Lecture Note 20S
Supplement to Chapter 20

Entropy

Introduction to Statistical Mechanics
Micro-canonical ensembles
Canonical ensembles

1. Definition of entropy in statistical mechanics

In statistical thermodynamics the entropy is defined as being proportional to the
logarithm of the number of microscopic configurations that result in the observed
macroscopic description of the thermodynamic system:

S:kB InW

where kg is the Boltzmann's constant and W is the number of microstates corresponding
to the observed thermodynamic macrostate. This definition is considered to be the
fundamental definition of entropy (as all other definitions can be mathematically derived
from it, but not vice versa). In Boltzmann's 1896 Lectures on Gas Theory, he showed that
this expression gives a measure of entropy for systems of atoms and molecules in the gas
phase, thus providing a measure for the entropy of classical thermodynamics.

In 1877, Boltzmann visualized a probabilistic way to measure the entropy of an
ensemble of ideal gas particles, in which he defined entropy to be proportional to the
logarithm of the number of microstates such a gas could occupy. Henceforth, the
essential problem in statistical thermodynamics, i.e. according to Erwin Schrédinger, has
been to determine the distribution of a given amount of energy E over N identical systems.

Statistical mechanics explains entropy as the amount of uncertainty (or
"mixedupness" in the phrase of Gibbs) which remains about a system, after its observable
macroscopic properties have been taken into account. For a given set of macroscopic
variables, like temperature and volume, the entropy measures the degree to which the
probability of the system is spread out over different possible quantum states. The more
states available to the system with higher probability, the greater the entropy. More
specifically, entropy is a logarithmic measure of the density of states. In essence, the
most general interpretation of entropy is as a measure of our uncertainty about a system.
The equilibrium state of a system maximizes the entropy because we have lost all
information about the initial conditions except for the conserved variables; maximizing
the entropy maximizes our ignorance about the details of the system. This uncertainty is
not of the everyday subjective kind, but rather the uncertainty inherent to the
experimental method and interpretative model.

2. Boltzmann’s principle

Microcanonical ensemble



We consider a system in the energy interval between £ and E + OF, where OF is the
order of uncertainty. Each state in this range is assumed to have the same probability.
Thus we have an ensemble characterized by the equal probability w, of each state n, or

wn = w = constant for E<E,<E + OF,

which expresses the principle of equal probability as it is. The number of microscopic
states accessible to a macroscopic system is called the statistical weight (thermodynamic
weight). The number of states for the system with the energy between E and E + JF (the
statistical weight) may be written as

W (E,SE) = Q(E)SE

where (XFE) is the density of states. This particular ensemble is known as the
microcanonical ensemble.

(o] E E + 5E

Here we show that the entropy S in the equilibrium state of the system can be
expressed by

S=k,InW

where W is the number of states.
Suppose that the entropy S is expressed by a function W as

S=f07)

We assume that there are two independent systems (A and B). These systems are in the
macroscopic equilibrium states 1//a> and |1//b> , respectively. The numbers of states for

these states are given by W, and W,. We now consider the combined system (C = A + B).
The number of states for the state |®C> (:|‘//a>®|% >) is given by



W.=W,y Wy.

The entropy of the system C is
S.=8,+S;

from the additivity of the entropy. Then we have the relation
JWW) =)+ 1w,

For simplicity, we put
&=Wa, n=W.

Then the relation is rewritten as
fem= 1+ fm)

Taking a derivative of the both sides with respect to &,
nf'(Em=f'(s)

Taking a derivative of the both sides with respect to 7,
'(cm= 1)

From these we get
') =nf'(n)=k

where £ is independent of & and 7. In other words, & should be constant. The solution of
the first-order differential equation is

f(&)=klng
When k = kg (Boltzmann constant), the entropy is given by
S=k,InW

3. Microcanonical ensemble for an ideal gas
The basic assumption of statistical mechanics is

all microstates are equally probable.



We consider the system of N free particles in a container with volume V. Each state of
the system is specified by a point at 6N-dimensional space (3N coordinates, 3N momenta)
(so called, phase space).

(rla rZa“'arNa pla pZ: cee s pN) = (qla q23 Q3,~-~, q3N9p19p23"'9p3N)

This state is continuous, but not discrete. For convenience, we assume that the 6/N-
dimensional phase space consists of unit cells with the volume of (AgAp)™", where the
size of Ap and Ag is arbitrary. There is one state per the volume of (AgAp)™. Note that
AgAp= h (Planck’s constant) from the Heisenberg’s principle of uncertainty.

We define the number of states in a volume element dg;dg.dgs. ...dgsndp1dp2dpsn as

1
quldqzd% ..... dq,dp,dp,...dp;,

The total energy E is a sum of the kinetic energy of each particle. It is independent of the
3N coordinates {r;}. We calculate the number of states when the total energy is between
Eand E + JF.

W(E,OE) = Q(E)SE
B 1 yr
(AgAp)*™

where
E<(pl’+pt+ ...+ paD) 2m<E+ SE

The volume of the momentum space is the spherical shell between the sphere with radius
R =,/2m(E + OF) and the sphere of radius R =~/2mkE .

We calculate the number of states between E and E + OF as follows. First we
calculate the volume of the 3N dimensional sphere (momentum) with radius R given by

R =~2mE
The volume of the sphere is obtained as

2 (27sz)3N/2
(N3N /2)

where I'(x) is the Gamma function of x. The total number of states N(E) for the system
with energy between 0 and E is given by



N
N(E)= ! o r- 2 2mE)*""?

(AgAp)™ N! BN)I'(3N/2)
where N! is included because N-particles are non-distinguishable. Note that N(E) is
introduced for the convenience of the mathematics since we consider a system having the

energy only between E and E + OE. The number of states between E and E + OF is
obtained as

W(E,éE)ZQ(E)gE‘sz(E)éEz 1 3NV_N(27Z771E)3N/2§
dE (AqAp)’ N! TGN/2) E

where (XFE) is the density of states. We use the Heisenberg’s principle of uncertainty;
AgAp = h (Planck’s constant), which comes from the quantum mechanical requirement.

Then we have

where % = h/(2m) (h; Dirac constant).

Using the Stirling’s formula

for N>>1.

rNy 3N 3N 3N
2 2 2 2

InN!'=N(InN —-1) for N>>1

Then we have

4. Entropy S
The entropy S is defined by

S =k, InW (E,5E)

5N V. 3N, m
=k [+ Nln(—) + -1
sl 2 n(N) 2 n(371h2

E) + lnﬁ]
N E



In the limit of N —o0

m
37h’

5 V.3 E
S = Nk,[=+In(—) + =1 =
5[2 n(N) 2" N)]

So the entropy S is found to be an extensive parameter. The entropy S depends on N, E
and V:

S=S(N,E,V)

ds

_OS(NLEY) o OSINEV) .,
OF ov

= ldE +£dV
T T

Then we have

OS(N.EV) _, olnW(E,GE) _ 1
OE s OE T
and
OS(N,E,V) P
oV T

From this relation, £ can be derived as a function of N, V, and T.
E=E(N,V,T)

The heat capacity Cy is given by

()
or ),

In the above example, we have

OS(NE,V)

131
OF T 2 E

or

E= % Nk,T (internal energy)



and

BWEN) Py 1
oV T V
we have

PV = Nk,T' (Boyle's law)

5. Typical Examples
5.1  Adiabatic free expansion (sudden expansion into a vacuum)

The free expansion is an irreversible process. Nevertheless, we can define the entropy
in the reversible process (the final state and initial states are the same), given by

5 4 3 m E
S =Nk, [—+In(—)+=1 —
3[2 n(N) n(3 - N)]

2
5 V 3 m 3
= Nk.[—+In(—)+=In(——=k,,T
3[2 n(N) 211(3 i o s )]

5 V 3. mk,T
= Nk, ,[=+1In(—)+=1 B
3[2 H(N) 211(‘2 ,2)]

= Nky(InV +%lnT) + const

. 3 . .. . :
since £ =—Nk,T . This expression is exactly the same as that derived previously

(Chapter 20). When the volume changes from V' = V) to V at constant 7, the change in
entropy (AS) is obtained as

AS = Nk, ln(%)

1

5.2 Isentropic process
The entropy remains constant if

In(VT*'*) = const .

In an expansion at constant entropy from V; to V5, we have
1/17—13/2 — V27—v23/2

for an ideal monatomic gas. Since



BV, PV,

171
L T

we have
I/I(PII/I)3/2:V2(P2V2)3/2 or P1Vv15/3=})2~[/25/3
5.3  Mixing entropy of ideal gas

We consider two kinds of identical ideal gases which are separated by a barrier AB.
The temperature 7"and the pressure P are the same.

PV1=N1kBT or ﬂ_ﬁ_kBT
PVZINszT N, ) P
or
V.+ V. k. T
P(Vi+V3) = (Ni+No)kgT 1 2 "3
(V1+V2) = (N1+N2)ks NN, P
A
W1 Vo
M4 Mo

B
Suppose that the barrier is open suddenly. We discuss what is the change of entropy of

this system, using the expression of the entropy
5 V. 3
S =Nk, [=+In(—)+=In(T) +
sl ) ( N) 5 (T) + ]

Before opening the barrier AB, we have
S, =85 +5,
where

5 V.3
&:A%A5+h&i0+5maj+ad

=M@§+mk

T. 3
11; )+§ln(T) +a,)



S, = Nsz[%+ ln(ﬁ) +%ln(T) +a,]

—Nk[§+1( )+ = ln(T)+aO]

After opening the barrier AB, the total number of atoms is N; + N, and the volume is V; +
V5. Then we have the final entropy,

5 Vi+V.

S, =(N,+ N,k [2+1 (N1+N2)+EIH(T)+%]
=(N,+N,)k, [% —ln(T)+a0]

Since
AS:Sf -(S,+5,)=0

as 1s expected (the reversible process), we have no change of entropy in this event.

((Gibbs paradox))
This success is partly due to the N! term in the numerator of W((2, oF). This is closely
related to the fact that the particles are not distinguishable in our system.

((Micro-canonical ensemble))

So far we consider the micro-canonical ensemble, where the system is isolated from
its surrounding. The energy of the system is conserved. It is assumed that the system of
the energy has £ and E + O0E , where dE is a small width. The concept of the thermal
reservoir does not appear. Since the energy of the system is constant, the possible
microstates have the same probability. For the energy E, the volume V, and the number of

particles, one can obtain the number of the possible microstates. Then the entropy
S(E,N,V) can be defined by

S =k, InW(E,E).

6. Canonical ensemble(system with constant temperature)

The theory of the micro-canonical ensemble is useful when the system depends on N,
E, and V. In principle, this method is correct. In real calculations, however, it is not so
easy to calculate the number of states W(E, OF) in general case. We have an alternative
method, which is much useful for the calculation in the real systems. The formulation of
the canonical ensemble is a little different from that of the micro-canonical ensemble.
Both of these ensembles lead to the same result for the same macro system.

Canonical ensemble: (N, T, V, constant)



Suppose that the system depends on - A practical method of keeping the
temperature of a system constant is to immerse it in a very large material with a large
heat capacity. If the material is very large, its temperature is not changed even if some
energy is given or taken by the system in contact. Such a heat reservoir serves as a
thermostat.

We consider the case of a small system S(I) in thermal contact with a heat reservoir
(IT). The system S(I) is in thermal equilibrium with a reservoir W(II). S(I) and W(II) have
a common temperature 7. The system S(I) is a relatively small macroscopic system. The
energy of S(I) is not fixed. It is only the total energy of the combined system.

E,=E, +E
We assume that Wy(Ey) is the number of states where the thermal bath has the energy Ej;.
If S(I) is in the |z> , the probability of finding the system (I) in the state
|i> , 1s proportional to Wy(Er). The thermal bath is in one of the many states with the
energy Et - E;

p < Wy (Ey) =W, (E; - E)
or

In p, = In[W,,(E, — E,)] + const
Since

E.>>E,



In[W,(E, — E,)] can be expanded as

In[W, (E; — E)]=InW,(E;) - w |ET E,
I
Then we obtain
dInW,(E,)
Coc exp(——A4—1) O F 1
pl p( dEII |ET 1) ( )

Here we notice the definition of entropy and temperature for the reservoir as the micro-
canonical ensemble:

SII = kB In VVII (EII)
and

oS, _ 1
OE, T,

or

dinW,(E,) 105, 1

dE 1 kB aE 17 kB T’II

In thermal equilibrium, we have
I,=T.=T

Then Eq.(1) can be rewritten as

E.
) —— L )= —BE.
P; o< exp( k T) exp(—pE,)

B

where = 1/(kgT). This is called a Boltzmann factor. We define the partition function Z
as

Z = Ze_ﬁE"

The probability is expressed by



The summation in Z is over all states |l> of the system. We note that
Zp (Ez) =1
The average energy of the system is given by

E =lZEl.e_ﬁEi _ _ﬁan
A op

since

aan 1 aZ z( _ﬂEi =_lZE_€—ﬂEf
o Zop Z 74

Note that
onZ 1 dlnZ _ LT Gan‘

o OB or % or
or

In summary, the representative points of the system I are distributed with the
probability density proportional to exp(-fE;). This is called the canonical ensemble, and
this distribution of representative points is called the canonical distribution. The factor
exp(-pE) is often referred to as the Boltzmann factor.

7. Pressure
The pressure P is defined as

P= ZP—Q :_Z(__ ~BE; _ 1 1 8Z 1 olnZ
i “zZpov B oV

Here we define the Helmholtz free energy F' as
F=E-ST.

dF =dE - S8dT -TdS
=T1dS — PdV — SdT —TdS
=—PdV - S8dT

F is a function of T and V. From this equation, we have



5= _(8_1’)
or ),

P _[a_F)
ov ).

8. Helmholtz free energy and entropy
The Helmholtz free energy F'is given by

F=-k,TInZ
((Proof))
We note that
oF
o Tt _osToF_ E_ 0y,
or T T? T? T? Bor T

which leads to
F=-k,TInZ
What is the expression for the entropy in a canonical ensemble? The entropy is given by

S:ﬂ
T

where E is the average energy of the system,

_amz
op

E=

Then entropy S is rewritten as



§=—1IMZ iz
T op

_11

TZ

Y Ee™ +kyInZ

i

= BIBZEi ¢

PE;

~ +kyInZ

=ky Y PEp, +kyInZ

=ky > (-Inp,—InZ)p, +kyInZ

=—ky Z p;Inp,
or

S= _szpi lnpi )

where p; is that the probability of the |z> state and is given by

1
.= —e !
b, 7

The logarithm of p; is described by
Inp,=-pE. —InZ

((Note))
We finally get a useful expression for the entropy which can be available for the
information theory.

S=—ky) pInp, .
Suppose that there are 50 boxes. There is one jewel in one of 50 boxes. p; is the
probability of finding one jewel in the i-th box for one trial.

(a) There is no hint where the jewel is.

1
P1=p2 Y (1) 50



S=—kyy pInp =k 2—111(—) 391k,

(b) There is a hint that the jewel is in one of the box with even number.

P1=p3= .....:p49:O
1

P2=pa—= —pso—g

S=-ky Y p,Inp, =k Z—ln(—) 3.219k,

s=even

(c) If you know that the jewel is in the 10-th box,

pio=1
ps=0 (s #10)

S =—kyp,yInp,, =0
If you know more information, the information entropy becomes smaller.
9. Application

9.1.  Partition function Z
The partition function Z for the ideal gas can be calculated as

vt P’ s VY 2mmk,T
Z=——T[| dpexp(———— -7 Bl \3n/2

Using this expression of Z, the Helmholtz free energy F can be calculated as

F = Nk, T[- ln(%)——l (2ﬂmk ol

)—1].

The internal energy E is

olnZz zéNk T
op 2

E=—

The heat capacity Cy at constant volume is given by

OE 3

CV = (87)V = ENkB .



The entropy S is

E-F V 3. mk,T. 5
S =——= Nk, [In(—) + =In(—2>-) +=].
- sl (N) 5 (27Th2) 2]

The pressure P is

Nk, T
=

oF
P:—— =
(W)T

9.2 Maxwell’s distribution function
The Maxwell distribution function can be derived as follows.

2
my

n(V)av = n(v)4m’dv = f(v)dv = Aexp(— T

YAm dv

The normalization condition:
[n(av = [n(vyamidv = f(v)dv =1

The constant 4 is calculated as

3/2
A= " .
(547)

Then we have

3/2 2

m 5 my
~4 ey
) ﬁ(27szTj VT

Since M = m Na and R = Nj kg, we have

2

)

3/2
M . My
=2 | 4m?exp(-
F0) (Zﬂ'RTJ XD

which agrees with the expression of f{(v) in Chapter 19.

((Mathematica))



-m v2

f1 = Integrate[Exp[ ] 47xv?, {v, 0, «},

2kBT
GenerateConditions -> False]
22 372
m \3/2
(@)

eql=Afl =1;

Solve[eql, A]
m \3/2
87)

A~ o))

10. Comparison of the expression of S in the canonical ensemble with the
original definition of S in the microcanonical ensemble

The partition function Z can be written as

Z= Ze_ﬁE" = IQ(g)e_ﬂgde

where we use ¢ instead of E (or Ej) in the expression. The partition function Z is the
Laplace transform of the density of states, Q(¢) . Here we show that

= J-Q(g)e_ﬁgde = Jl//(e)de s \/EO'*Q(S*)eXp(—ﬂé‘*)
If the function yA¢) is given by
w(e)=Q(s)e .
We assume that yA &) can be approximated by a Gaussian function

w(e) = w(s*)exp[—%}

where

w(e") = Qe ) exp(-fe)



E

Fig.  w(¢) vs & w(¢) has a Gaussian distribution with the width o around
e=¢g*=FE.

The function y(&) has a local maximum at ¢ =¢ =FE . The logarithm of y(g) is
rewritten as

Iny (&) = In[Q(&) exp(=pfe)]
=In[Q(e)] - pe

We take the derivative of Iny/(¢) with respect to &,

y(e) )
where

dlndsz(g) oy
since

y'(e)=0.

Here we define the number of states W (¢, 0¢) by



W(e,08)=Q(s)0s =20 Q")
Then we have

dInW(g,0¢)

P (1)

since

InW(g,0¢) =InQ(e") + Inde
olnW (g,0¢) 0lnQ(¢)
’s:g* = |g:£*
oe oe

with fixed de. We note that

o L i =y (' Waro®

Z= de = ) [expl-
Juexde =y (e expl==5 5

=270 Qe ) exp(-pe”)
Then we have
InZ =n[270'Q()]- pe”
The entropy S is calculated as

§=——1oInZ iz

T op

g* * * 8*
=tk In[275"Q(s")] - - 2

=k, In[\275 Q)]
=k, InW(&,0¢)

Using Egs.(1) and (2), we get

oS

Lk B=
g e

L
T
or
olnW(e, o) _ 1
oe T



11.  Boltzmann-Planck’s method
Finally we show the standard method of the derivation, which characterizes well the
theory of canonical ensembles.

J
\JK
NN Ensemble
LA
NN Energy levels
N A AN 4
(NN
A AN AN AW
LNCNNCNN Ej
LA AN AN AW
CONCONCNONCNEY
\ A A AW A A
(NNNONNNY
N AN AN A WA A AW
LNNNNNEONCNEEN E
NP AN AN AN AN AN AN A 4

|

i
.

Number of ensemble

We consider the way of distributing M total ensembles among states with energies E;.
Let M; be the number of ensembles in the energy level Ej; M, ensembles for the energy E|,
the M, ensembles for the energy E», and so on. The number of ways of distributing M
ensembles is given by

!
wo_ M
M \M,!...
where
DM, =M

J

and the average energy <E > is given by

(E)-3 5~

J

The entropy S is proportional to InW¥,



InW =InM'-) In(M!)
J

Using the Stirling's formula
InW =M(InM-1)-> M, ,(InM,-1)
J
=MInM-) M;InM,
j
in the limit of large M and M;. We note that the probability of finding the state | j> is
simply given by

MJ'
PEI=5

Then we have
ian—lnM—iZM In M
M mMe
1
=InM - HZMD(Ej)1n[z\4P(Ej)]
J
=InM - P(E,)In[P(E,)+InM]
J

= _Z P(E)In[P(E )]

which is subject to the conditions
ZP (£,)=1
J
> E,P(E) = E)
J

Treating P(E;) as continuous variables, we have the variational equation
S[> P(E)InP(E,)+aP(E,)+ BE P(E,)
j

= Z{lnP(Ej) +(a+1)+ fE,P(E,)} =0



which gives P(E;) for the maximum W. Here « and S are Lagrange’s indeterminate

multipliers. Thus we obtain

InP(E)+(a+D)+pBE; =0

or
P(E,) = Cexpl~fE, |
or
P(E) = (1 )
where
Z(p)= ;exm—ﬂb})
and

B=1/ksT.

With the above P(E)), the entropy S is expressed by

S=k,InW =
=Mk, . P(E,)In[P(E)]

for the total system composed of M ensembles. Therefore, the entropy of each ensemble
is

S=—k, > P(E,)In[P(E))]

12. Density of states for quantum box (ideal gas)
(@) Energy levels in 1D system
We consider a free electron gas in 1D system. The Schrédinger equation is given by

p _h_2 d’y, (x)

Hl//k(x)zﬁl//k(x): m di =&y, (x), (1)



where

_hd
i dx’

and ¢, is the energy of the particle in the orbital.

The orbital is defined as a solution of the wave equation for a system of only one
electron: ((one-electron problem)).
Using a periodic boundary condition: y,(x+ L) =y, (x), we have

() ~e", 2)

with

2m 2m\ L
e =1 or k=2—ﬁn,
L

where n =0, £1, £2,..., and L is the size of the system.

(b) Energy levels in 3D system
We consider the Schrodinger equation of an electron confined to a cube of edge L.

N Y
Hyy =~y ===V, =5y, €)
2m 2m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

Wi (x+L,y,2) =y, (x,¥,2)
Y (¥ + L,2) =y, (x,3,2) ,
V(5. 2+ L) =y, (x,9,2).
The wavefunctions are of the form of a traveling plane wave.
i (r) =€, 4

with



kx = (2n/L) ny, (nx =0, =1, £2, £3,.....),

ky = (2n/L) ny, (ny =0, £1,£2, £3,....),

k,= 2n/L) n,, (n,=0, £1,+£2, £3,.....).
The components of the wavevector K are the quantum numbers, along with the quantum
number m; of the spin direction. The energy eigenvalue is

g(k)—h—z(k2+k2+k2)—h—2k2 (5)
2m- T om

Here

P () = 2V, (1) = k(). ©)

So that the plane wave function y, (I') is an eigen-function of p with the eigenvalue 7k .

The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in K-space.

(© Density of states

Because we assume that the electrons are non-interacting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found. The one-electron levels are specified by the wave-vectors k and by the
projection of the electron’s spin along an arbitrary axis, which can take either of the two
values £7/2. Therefore associated with each allowed wave vector k are two levels:

k,T>, k,¢>.
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space. There is one state per (2rt/L)’.

Density of states in the 3D k

Fig.

volume of k-space (277L)’. We consider the number of one-

electron levels in the energy range from ¢to etde, D(g)de

There is one state per

L3
(27r

(13)

7 [ 4k,

jD(g)dg

where D(¢) is called a density of states.

Application of canonical ensemble for ideal gas

13.
(b)

Z,

Partition function for the system with one atom;

The partition function Z, is given by



g’
Z = — k
gkmx 5K
4 g
= dk exp(— 2k
(2;;)3j P, <)
2
= V>3j4ﬂk2dkexp(—£?1k2)
(27) 2m
_ 8:/[2 \/;C_3/2
where V=1,
e p=-"!
2m’ k,T
((Mathematica))

Clear["Global *"];

fle 1
(27)°
Integrate[fl, {k, 0, o}] //

Simplify[#, C1>0]&

47 k* Exp[-C1K?];

\
8 C1%/% ni%/2

Then the partition function Z, can be rewritten as

vir 1%

mk, T 32
Z = 32 3/2:V( Bz) =hy
n? 27’ 27h
87’
2mk,T mk,T

where n,, is a quantum concentration and is defined by

o kaT 3/2
9] 2727/-12 :




nq 1is the concentration associated with one atom in a cube of side equal to the thermal
average de Broglie wavelength.

Fig. Definition of quantum concentration. The de Broglic wavelength is on the order
of interatomic distance.

h 2
A A

where <v> is the average thermal velocity of atoms. Using the equipartition law, we get
the relation

1 3 3k, T
5m<v>2 = EkBT’ or <v> =, ,TB ,

Then we have

27h 27h 27h 2r | 27k’ 1 1
A= = "5 R RPN BTl s L Vo R v
m<v> m\/3k3T 3\/kaT 3\ mk,T n, ny,

m

where

o kaT 3/2
4] 272%2



It follows that

((Definition))

n ) )
—<<1 — classical regime
n

0

An ideal gas is defined as a gas of non-interacting atoms in the classical regime.

((Example))
*He gas at P= 1 atm and 7'= 300 K, the concentration # is evaluated as

N P
n= = —

= =2.446x10" /em’.
v

k,T
The quantum concentration nq is calculated as
ny =7.8122x10% /em’

which means that n <<, in the classical regime. Note that the mass of *He is given by

m=4u=6.6422x10"" g.
where u is the atomic unit mass.

((Mathematica))



Clear["Global *"];
rulel = {kB - 1.3806504 x 10™*°,

NA - 6.02214179 x 10%,

A - 1.054571628 1077,
amu » 1.660538782 x 10724,
atm - 1.01325x 10°} ;

T1=300; P1=1atm /. rulel;
ml=4amu/. rulel

6.64216 x 1024

no = (mlkBTl

3/2
> B2 ) /. rulel
T

7.81219 x 10%

P1
nl = FT]. /. rulel

2.44631 x 107
(b) Partition function of the system with N atoms
Suppose that the gas contains N atoms in a volume V. The partition function Zy,
which takes into account of indistinguishability of the atoms (divided by the factor MV!), is
given by

NN

Using Z, =n,V , we get

InZ, = Nln(n,/) —In N!
= N[In(n,/') +1-In N]

where we use the Stirling’s formula

N!'= NInN-N=N(nN -1),



in the limit of large N. The Helmholtz free energy is given by

F=-k,TInZ,
= —Nk,T[In(n, V) +1-1n N]

nQV
=—-Nk,T [IH(T) +1]

&)
= ~Nk,TIn(=2) = Nk, T

=—Nk,T[In— d i1nT+
N 2

since

ln(—)—l [ ’"k{ ]=1nK+31nT+§1n ’"sz +1
2710 N 2 2\ 27

The entropy S is obtained as
. (6Fj
oT
V3 mky, 5
n )+

= Nky[In—+—=InT + =]
N 2 2

V3
=Nk,(In—+—=InT +
B(nN 2n o,)

where

kB
27h*

)

5 3
=—+—=In
0y 55 n(

Note that S can be rewritten as
ng 5 )
S = Nk, In—=+ 5 Nk, (Sackur-Tetrode equation)
n

((Sackur-Tetrode equation))

The Sackur—Tetrode equation is named for Hugo Martin Tetrode (1895-1931) and
Otto Sackur (1880-1914), who developed it independently as a solution of Boltzmann's
gas statistics and entropy equations, at about the same time in 1912.
https://en.wikipedia.org/wiki/Sackur%E2%80%93Tetrode equation




. . n n

In the classical region (— << 1 or —£ >>1), we have

n n
0

e s
n

The internal energy E is given by

E=F+ST
g ng 5
=—Nk,TIn(—) — Nk,T + Nk,T In—+— Nk,T
n n 2
3
= ENkBT

Note that £ depends only on 7 for the ideal gas (Joule’s law). The factor 3/2 arises from
the exponent of T in 7, because the gas is in 3D. If n, were in 1D or 2D, the factor

would be 1/2 or 2, respectively.

(© Pressure P
The pressure P is defined by

p:_(a_Fj _ Nk,T
o) v

leading to the Boyle’s law. Then PV is

PV = Nk,T = % (Bernoulli’s equation)

(d) Heat capacity
The heat capacity at fixed volume V' is given by

¢, =1(2) =2,
or ), 2

When N =N, we have

C,=>R.
Y2

G, is the heat capacity at constant P. Since



dE =TdS — PdV
or
1dS = dE + PdV

then we get
o) ) A2
P or), \Jor), or ),

P(é_V) :PNAkB :NAkB =R
oT
14

P

We note that

3
E=2N kT

E is independent of P and V, and depends only on 7. (Joule’s law)

(2) (5] praes
or), \or), 2

Thus we have

C,,:CV+R=§R+R:§R.
2 2

((Mayer’s relation))

C,=C,+R for ideal gas with 1 mole.

The ratio yis defined by

(e) Isentropic process (constant entropy)
The entropy S is given by

S = NkB(ln%-i-%h'lT-i- 0,) = Nk,[In(V’T*’*)=InN + o, ]



The isentropic process is described by
VT?'?=const, or TV =const,
Using the Boyle’s law ( PV = RT ), we get

PV
TVN 3 =const,, or PV =const

Since y=5/3, we get the relation
PV” = constant
14.  The expression of entropy: S =k, InW (E)

The entropy is related to the number of states. It is in particular, closely related to
InW . In order to find such a relation, we start with the partition function

Z =Y exp(~pe,) = [dEW (E)exp(~fE) = [ exp[-Npf 1dE

where W (E) is the number of states with the energy E. The function f(E) is defined by

_ PE-WW(E) _ E—Thk,InW(E)

J(E) Np N

In the large limit of N, f(FE) is expanded using the Taylor expansion, as

U (E)

SE)= fE)+Z 2, e (E=ED)
where
af(E):L[l_kBTM]:O at E=E"
OE N ok
or
L_, ol ()
T e
Atat E=E",

Z = exp[-Nff (E°)]



For simplicity, we use E instead of E . The Helmholtz free energy F is dsefined by
F =—k,TInZ = —k,T[-Nff (E)] = Nf (E)

or
F=E—k,TInW(E)=E—ST

leading to the expression of the entropy S as

S =k, InW(E),
and

1_as

T OFE

15.  The expression of entropy: S = —kBZpa Inp,

We consider the probability given by

P.= %e"’Ea :
where
Z = Ze_ﬂE“ ,
Inp,=-InZ - pE_,
The energy E is given by
E=Yp,E,
=lZE e PFa
zo e
__laz
Zop
=9z



The entropy is a logarithmic measure of the number of states with significant probability
of being occupied. The Helmholtz energy F'is defined by

F=E-ST=-k,TInZ.
The entropy S is obtained as

S=H=kBan+£
T T

We note that
_szpalnpa :_szpa(_an_IBga)
=ky(PE+1InZ)
E k T
_E-F
T
=S

Thus it follows that the entropy S is given by

S=—ky p,Inp,.
16.  Thermal average of energy fluctuation
(B2) () =SB, e - (S e ™y
Z ~ a ZZ ~ a

dyp_aB d
dT (£)= dT dfs (E)

___1 4

_ﬂE

Wdﬁ zZ
_ pE, 4L - E,
Tk, T2 zz[ 2(E dﬁZa:E‘”e |

a

el

where



dr

Since %<E> =C, , we get the relation

C, 1 ) 2
S -

17. Example: “He atom as ideal gas
We consider the “He atom with mass

m=4u=6.64216x 10** g

The number density n atat P=1 atm and 7=300 K, is
n=2.44631x 1019/cm’

The number of atoms in the volume ¥ = 10’ cm” is
N=nV=244631x 10%

The internal energy
3
E:ENkBT:151.987 J

The entropy S

S = Nk, [+ InT +§1n(m—k§)+§] —5.125 J/K.
N 2 2 2m 2

((Mathematica))



Clear["'Global "] ;
rulel = {kB » 1.3806504 x 107*°,

NA » 6.02214179 x 1023,

A - 1.054571628 10°%,

amu » 1.660538782 x 10™%*,

atm - 1.01325x 10°, bar » 10°, J - 10"};

nl=2.44631x10Y: Vv1=10%; T1 = 300;
N1 =n1Vi

2.44631 x 10%2

ml=4amu/. rulel

6.64216 x 102

kB N1
P1 = Vi T1 /. rulel

1.01325 x 10°



P1/ bar /. rulel

1.01325
3
El = > kBN1T1/. rulel

1.51987 x 10°
E1/J /. rulel

151.987

3 Vil
S1 = kB N1 (E Log[T1] + Log[m] +

el

5 ) /. rulel

5.12503 x 10’
S1/7J /. rulel

5.12503

17. Link
Entropy (Wikipedia)
http://en.wikipedia.org/wiki/Entropy_(statistical thermodynamics)
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APPENDIX

Density of states for N particles for micro-canonical ensemble
Using the density of states for the 1-particle system, the density of states for the 2-
particle system is estimated as

£,
D,(E,) = J.Dl (e)D\(E, - &)de,
0
EZ
=C? J.\/g_m/E2 —¢g,de,
0
1
= C’E, [Nx1-xdx = C’E,’(2)
0

where £, is the total energy of two-particle system, and

1 FOIT (n-1)]
f(n) — le/Z(l _ x)3(n—1)/2—1 dx — 2 2
3
0 F(E n)

Similarly, the density of states for the 3-particle system is
Ey
Dy(Ey) = [ D\(¢,)D, (E; - &))de,
0

[ e (B, -2, Vs,

= C3E37/2jﬁ(1 —x) dx
=CE/ () /()

where £; is the total energy of three particles.
Suppose that D, has the form



D,(E,))=C"f()fB3)....f(n)E, "2

then Q ., can be described as

Dy(Ep) = C"f D (eaf (1) [ € (B, =)'
= Cn+1f(2)f(3)f(n)f(n +1)En+13n/2+1/2

Hence the density of states for the N-particles system is given by

D (E)=C" f2)f(3)....f(N)E D'z

where E = Ex
MM TP T (V-2 QT (V-1)
S f3)..f(N)= I3 5 2. : :
ey 1) rGW-D ERY
3w
:[F(E)]
3N
F(7)
One can get
D,(E) cV [F(;)]N E3N-D/2+1/2
VIR 3N
F(7)
34w
_V—N( )3N/2M vz 1
@)t eY,E
2
a 1 3N/2 7' 3N/2l
_Wz_N(zm) 1ﬂ(3N)E z
2
where
N
Q=7



The number of states whose energy lies between E and £+ OF is given by

W(E,é‘E):%DN(E)éE
1 vy 1 w2 A E3N/25_E

== m)
Nl (4z*hn*)" 2V F(3;\7 ) E

where N! is included because N-particles are non-distinguishable.

This can be rewritten as

v mE 3N/2§

W(E,OE) = (— :
NIT(3N/2) 27h E

which is exactly the same as the expression derived from the classical approach.



