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1. Sound pulse 

Sound waves are longitudinal waves. They travel through any material medium. The 

speed of the wave depends on the properties of the medium. We use a compressible gas as 

an example with a setup as shown below. Before the piston is moved, the gas has uniform 

density. When the piston is suddenly moved to the right, the gas just in front of it is 

compressed. Darker region in the diagram 

 

 
 



When the piston comes to rest, the compression region of the gas continues to move. 

This corresponds to a longitudinal pulse traveling through the tube with speed v. The speed 

of the piston is not the same as the speed of the wave. The light areas are rarefactions (low-

pressure region).  

 

2. The speed of sound 

2.1 Summary 

The speed of sound wave is given by 
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where B is the bulk modulus and  is the mass density of the medium in which the sound 

is traveling. As for the sound waves,  

 

fv  . 

 

The speed of sound waves in air depends only on the temperature of the air.  

 

v = 331 m/s + (0.6 m s-1 °C-1) TC 

 

where TC is the temperature in Celsius. The speed of sound is v = 343 m/s in air at 20 °C 

and 1493 m/s in water at 25 °C. 

 

2.2 The speed of sound 

The formula of the speed of sound can be derived as follows. 

 



 
 

Fig. Pattern of sound wave; bright part (high pressure; compression) and dark part (low 

pressure; expansion; rarefaction). We use the Mathematica program (Graphics) 

 

 
 

Let the pressure of the undisturbed air be p and the pressure inside the pulse be p + p, 

where p is positive due to the compression. Consider an element of air of thickness x 

and face area A, moving toward the pulse at speed v. As this element enters the pulse, the 

leading face of the element encounters a region of higher pressure, which slows the element 

to speed v + v in which v is negative. This slowing is complete when the rear face of 

the element reaches the pulse, which requires time interval  
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Let us apply Newton’s second law to the element. During t, the average force on the 

element’s trailing face is pA toward the right, and the average force on the leading face is 

(p +p)A toward the left (Fig. b). Therefore, the average net force on the element during 

t is  
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The minus sign indicates that the net force on the air element is directed to the left in Fig. 

b. The volume of the element is Ax, we can write its mass as  
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The average acceleration of the element during t is  
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Thus, from Newton’s second law (F = ma), we have 
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which we can write as  

 

v

v

p
v




2 . 

 

The air that occupies a volume V (= Avt) outside the pulse is compressed by an amount 

V (= A vt) as it enters the pulse. Thus,  
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leading to 
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or 
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2.3 Newton’s evaluation 

We will find dp/dV, the rate of change of pressure with volume. Here Newton used 

Boyle’s law; which says that at constant T, 
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where p0 is the equilibrium pressure. Differentiating gives 
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i.e., at equilibrium, with V = V0, we have 
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or more simply, we have 
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Taking a derivative on both sides, 
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The velocity is obtained as 
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or 
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For air at STP (standard temperature and pressure), we have 

 

p0 = 1 atm = 1.013 x 105 N/m2 = 1.013 x 105 Pa 



 1.2041 kg/m3 at 20°C 
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The experimental velocity is for air at STP is, v = 343 m/s. 

 

((Note)) 

 

At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m3. 

 

2.4 Correcting Newton’s mistake 

Instead of Boyle’s law, we use the adiabatic gas law, which gives the relation between 

p and V when no heat is allowed to flow.  

 


00VppV  ,  or   VVpp 00
 

 

where  = CP/Cv,  = 7/5 = 1.40 for air at STP. From the relation of p vs V, we have 
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or more simply, we have 

 

0 0ln ln ln( )p V p V    

 

Taking a derivative on both sides, 
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Then we have 
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2.5 Temperature dependence of the sound velocity 

The density of air is calculated as follows. 
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The molar mass of oxygen is 15.9994 g. The molar mass of nitrogen is 14.007 g. Then the 

molar mass of air is 

 

kgkgM 33 10811.2810)007.142
5

4
9994.152

5

1
(    

 

Using the gas constant R = 8.314472 J/mol K and p = 1.01325 x 105 Pa, we have  

 

TRT
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  (kg/m3) 

 

where  = 1.285 kg/m3 for T = 273.15 K (0° C) and  = 1.198 kg/m3 for T = 293.15 K 

(20°C). Then the velocity of sound is given by 
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((Note)) from the Wikipedia. 

The sound of velocity of dry (0% humidity) is given by 
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The value of 331.3 m/s, which represents the 0 °C speed, is based on theoretical (and some 

measured) values of the heat capacity ratio, γ, as well as on the fact that at 1 atm real air is 

very well described by the ideal gas approximation. Commonly found values for the speed 

of sound at 0 °C may vary from 331.2 to 331.6 due to the assumptions made when it is 

calculated. If ideal gas γ is assumed to be 7/5 = 1.4 exactly, the 0 °C speed is calculated 

(see section below) to be 331.3 m/s, the coefficient used above. 

This equation is correct to a much wider temperature range, but still depends on the 

approximation of heat capacity ratio being independent of temperature, and will fail, 

particularly at higher temperatures. It gives good predictions in relatively dry, cold, low 

pressure conditions, such as the Earth's stratosphere. A derivation of these equations will 

be given in a later section. 

 

2.6 Speed of transverse wave in a bulk solid ((comparison)) 

The speed of transverse wave in a bulk solid is given by 

 


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where S is the shear modulus of the material and  is the density of the material. 

 

3. Wave equation of sound wave 
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The mathematical description of sinusoidal sound waves is very similar to sinusoidal 

waves on a string. The distance between two successive compressions (or two successive 

rarefactions) is the wavelength, . As these regions travel along the tube, each element 

oscillates back and forth in simple harmonic motion. Their oscillation is parallel to the 

direction of the wave. 

The displacement of a small element is 

 

)cos(),( max tkxstxs   

 

where smax is the maximum position relative to equilibrium. This is the equation of a 

displacement wave. k is the wave number.  is the angular frequency of the piston. 

The variation p in the pressure of the gas as measured from its equilibrium value is 

also sinusoidal, 

 

)sin(),( max tkxptxp   

 

The pressure amplitude, maxp  is the maximum change in pressure from the equilibrium 

value. The pressure amplitude is proportional to the displacement amplitude, 

 

maxmax svp   

 

A sound wave may be considered either a displacement wave or a pressure wave. The 

pressure wave is 90° out of phase with the displacement wave 

 

 



 
 

((Note)) 

 

 
 

Fig. ( , )s x t  is the displacement of the element at ( , )x t  from the position in equilibrium.  

 



( , )s x t  is the displacement of the element at ( , )x t . 

In equibrium: 

 

The initial positions:  x , and x x   

The initial volume:  [( ) ]A x x x A x      

 

The deviation from the equilibrium: 

 

The final positions:  ( , )x s x t , and ( , )x x s x x t      

The final volume: 
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The change in volume V of the cylinder is  
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In the limit of x→0, the fractional change in volume dV/V is 
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From the definition of B, we have 
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where 
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((Note)) Relation between the pressure and displacement 

P.A. Tipler and G. Mosca, Physics For Scientists and Engineers, 6-th edition (W.H. 

Freeman, 2008) 

 

 
 

4. Derivation of the intensity of sound 

We derive the expression for the intensity given by 
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Consider a thin slice of air of thickness dx, area A, and mass dm, oscillating back and forth 

as the sound wave passes through it. The kinetic energy dK of the slice of air is  
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Here vs is not the speed of the wave but the speed of the oscillating element of air,  
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Using this relation and putting Adxdm  allow us to rewrite Eq.(1) as  

 

)(sin))((
2

1 22

max tkxsAdxdK    (2) 

 

The total kinetic energy K in one wavelength  is 
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The average rate at which kinetic energy is transported is 
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We assume that potential energy is carried along with the wave at this same average 

rate. The wave intensity I, which is the average rate per unit area at which energy of both 

kinds is transmitted by the wave, is then,  
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5. Sound level 

The intensity of a sound wave at a surface is the average rate per unit area at which 

energy is transferred by the wave through or onto the surface, 
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where P is the time rate of energy transfer (power) of the sound wave and A is the area of 

the surface intercepting the sound.  

As a sound wave spreads out from its source, its intensity falls off because the area of 

the wave front grows larger, and therefore the wave energy per unit area grows smaller. 

The intensity at a distance r from a point source that emits sound waves of power Ps is  
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Fig. A point source S emits sound waves uniformly in all directions. The waves pass 

through an imaginary sphere of radius r that is centered on S. 

 

6. The decibel scale 

The sound intensity level b of a sound wave is defined by the equation,  
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where I is in the units of W/m2, I0 is a reference intensity, chosen to be 10-12 W/m2, 

approximately the threshold of human hearing at 1000 Hz. Sound intensity levels are 

expressed in decibels, or dB. 

 

7. Interference in Sound Waves 



7.1 One source with different paths 

 

 
 

Sound from S can reach R by two different paths. The upper path can be varied. A 

constructive interference occurs when the phase difference is expressed by 
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A destructive interference occurs, when the phase difference is expressed by 
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A phase difference may arise between two waves generated by the same source when they 

travel along paths of unequal lengths. 

 

7.2 Two sources with different paths 

 

 



 

We consider two point sources of sound waves S1 and S2. The two sources are in phase 

and emit sound waves of the same frequency. Waves from both sources arrive at point P 

whose distance from S1 and S2 is L1 and L2, respectively. The two waves interfere at point 

P. The same interference condition holds valid for the two-point sources located at different 

places (S1 and S2).  

The resultant intensity of two waves can be calculated using the phasor diagram; 
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 is the phase difference between the path S1P and the path S2P. Then we have 

the intensity given by 

 

Since the intensity is defined by 
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7.3 Phasor diagram for A1 = A2 

This phasor diagram is also used for the calculation of the double slilts (Young) 

interference. We consider the sum of the vectors given by OS  and ST . The magnitudes 

of these vectors are the same. The angle between OS  and ST  is  (the phase difference). 

 



 
 

In this figure, RQTQSQO  . 2/ STMSOM . Then we have 
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The resultant intensity is proportional to  2OT , 
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Note that the radius R is related to OS  (= A) through a relation  
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7.4 Interference of many sources with the same amplitude 

We consider the case for the interference of N waves. 
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The resultant intensity is proportional to  2OT , 
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This intensity is a periodic function of  with the period 2 . 

This is an example for N = 36 sources. 

 



 
 

8. Standing wave patterns in pipes 

8.1 Overview 

Standing waves can be set up in air columns as the result of interference between 

longitudinal sound waves traveling in opposite directions. The phase relationship between 

the incident and reflected waves depends upon whether the end of the pipe is opened or 

closed. 

 

A closed end of a pipe is a displacement node in the standing wave. The wall at this 

end will not allow longitudinal motion in the air. The reflected wave is 180° out of phase 

with the incident wave. The closed end corresponds with a pressure antinode. It is a point 

of maximum pressure variations 

 

The open end of a pipe is a displacement antinode in the standing wave. As the 

compression region of the wave exits the open end of the pipe, the constraint of the pipe is 

removed and the compressed air is free to expand into the atmosphere. The open end 

corresponds with a pressure node. It is a point of no pressure variation 

 

8.2 Standing waves in an open tube 

Both ends are displacement antinodes. The fundamental frequency is v/2L. This 

corresponds to the first diagram. The higher harmonics are ƒn = nƒ1 = n (v/2L) where n = 

1, 2, 3, … 

 



 
 

8.3 Standing waves in a tube closed at one end 

The closed end is a displacement node. The open end is a displacement antinode. The 

fundamental corresponds to 1/4. The frequencies are ƒn = nƒ = n (v/4L) where n = 1, 3, 5, 

… 

 

 
 

8.4 Conclusion 

In conclusion, in a pipe open at both ends, the natural frequencies of oscillation form a 

harmonic series that includes all integral multiples of the fundamental frequency. In a pipe 

closed at one end, the natural frequencies of oscillations form a harmonic series that 

includes only odd integral multiples of the fundamental frequency. 

 

((Note)) 

 



 
 

 
 

9 Beat 

Temporal interference will occur when the interfering waves have slightly different 

frequencies. Beating is the periodic variation in amplitude at a given point due to the 

superposition of two waves having slightly different frequencies 

Beats arises when two waves having slightly different frequencies, f1 and f2, are 

detected together. The beat frequency is given by 
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The number of amplitude maxima one hears per second is the beat frequency. It equals 

the difference between the frequencies of the two sources. The human ear can detect a 

beat frequency up to about 20 beats/sec 

 

We now consider two sound waves given by 
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The resultant displacement is 
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The first cosine represents the rapid oscillations of the wave at the angular frequency 

)
2

( 21  
. The second cosine represents the slow variation in the amplitude of the wave, 

producing the beat.  

Suppose that 1 is very close to 2:   21  and 21  beat  
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T is the repeat time of the slowly varying envelope, 
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So the beat frequency is  

 

fbeat = f1-f2. 

 

((Mathematica)) 

 

g1(t) = sin(10t) 

g2(t)  = sin(at) 

 

(a) a = 9.2; Tnet/T0 = 12.5 

 

 

 

(b) a = 9.5, Tnet/T0= 20. 

 

 

 

(c) a = 9.8, Tnet/T0= 50. 
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((Note)) Comment on the beat frequency 

We consider the two waves whose frequencies are very close to each other. 
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The beat frequency is 
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Fig. Beat pattern with two frequencies with mod( )f f  and mod( )f f  with the 

average frequency f. The oscillation of envelope with the frequency modf  is 

superimposed with the fast oscillation with frequency f. 
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10. Wave analysis: Fast Fourier transform 

((Mathematica)) 

 

 
 

Method of Fast Fourier Transform

1. Give the number of divisons, N.

2. Give the upper limit of the time domain, T.

3. Calculate the distance of each division, D=T/N

4. Make the list of  the value of f(t) at t = kD, where k = 1, 2, 3, ... N.

5. Use the program "Fourier, for the FFT .

6. Claculate the division of the Frequency domain,  w0=2p/T

7. Clacculate the upper limit of rge frequency domain, wmax=2p/D

8. One get the Fourier spectrum as a function of k (0, 1, ..., N) in the units of w0.



((Example-1)) FFT analysis of superposition of waves with several different 

frequencies 

 



 

N1 = 2048; T = 10 π; ∆ =
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f1@t_D = 6 Cos@10 tD + 4 Sin@30 tD + 10 Sin@40 tD
6 Cos@10 tD + 4 Sin@30 tD + 10 Sin@40 tD

Plot@f1@tD, 8t, 0, 2 π<D
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((Example-2))  FFT analysis of beat signal 

 

 
 

11. Doppler effect 

The Doppler effect is the apparent change in frequency (or wavelength) that occurs 

because of motion of the source or observer of a wave. When the motion of the source or 

the observer is toward the other, the frequency appears to increase. When the motion of the 

source or observer is away from the other, the frequency appears to decrease 

 

g1@t_D = 6 Cos@10 tD + 4 Sin@11 tD
6 Cos@10 tD + 4 Sin@11 tD

Plot@g1@tD, 8t, 0, 8 π<D
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ListPlotAAbs@list2D2 ë 100, Joined → True, PlotRange → 880, 100<, 80, 200<<E
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us (>0) is the velocity of sender approaching the receiver. 

ur (>0) is the velocity of the receiver approaching the sender. 

f0 is the frequency of the sender and f is the frequency of the receiver. 

 



 
Fig. A receiver is stationary and a source is moving toward the receiver at the velocity 

vs. v is the velocity of sound. vs <v. 

 

12. Example 

12.1 Pie eater problem to understand the Doppler effect 

A conveyor belt moves to the right with a speed v = 300 m min-1. A very fast piemaker 

puts pies on the belt at a rate of 20 per minute, and they are received at the other end by a 

pie eater. 

(a) If the piemaker is stationary, find the spacing  between the pies and the frequency 

f with which they are received by the stationary pie eater. 

(b) The piemaker now walks with a speed of 30 m min-1 toward the receiver while 

continuing to put pies on the belt at 20 per minute. Find the spacing of the pies and 

the frequency with which they are received by the stationary pie eater. 

(c) Repeat your calculations for a stationary piemaker and a pie eater who moves 

toward the piemaker at 30 m min-1. 

 

((Solution)) 

(a) Since 20 pies per minute are placed on the belt, 20 pies per minute will be received. 

The time between the placing of the pies is 0.05 min, and during that time the belt 

moves 300 x 0.05 m = 15 m. Consequently, the spacing between the pies is  = 15 m. 

(b) Relative to the piemaker, the belt moves at 270 m min-1. Consequently,  = 270 x 0.05 

m = 13.5 m. Since the pies are traveling toward the receiver at 300 m min-1, the number 

received per minute, i.e., the frequency, is given by f = 300/13.5 min-1 = 22.2 min-1. 



(c) If the receiver moves toward the piemaker, the spacing of the pies on the belt is, as in 

(a), 15 m. However, the speed of the belt relative to the receiver is 330 m min-1, so the 

frequency f = 330/15 min-1 = 22 min-1. 

 

((Note)) 

The red circle (the pie maker). The blue circle  (the pies). The green band (the belt 

conveyor). The wavelength (the separation distance between pies) depends on the velocity 

of the belt conveyor and the velocity of the pie maker. It has nothing to do with the 

movement of the pie eater. 

 

(a) The pie maker (at rest) 
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      for 0su   (pie maker at rest). 

 

(b) The pie maker moving along the +x axis 
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(c) The pie maker moving along the (-x) axis 
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12.2 Example-2 

Problem 17-61 (SP-17) 

In Fig., a French submarine and a U.S. submarine move toward each other during 

maneuvers in motionless water in the North Antarctic. The French sub moves at speed vF 

= 50.00 km/h, and the U.S. sub at vUS = 70.00 km/h. The French sub sends a sonar signal 

(sound wave in water) at 1.000 x 103 Hz. Sonar waves travel at 5470 km/h. (a) What is the 

signal’s frequency as detected by the U.S. sub? (b) What frequency is detected by the 

French sub in the signal reflected back to it by the U.S. sub? 

 

 
 

((Solution)) 

vF = 50 km/h 

vUS = 70 km/h 

f = 1 kHz 

v = 5470 km/h 
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13. Shock waves 

If the speed of a source relative to the medium exceeds the speed of sound in the 

medium, the Doppler equation no longer applies. In such a case, shock waves result. We 

have a series of wave circles with a common tangent line which goes through the center of 

the source. These series of circle waves form a wavefront which forms a cone in 3D or a 

pair of lines in 2D. The half-angle  of the cone is given by 

 

sv

v
sin  

 

where v is the velocity of sound and vs is the velocity of the object (source). The ratio vs/v 

is called the Mach number. The concentration of energy in wavefront of the source results 

in a shock wave. 

 



 
 

((Note)) 

 

(a) vs/v = 1.0 (critical case) 

 
Fig. A receiver is stationary and a source is moving toward the receiver at the velocity 

vs. v is the velocity of sound. vs = v. 

 

(b) vs/v = 1.5 

 



 
Fig. A receiver is stationary and a source is moving toward the receiver at the velocity 

vs. v is the velocity of sound. vs /v = 1.5 

 

((Note)) 

 

1 Mach = 768 miles/h = 340 m/s 

 

 

14. Sonic boom 

A sonic boom is the sound associated with the shock waves created whenever an object 

traveling through the air travels faster than the speed of sound. Sonic booms generate 

enormous amounts of sound energy, sounding similar to an explosion or a thunderclap to 

the human ear. Sonic booms due to large supersonic aircraft can be particularly loud and 

startling, tend to awaken people, and may cause minor damage to some structures. A sonic 

boom does not occur only at the moment an object crosses the speed of sound; and neither 

is it heard in all directions emanating from the speeding object. Rather the boom is a 

continuous effect that occurs while the object is travelling at supersonic speeds. But it only 

affects observers that are positioned at a point that intersects a region in the shape of 

geometrical cone behind the object. As the object moves, this conical region also moves 

behind it and when the cone passes over the observer, they will briefly experience the boom. 

 

((Note)) 

The velocity of sound is given by 

 

340soundv   m/s = 760.56 miles/h 



 

1
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v
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planev  2223.73 miles/h or planev  994.1 m/s 

 

where Ma is the Mach number and is defined by 
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((Example-1)) 

Twin sonic booms from space shuttle Atlantis 2008 

https://www.youtube.com/watch?v=lNL4HHFG8H4 

 

Space Shuttle Discovery Landing (STS-131) 

https://www.youtube.com/watch?v=6k70hn4-ffc 

 

The space shuttle faster than the speed of sound create two sonic booms. The first one 

is created at the front of the plane, where the nose presses on the air it runs into. The second 

is made at the rear, where the tail leaves an empty space behind it. At each end, the air 

pressure is strongly changed by the plane, creating sound waves. The wave fronts come 

from the nose and tail as being two cones, separated by the length of the plane. The time 

between two sonic booms is the time it takes for the plane to fly its own length. 

 

((Example 2)) 

 

 
 

Fig. Sonic boom. The observer is at the point O. OA h , 
tan

h
OB


 , and 

sin

h
AB


 . 

 

Suppose that an airplane passed at the height h = 5000 m, just above an observer (at 

the point O), with the velocity of plane vplane, where the sound velocity is soundv  340 m/s 

and the angle  (=20°). 
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Thus the airplane flies at the velocity of Mach (k =2.924); planev  994 m/s. The wave 

front of the sonic boom will arrive at the observer (at the point O) at the time  

 

13.8
tanplane

h
t

v 
    s, 

 

after the airplane passes just above the observer (at the point O). 

 

((Note)) 
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15. Red shift and Hubble’s law (special relativity) 

We suppose that a source is located at the origin of the reference frame S. An observer 

moves relative to S at velocity v. So that he is at rest in S’ (in Fig we use S1 instead of S’ 

for convenience). According to the special relativity, we obtain the Doppler effect for the 

light as 
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where c is the speed of light and cff  '' . This means that a spectral line that normally 

has a wavelength  is observed at a longer wavelength ’. Note that 
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The spectral line is shifted by an amount of   ' . The red shift of the galaxy (usually 

noted by z) is given by 

 

c

v
z 





 '

 

 

(a) The red shift 

The light from distant stars and more distant galaxies is not featureless, but has distinct 

spectral features characteristic of the atoms in the gases around the stars. When these 

spectra are examined, they are found to be shifted toward the red end of the spectrum. This 

shift is apparently a Doppler shift and indicates that essentially all of the galaxies are 

moving away from us. The measured red shifts are usually stated in terms of a z parameter. 

The largest measured z values are associated with the quasars. 

 

 
Hydrogen red-shift example 

 

(b) Hubble’s law 

 



 
 

The relationship between the distances to galaxies and the red shift is one of the most 

important astronomical discoveries of the twentieth century. This relation tells us that we 

are living in an expanding universe. In 1929, Hubble published this discovery. According 

to the Hubble’s law, the recessional velocity v of a galaxy is related to its distance r from 

the Earth by 

 

v = H0 r,  

 

where H0 is constant commonly called the Hubble constant and H0 = 75 km s-1 Mpc-1. Here 

Mpc is a megaparsecs (parsec, 1 pc = 3.262 ly; light year, 1 ly = 9.462 x 1015 m = 63,240 

AU).  

 

pc = 3.262 x 9.462 x 1015 m = 3.0857 x 1016 m.  

1 Mpc = 3.0857 x 1022 m.= 3.0857 x 1019 km 

 

Since v = zc and v = H0r, then H0r = zc. Thus the distance to a galaxy is related to its 

red shift by 

 

0H
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(c) Big Bang 

How long ago did the Big Bang take place? 
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1

Hv

r
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where T0 is the same for all galaxies. 

 

T0 = 1/(75 km s-1 MPc-1)) = 10

7
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sMPc
 years=13 billion 
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Note that 1 year=365 x 24 x 60 x 60 = 3.156x107 sec. The age of the solar system is 4.5 

billion years. 

 

(d). Dicke and Peebles (1960) 

Early universe had been at least as hot as the Sun center, where He is currently produced. 

The hot early universe must therefore have been filled with many high-energy, short-

wavelength photons, which formed a radiation field with that can be given by Planck’s 

blackbody law. The universe has expanded so much since those ancient times that all those 

short-wavelength photons have their wavelengths stretched by a tremendous factor. As a 

result, they have become low-energy, long-wavelength photons. 

The temperature of this cosmic radiation field is now quite low, only a few degrees 

above 0 K. 

 

(e). Arno Penzias and Robert Wilson 

No matter where in the sky they pointed their antenna, they detected faint background 

noise. 

They had discovered the cooled-down cosmic background radiation left over from the 

hot Big Bang. 

 

(f). Cosmic Background 

 

Left over from the hot Big Bang. 

 

T = 2.726 K, cosmic microwave background 

 

][
][

0029.0
max m

KT
  (Wien’s displacement law) 

 

When T = 2.726 K, ][06.1max mm . 

 

The spectrum of the cosmic microwave background is given by COBE (Cosmic 

Background Explorer). 

 

16. Typical problems 

16.1 Problem 17-47 (SP-17) 

A violin string 30.0 cm long with linear density 0.659 g/m is placed near a loudspeaker 

that is fed by an audio oscillator of variable frequency. It is found that the string is set into 



oscillation only at the frequencies 880 and 1320 Hz as the frequency of the oscillator is 

varied over the range 500 – 1500 Hz. What is the tension in the string? 

 

((Solution)) 

 = 0.650 x 10-3 kg/m 

fs= 880 Hz and 1320 Hz 

fosc = 500 – 1500 Hz 

L = 0.30 m 
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For the n-th harmonics, 
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The frequency of the string (violin) is 
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Then we have 

 

Ts = 45.3 N 

 

16.2 Problem 17-48 

A tube 1.20 m long is closed at one end. A stretched wire is placed near the open end. 

The wire is 0.330 m long and has a mass of 9.60 g. It is fixed at both ends and oscillates in 

its fundamental mode. By resonance, it sets the air column in the tube into oscillation at 

that column’s fundamental frequency. Find (a) that frequency and (b) the tension in the 

wire. 

 

((Solution)) 

 

L = 1.20 m    (tube length) 

L0 = 0.330 m    (wire length) 

m = 9.60 g = 9.60 x 10-3 kg  (mass of wire) 

 

The fundamental frequency of the wire whose ends are fixed. 

 

The wavelength: 
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The velocity: 
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where Ts is the tension and  is the mass per unit length, 
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Then the fundamental frequency f0 is 
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Column’s fundamental frequency 

 

4


L   L4  

L

vv
f

4



 

 

where v (= 343 m/s) is the velocity of sound. 

 

In resonance, we have f = f0. 
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or 

 

Ts = 65.0 N. 

 



 
 

16.4 Problem 17-34 (SP-17) 

Party hearing. As the number of people at a party increases, you must raise your voice 

for a listener to hear you against the background noise of the other partygoers. However, 

once you reach the level of yelling, the only way you can be heard is if you move closer to 

your listener, into the listener’s “personal space.” Model the situation by replacing you 

with an isotropic point source of fixed power P and replacing your listener with a point that 

absorbs part of your sound waves. These points are initially separated by ri = 1.20 m. If the 

background noise increases by  = 5 dB, the sound level at your listener must also 

increase. What separation rf is then required? 

 

((Solution)) 

ri = 1.20 m 

I0 = 10-12 W/m2 

 



The intensity Ii is given by 
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For r = ri, 

 

i

i

i r
P

Ir

P

I
10

0

102

0

10 log20)
4

1
(log10)

4

1
(log10 


  

 

For r = rf, 
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Then we have 
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Then we get 

 

mrr if 675.010 25.0    

 

16.5 Problem 17-66 (SP-17); Doppler effect 

Two trains are travelling toward each other at 30.5 m/s relative to the ground. One train 

is blowing a whistle at 500 Hz. (a) What frequency is heard on the other train in still air? 

(b)What frequency is heard on the other train if the wind is blowing at 30.5 m/s toward the 

whistle and away from the listener? (c) What frequency is heard if the wind direction is 

reversed? 

 

((Solution)) 



v = 343 m/s 

f = 500 Hz 

ur = us = 30.5 m/s 

 
 

(a) 
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(b) v1 = v – 30.5 = 312.5 m/s 
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(c) v2 = v + 30.5 = 373.5 m/s 
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______________________________________________________________________ 

APPENDIX-1 Geometry of phasor diagram 

Proof of the geometry for the phasor diagram 

 



 
 

Fig.   . 
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We consider two isosceles triangles. 
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In other words, points O, S, and T lie on a circle with radius R (the value of R will be 

specified later). We assume that 

 
TSU  

 

From the geometry shown in the Fig, we have 

 








2

2
 

 

Then we get 
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The radius R and the side OS  are related as 

 

2
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This means that R is uniquely determined when the angle  and OS  are given. In Fig., 

ΔOST is a isosceles triangle with STOS  . When M is the midpoint of the side OT , it is 

found that SM is perpendicular to OT . We also get 
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APPENDIX-2 Laser cooling of alkali metal atom 

In one experiment by Cornell and Wieman, a Bose-Einstein condensate contained 2000 
87Rb atoms within a volume of about 10-15 m3. Estimate the temperature at which Bose-

Einstein condensation should have occurred.  

 

For Rb atom 

 

m = 85.4678 u, 

 

N = 2000, V = 10-15 m3. 

 

Then TE can be evaluated as 

 

TE = 29.8441 nK. 

 

The lase cooling of alkali metal atoms consists of radiation pressure and the doppler effect. 

The radiation pressure arises from the spontaneous emission. The velocity of atoms is 

decreased by the radiation pressure. The velocity of the atoms is uniquely determined from 

the Doppler effect. As the velocity is decreased due to the radiation pressure, the frequency 

of the laser should be changed appropriately. Again, from the Doppler effect again, the 

specified velocity is uniquely selected. The velocity is decreased due to the radiation 

pressure from the laser. 

 

(A) Radiation pressure 



How can we get such a very low temperature? In order to achieve the lowest 

temperature, we use the laser cooling techniques. The temperature of the atoms is linearly 

proportional to the kinetic energy of atoms. So we need to reduce the velocity of atoms. 

 

((Example)) 

Rb atom 

 

vrms = 295.89 m/s at T = 300 K 

vrms = 17.083 m/s at T = 1 K 

vrms = 0.54 m/s  at T = 1 mK 

vrms = 0.017 m/s at T = 1 K 

 

The force that light could exert on matter are well understood. Maxwell's calculation 

of the momentum flux density of light, and the laboratory observation of light pressure on 

macroscopic object by Lebedxev and by Nichols and Hull provided the first quantitative 

understanding of how light could exert forces on material object. Einstein pointed out the 

quantum nature of this force: an atom that absorbs a photon of energy h will receive a 

momentum 

 

c

h
G


 , 

 

along the direction of incoming photon. If the atom emits a photon with momentum, the 

atom will recoil in the opposite direction. Thus the atom experiences a net momentum 

change  

 

outinatom PPp  , 

 

due to the incoherent scattering process. Since the scattered photon has no preferred 

direction, the net effect is due to the absorbed photon, resulting in scattering force, 

 

inscatt NpF  , 

 

where N is the number of photons scattered per second. Typical scattering rates for atoms 

excited by a laser tuned to a strong resonance line are on the order of 107 - 108/s. The 

velocity of Na atom changes by 3cm/s. 
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or 

 

Nm

h
v  . 



 

After 1 sec, the velocity changes as 

 

m

h
vN   = 2.947 cm/s, 

 

for the N photons, where m = 22.9897 u for Na atom and  = 589.0 nm for the Na D line.  

 

 
 

Fig. With the laser tuned to below the peak of atomic resonance. Due to the Doppler 

shift, atoms moving in the direction opposite the laser beam will scatter photons at 

a higher rate than those moving in the same direction as the beam. This leads to a 

larger force on the counter-propagating atoms. 

 

((Model)) Schematic explanation for the radiation pressure 

 

(a), (b), (c) (d), (e) 

 



 
 

Fig. The change of linear momentum of atom due to the absorption and spontaneous 

emission of light. 

 

Fig.(a) Atom in the ground state. The laser beam comes in from the right side and 

is applied to the atom. 

 

Fig.(b) The state of the atom changes from the ground state to the excited stated 

due to the absorption of laser light. The atom gets a momentum kℏ of 

photon.  

 

Fig.(c) The atoms in the excited state return to the ground state due to the 

spontaneous emission. If the photon emits from the atom in the direction 

shown in Fig.(c), the atom receives momentum kℏ  in the opposite direction 

of photon. This behavior is called as recoil. The momentum is called 

recoiled momentum. Subsequently the spontaneous emission occurs. After 

the spontaneous emission, the atom returns to the ground state, 

 

Fig.(d) Since the atom is again in the ground state, the atom absorbs the laser light. 

The atom receives momentum kℏ of photon in the direction from to right to 

left side. 



 

Fig.(e) Due to the spontaneous emission, again the atom returns to the ground state. 

Note that the direction of the spontaneous emission may be different from 

that of the emission shown in Fig.(c). So in this case, the atom receives 

recoiled momentum. Again the atom returns to the ground state. 

 

 
 

In a series of such processes, whenever the atom absorbs the laser light, the atom receives 

momentum kℏ . During the spontaneous emission the atom receives isotropic recoiled 

momentum, which become zero in momentum after many repeated spontaneous emission 

processes as shown in the above Fig. However, after each cycle of absorption and 

spontaneous emission, the atom receives linear momentum kℏ  in the direction of laser 

light. 

When the angular frequency of the laser light is nearly equal to the energy difference 

between the ground state and the excited state for the atom, the atom receive momentum. 

Correspondingly, we define the radiation pressure as 
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Fig. Spontaneous emission and absorption. 

 

(B) Doppler effect 

Spontaneous emission

kkkkk



The primary force used in laser cooling and trapping is the recoil when the linear 

momentum is transferred from photons scattering off an atom. The momentum kick that 

the atom receives from each scattered photon is quite small; a typical velocity change is 

about 1 cm/s. However, by exciting a strong atomic transition, it is possible to scatter more 

than 107
 photons per second and produce large accelerations. The radiation-pressure force 

is controlled in such a way that it brings the atoms in a sample to a velocity near zero 

("cooling"), and holds them at a particular point in space ("trapping"). The cooling is 

achieved by making the photon scattering rate velocity-dependent using the Doppler effect.  

The basic principle is illustrated below. If an atom is moving in a laser beam, it will see 

the laser angular frequency 
photon shifted by an amount )/( cvphoton where v is the velocity 

of the atom along the opposite direction of the laser beam.  
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If the laser frequency is below the atomic resonance frequency, the atom, as a result of this 

Doppler shift, will scatter photons at a higher rate if it is moving toward the laser beam 

than if it is moving away. If laser beams impinge on the atom from all six directions, the 

only remaining force on the atom is the velocity-dependent part, which opposes the motion 

of the atoms. This provides strong damping of any atomic motion and cools the atomic 

vapor This arrangement of laser fields is often known as "optical molasses”. It will scatter 

photons at a higher rate than those moving in the same direction as the beam. This leads to 

a larger force on the counter propagating atoms. 

 



 
 

(a) 

 

 
 

Fig. Doppler effect. 
c

v
photonphotonatom   . The laser and the atom approach each 

other. 

 

(b) 
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Fig. Doppler effect. 
c

v
photonphotonatom   . The laser and the atom approach each 

other. As the velocity of the atom decreases, one needs to increase photon . 

 

((Example)) 

Rb atom 

 

At 300 K, vrms=295.89 m/s 

 

photon = 780 nm. 

 

fphoton = 3.84349 x 1014 Hz 

 

c

v
ffff photonphotonatm  = 309.0 MHz. 
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APPENDIX-III Synchrotron: electron motion in the presence of magnetic field 

It seems that the laser cooling of alkali atoms is similar to the synchrotron in a sense that 

the angular frequency is no longer constant but now depends on the velocity v.  

((Synchrotron)) 

As we discussed in LN 28, the cyclotron motion (circular motion with radius R) is 

expressed by 
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where  is the angular frequency, 
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The angular frequency is no longer constant but now depends on the velocity v. The 

resonance between the circulating frequency and the oscillation frequency no longer occurs. 

As the energy of the particles (E) increase, the strength of B must be changed with each 

turn to keep the particles moving in the same ring. The change in B must be carefully 

synchronized to the change in energy, or the beam will be lost (hence the name 

"synchrotron"). The range of energies over which particles can be accelerated in a single 

ring is determined by the range of field strength available with high precision from a 

particular set of magnets.  

 

APPENDIX-IV frequency of the standing waves in tubes 

 

(a) Open-open system 

 

 
 

Fig. Open (green line)-open (blue line) system 

 

The condition of the resonance: 
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where v is the velocity of the sound wav e. 
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(b) Closed-open system 

 

 
 

Fig. Closed (green line)-open (blue line) system 

 

The condition for the resonance: 
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(c) Closed-closed system 

 



 
 

Fig. Closed (green line)-closed (blue line) system 

 

 

The condition of the resonance: 
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