

 

We consider the resultant wave of the two waves given by 
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The phasor diagram is shown in this figure. The wave y1 corresponds to the vector 

)0,( 1AOA   and the wave y2 corresponds to the vector )0,( 1AOA   and 

)sin,cos( 22  AAOB  . 

 

 
 

Note that the validity of the use of phasor diagram for this is discussed in the Appendix. 

 

Then the amplitude of the resultant wave is given by OC  and is calculated as 

follows. 
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When  = 0 (in-phase), OC  becomes maximum. OC  = A1 + A2. 

When  = 0 (out-of-phase), OC  becomes minimum. 21 AAOC   

 

We now consider the special case where A1 = A2 = A. 
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(a) Constructive interference 

When  = 0, then cos (/2) = 1. The amplitude of the resultant wave is 2A. The crests 

of one wave coincide with the crests of the other wave. The waves are everywhere in 

phase. The waves interfere constructively. 

 

(b) Destructive interference 

When  = , then cos (/2) = 0. Also any even multiple of . The amplitude of the 

resultant wave is 0. Crests of one wave coincide with troughs of the other wave. The 

waves interfere destructively 

 

(c) Intermediate state. 

When  is other than 0 or an even multiple of , the amplitude of the resultant is 

between 0 and 2A. The wave functions still add 

 

12. Standing waves in a string 

We consider the wavefunctions for two sinusoidal waves having the same amplitude, 

frequency, and wavelength but traveling in opposite directions in the same medium. 

 

)cos()sin(2
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with 

2

k , where  is the wavelength. The equation represents the wave function of a 

standing wave. A standing wave is an oscillation pattern with a stationary outline. 



 

The points of zero amplitude are called nodes; 

 

x/ = 0, 1/2, 1, , 3/2,….. 

 

The positions in the medium at which the maximum displacement occurs are called 

anticode; 

 

x/ = 1/4, 3/4, 5/4,….. 

 

The distance between adjacent antinodes is equal to /2. The distance between 

adjacent nodes is equal to /2. The distance between a node and an adjacent antinode is 

/4. 
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We have a 3D plot of y(x, t) in the x-t plane. 

 

 
 



13 Resonance (standing waves in a string) 

 

 
 

We consider a string fixed at both ends. The string has length L. Standing waves are 

set up by a continuous superposition of waves incident on and reflected from the ends. 

There is a boundary condition on the waves. 

The ends of the strings must necessarily be nodes. They are fixed and therefore must 

have zero displacement. The boundary condition results in the string having a set of 

normal modes of vibration. Each mode has a characteristic frequency. The normal modes 

of oscillation for the string can be described by imposing the requirements that the ends 

be nodes and that the nodes and antinodes are separated by l/4 

 

 
 

This is the first normal mode that is consistent with the boundary conditions. There are 

nodes at both ends. There is one antinode in the middle. This is the longest wavelength 

mode  
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Consecutive normal modes add an antinode at each step. The second mode (c) 

corresponds to 2 = L. The third mode (d) corresponds to 3 = 2L/3 

The wavelengths of the normal modes for a string of length L fixed at both ends are 

 

n = 2L/n with n = 1, 2, 3, …  

 

where n is the nth normal mode of oscillation. These are the possible modes for the string 

The natural frequencies are given by 
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14. Typical problems 

14.1 Problem 16-21 (SP-16) 

A sinusoidal transverse wave is travelling along a string in the negative direction of 

an x axis. Figure shows a plot of the displacement as a function of position at time t = 0; 

the scale of the y axis is set by 4.0sy   cm. The string tension is 3.6 N, and its linear 

density is 25g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period 

of the wave. (e) Find the maximum transverse speed of a particle in the string. If the 

wave is of the form ( , ) sin( )my x t y kx t    , what are (f) k, (g)  , (h)  , and (i) the 

correct choice of sign in front of  ? 

 



 
 

((Solution)) 

Since the wave travels along the negative x axis, 
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(a) The amplitude: mym

21000.5   

 

(b) The wavelength is  = 0.40 m. The wavenumber is 

 

mk /71.15
2
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(c) The velocity is given by 
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T
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(d) The angular frequency  is 

 

5.188 kv  rad/s 

 

The period T is 
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(e) The maximum transverse velocity is 

 

smym /43.9  

 

(f) mk /71.15
2
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(g) 5.188 kv  rad/s 

 

(h) )sin(  kxyy m  

 

At x = 0 m, y = 4.00 cm 
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(i) plus sign. 

 

14.2 Problem 16-38 (SP-16): Phasor diagram 

Four waves are to be sent along the same string, in the same direction: 
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What is the amplitude of the resultant wave? 

 

((Solution)) 
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Then we have 

 

0   A B C D  



 

The amplitude of the resultant wave is zero. 

 

14.3 Problem 16-57 (SP-16): Standing wave 

The following two waves are sent in opposite directions on a horizontal string so as to 

create a standing wave in a vertical plane: 
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with x in meters and t in seconds. An antinode is located at point A. In the time interval 

that point takes to move from maximum upward displacement to maximum downward 

displacement, how far does each wave move along the string? 

 

((Solution)) 

ym = 6.00 mm = 6.00 x 10-3 m 

k = 4.00 (1/m)
= 400  (rad/s) 
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When cos(t) changes from 1 to -1, it takes half the period (= T/2).  

 

We define the two phases for the two waves, 
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From the condition that both phases do not change 
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One wave moves along the + x direction by 0.25 m, while the other wave moves along 

the (-x) direction by 0.25 m. 
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APPENDIX-1 

A. Derivation of the potential energy 

Vibration and Sound 

P.M. Morse second edition (McGraw-Hill, 1948, New York) 

 

The total force along the y direction for the element (x – x+x) is given by 
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Then we can imagine changing the string from the equilibrium form (y = 0) to the final 

form by making its intermediate form be ky, where k changes from zero to unity. The 

force on any element of string of the form ky is 
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As we displace the string from equilibrium by changing k, the element of displacement is 

ydk. The work required to bring this element of string into place is 
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Then the total work is given by 
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by integrating by part. The first term is equal to zero since y = 0 at x = 0 and L. The 

potential energy U is related to the work W by 
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Then the potential energy of the element (x – x+x) is 
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B Superposition of sinusoidal waves: (using the complex plane) 

Assume two waves are traveling in the same direction, with the same frequency, 

wavelength and amplitude. The waves differ in phase. 
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The resultant wave function, y, is also sinusoidal. It has the same frequency and 

wavelength as the original waves. The amplitude of the resultant wave is 2A cos(/2), 

while the phase of the resultant wave is /2. 

We use the phasor diagram in the complex plane. As  approaches , the magnitude 

of the vector OQ becomes zero and the angle becomes /2.  
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APPENDIX-II 

W. Lawrence Bragg, Lecture on Waves and Vibrations 

https://www.youtube.com/watch?v=pc93R2u3pjE 

 

The reflection of waves is described and their expansion and compression is then 

illustrated experimentally. Sir Lawrence demonstrated the effect of waves crossing each 

other and explains this effect with the aid of models and animated diagrams. The Doppler 

Effect is described and illustrated dramatically by means of ASDIC recordings. Finally, 

Sir Lawrence considers and demonstrates the effect when a body is travelling through a 

medium faster than the waves travel in that medium. 

 

 


