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1. Flux of an electric field 

Electric flux is a quantity proportional to the number of electric field lines penetrating 

some surface. The electric flux of the electric field E through the surface area, dA, is 

defined as. 

 

cosd d EdA    E A   

 

where  is the angle between E and dA. dA is a vector directed perpendicular to the area. 

The magnitude of dA. The unit of the electric flux  is Nm2/C 

 

 

 
 

Electric field lines penetrating a plane of area A perpendicular to the field. 

 



 
 

 
 

Fig. 1 1A d h . 2 2A d h . 2 1 cosd d  . 2 1 cosA A   



 

The electric flux passing through surface A1 is 

 

111 AE . 

 

The electric flux passing through surface A2 is given by 

 

2 2 2 2 2 cosE A    E A . 

 

Since E1 = E2, and A1=A2cos, we have 
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The total flux through a closed surface A is 

 

d   E A� . 

 

 
 

 
 



 

 
 

A closed surface in an electric field. 

 

((Note)) Electric field in a closed surface 

 

The direction of dA is shown for the sphere and the spherical shell as follows. 

 

 



 

2. Gauss’ law 

Gauss’ law is an expression of the general relationship between the net electric flux 

through a closed surface and the charge enclosed by the surface. The closed surface is often 

called a Gaussian surface.  

If the Gaussian surface has a net electric charge qin within it, then the electric flux 

through the surface is qin/0, that is 
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3. Gauss’ law and Coulomb’s law 

 

 

The field generated by a point charge qin = q is spherical symmetric, and its magnitude 

will depend only on the distance r from the point charge. The direction of the field is along 

the radial direction. Consider a spherical surface centered around the point charge q. The 

direction of the electric field at any point on its surface is perpendicular to the surface and 

its magnitude is constant. This implies that the electric flux  through this surface is given 

by 

 

24d r E    E A�  

 



 
 

Fig. Electric field generated by point charge q. 

 

Using Gauss' law we obtain the following expression  
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which is Coulomb's law.  

 
((Note)) 

What is the electric flux for each surface? 

 



 
 

Gaussian surface S1 

 

0 0

inq q
d

 
     E A�  (outward) 

 

Gaussian surface S2 
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Gaussian surface S3 
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Gaussian surface S4 
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3. Application of the Gauss’ law: spherical symmetry 

A spherical region of radius a has a total charge Q, distributed uniformly throughout 

the volume of this region.  

(a) What is the electric field at point outside the sphere?  

(b) What is the electric field at points inside the sphere? 

 

For r>a, 
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For r<a, 

The charge density  is given by  
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We select a sphere with a radius r (<a) as the Gaussian surface.  
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where 
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Then we have 
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In conclusion. 

Inside the sphere, E varies linearly with r. E → 0 as r → 0. The field outside the sphere 

is equivalent to that of a point charge located at the center of the sphere 
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Fig. Magnitude of the electric field ( )4//( 2

0aQE  as a function of the radial distance 

r for a uniformly charged sphere with radius a. 

 

4. Application of the Gauss’ law: cylindrical symmetry 

 

 
 

Using Gauss’ law, find the electric field of an infinitely long, thin straight rod of charge, 

with uniform charge density . 

 

The cylinder has a radius of r and a length of lE is constant in magnitude and 

perpendicular to the surface at every point on the curved part of the surface. 

 

The end view confirms the field is perpendicular to the curved surface. The field through 

the ends of the cylinder is 0 since the field is parallel to these surfaces. 

 

 



 

Use the Gauss’ law to find the field, 
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Fig. Magnitude of the electric field as a function of radial distance r for an infinitely 

long, thin straight rod of charge, with uniform charge density . 

 

5. Application of the Gauss’ law: planar symmetry 

 

(a) Nonconducting sheet 

Using the Gauss’ law, find the electric field of a very large uniform sheet of charge 

with the surface charge density  (units of C/m2) (nonconducting sheet). 
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We use the Gauss’ law for this configuration. 
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(b) Two nonconducting sheets 

We consider two large, parallel, nonconducting sheets (1 and 2), each with a fixed 

uniform charge on the sheet. The surface charge density of the sheet 1 and sheet 2 is 1 and 

2, respectively. 

 



 
 

Applying the Gauss’ law to the sheet 1 and sheet 2 independently, we have E1 and E2 given 

by 
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Using the superposition principle, we obtain the resultant electric field 
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(i) For 1 = -2 = 
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(ii) For 1 = 2 =  
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6. Conductors in Electric Fields 

A large number of electrons in a conductor are free to move. The so-called free 

electrons are the cause of the different behavior of conductors and insulators in an external 

electric filed. The free electrons in a conductor will move under the influence of the 

external electric field (in a direction opposite to the direction of the electric field). The 

movement of the free electrons will produce an excess of electrons (negative charge) on 

one side of the conductor, leaving a deficit of electrons (positive charge) on the other side. 

This charge distribution will also produce an electric field and the actual electric field inside 

the conductor can be found by superposition of the external electric field and the induced 

electric field, produced by the induced charge distribution. When static equilibrium is 

reached, the net electric field inside the conductor is exactly zero. This implies that the 

charge density inside the conductor is zero. If the electric field inside the conductor would 

not be exactly zero the free electrons would continue to move and the charge distribution 

would not be in static equilibrium. The electric field on the surface of the conductor is 

perpendicular to its surface. If this would not be the case, the free electrons would move 

along the surface, and the charge distribution would not be in equilibrium. The 

redistribution of the free electrons in the conductor under the influence of an external 

electric field, and the cancellation of the external electric field inside the conductor is being 

used to shield sensitive instruments from external electric fields. 

 

((Summary)) 

 

1. E = 0 everywhere inside the conductor. 

2. There is no net charge inside the conductor. 

3. E is everywhere perpendicular to the bounding surface of the conductor. 

4. The electric potential V is constant insider the conductor. 

5.  Any net charge must reside on the surface of conductor. 

6. The tangential component of the electric field E is zero on the surface of 

conductor. Otherwise, charge will immediately flow around the surface 

until it kills off the tangential component. (Perpendicular to the surface, 

charge cannot flow, of course, since it is confined to the conducting object.) 

 



 

 
 

 

Fig. The charge distribution at the surface of conductor, in the presence of a uniform 

electric field produced by two fixed layers of charge. [Fig.3.1(c), Purcell and Morin, 

Electricity and Magnetism, Cambridge, 2013]. 

 



 
 

Fig. Electric field distribution for an uncharged metal sphere of radius R is placed in an 

otherwise uniform electric field 0 zEE e . The equi-potential line is also shown. 

The field will push positive charge on the northern surface of the sphere, leaving a 

negative charge on the southern surface. This induced charge, in turn, distorts the 

field in the neighborhood of the sphere. (This is obtained by using Mathematica; 

ContourPlot and StreamPlot). 0 1E  . 1.R   

 

 



 
 

Fig. Electric field distribution inside a sphere conductor in which a point positive charge 

exists at x a  . a = 0.85. q = 1. 
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Fig. Electric field distribution inside a sphere conductor in which a point negative 

charge exists at x a  . a = 0.85. q = -1. 
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Fig. Electric field distribution around a sphere conductor due to a neighboring point 

positive charge  

3 2 1 0 1 2 3

3

2

1

0

1

2

3



 
 

Fig. The electric field around two spherical conductors, one with the total charge +1, 

and one with total charge zero. Dashed curves are intersections of equipotential 

surfaces with the plane of the figure. Zero potential is at infinity. [Fig.3.7, Purcell 

and Morin, Electricity and Magnetism, Cambridge, 2013]. 

 



 
 

Fig. The field is zero everywhere inside a closed conducting box. [Fig.3.8, Purcell and 

Morin, Electricity and Magnetism, Cambridge, 2013]. 

 



 
 

Fig. The electric field near the edge of two parallel metal plates. (Feynman vol.2, Fig. 

6-13). 

 

7. Application of the Gauss’ law to the surface of conductor 

The strength of the electric field on the surface of a conductor can be found by applying 

Gauss' law).  

 

 

The electric flux through the surface is given by 

AEAAE  0  

where A is the area of the top of the surface. The flux through the bottom of the surface is 

zero since the electric field inside a conductor is equal to zero. The charge enclosed by the 

surface is equal to  
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where  is the surface charge density of the conductor. Applying Gauss' law we obtain 
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Thus, the electric field at the surface of the conductor is given by  
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Fig. The electric field just outside the surface of a conductor is proportional to the local 

surface density of charge. 

 

((Example)) 

A point charge Q1 is at the center of a spherical conducting shell of inner radius R1 and 

the outer radius R2. The shell has a net charge Q2 on its surfaces. Find the electric field in 

the three regions r<R1, R1<r<R2, and r>R2. How much charge is on the inner surface of the 

shell? The outer surface? 

 



 
For r<R1, the Gauss’ law in spherical symmetry leads to the electric field given by 
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For R1<r<R2, because of the conductor, the electric field is equal to 0, E = 0. For r>R2, the 

charge enclosed by the Gaussian surface is Q1 + Q2. The electric field is given by 
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We choose the Gaussian sphere with a radius r (R1<r<R2) inside the conductor. Since the 

electric field is equal to zero in this region, the total charge inside the Gaussian surface 

should be equal to zero. When we assume that the surface charge around r = R1 is Qinner 

surface, the Gauss’ law leads to 
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We say that the charge Q1 induces an equal but opposite charge on the inner surface of the 

conductor. To find the charge on the outer, we merely use conservation of charge. 
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8. Two parallel conducting plates with surface charge density (1 and 2). 

 

We consider the two infinitely large conducting plates with the surface charge density 

(1 and 2). 
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From (1) 
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From (2) 
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From (5) 
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From (6), (7), and (8), we have 
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Then we have 
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Using Mathematica, we get 
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The electric fields are given by 
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((Mathematica)) 

 

 
 

9. Two parallel conducting plates with surface charge density (1 =-2 = ). 

We consider a typical case when  1  and  2  
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Here we return to the original diagram 

 



 
 

From (2), E1 = 0. 

From (3), 
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From (4), E3 = 0 

From (5), Einfinity = 0. 

 

In conclusion, we have 
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E  between two parallel conducting plates. 

 

((Another method)) 

From the principle of the superposition we have only an electric field between the two plate 

of the capacitor; 
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which is equivalent to 

 

 
 

10. Electric field lines for the charges locating in the one dimensional chain. 

 

10.1. Solid angle 

 



The solid angle  subtended by a surface A is defined as the surface area  of a unit 

sphere covered by the surface's projection onto the sphere. The solid angle of a cone with 

apex angle 2, is the area of a spherical cap on a unit sphere. 
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where r = 1. 
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10.2 The net flux of the electric field through a solid angle 

 

We consider the flux of E coming from a point charge q. The net flux of E-lines passing 

through a solid angle  is  
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Suppose that the point charges (q1, q2, q3,   ) are located in the one-dimensional line (x axis) 

(for example, the points A, B, C, …). The points G and H are on the electric field line. The 

rotation of these two points G, H around the x axis leads to a disk GG’, HH’. When the 

angles between one point on the electric field line and the point charges are given by 1, 

2, 3,…., the solid angles subtended by the disk GG’ are 1, 2, 3, …. The net flux of 

E-lines passing through the disk GG’ is 
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If the line GH is the electric field line, the total number of E-lines passing through the 

disk GG’ is equal to that through HH’. Thus we reach a conclusion that 

 

const
q

i

i
i  )cos1(

2 0




, 

 

or 

 

constq
i

ii  cos . 

 

 

We consider the case of two charges located on the different places along the x axis. 



 
Suppose that the point charge (q1) and the point charge (q2) are located at the points A 

(x1,0) and the point (x2,0).  

 

22

2

2
2

22

1

1
1

)(
cos

)(
cos

yxx

xx

yxx

xx















 

The electric lines are described by 
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10.3 Examples 

 

((Example-1))  

q at (-1,0) 

q at (1,0) 

 



 
 

 
 



 

((Example-2)) 

q at (-1,0) 

–q at (1,0) 

 

 
 

 
 

 



((Example-3))  

2q at (-1,0) 

-q at (1,0) 

 

 
 

((Example-4)) 

3q at (-1,0) 

-q at (3,0) 



 
 

((Example-5)) 

-q at (-1,0), q at (0, 0) and  

-q at (1,0) 

 

 



 
 

 
 

11. Typical examples 

 



11.1 Problem 23-11 (SP-23) 

Figure shows a Gaussian surface in the shape of a cube with edge length 1.40 m. What 

are (a) the net flux  through the surface and (b) the net charge qenc enclosed by the surface 

if E = (3.00 y ey) N/C, with y in meters? What are (c) the net flux  through the surface 

and (d) the net charge qenc enclosed by the surface if E = [- 4.00 ex +(6.00 + 3.00 y) ey] N/C, 

with y in meters?  

 

 

 
 

((Solution)) 

 
a = 1.4 m 

 

(a) and (b) 

 

E = 3.0 y ey N/C 



 

The electric flux, 
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(c) and (d) 

 

E = [-4 ex + (6 + 3 y)ey N/C 
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Then we have 
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where 0 = 8.854187817 x 10-12 (F/m) 

 

((Another method)) We use the Gauss’ law; ( )d d    E a E�  

 

(a) and (b) 
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(c) and (d) 

 

E = [-4 ex + (6 + 3 y)ey N/C 
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11.2 Problem 23-13 (SP-23) 

A particle of charge +q is placed at one corner of a Gaussian cube. What multiple of 

q/0 gives the flux through (a) each cube face forming that corner and (b) each of the other 

cube faces. 

 

((Solution)) 

 
 

(a) 
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There are 8 cubes around the origin. Then we have 
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(b) The flux passing through a, b, and c-faces is the same from the symmetry. The flux 

passing through the other faces is zero, since E is perpendicular to the normal direction of 

the faces. Then we have 
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11.3 Problem 23-43 (SP-23) 

Figure shows a cross section through a very large non-conducting slab of thickness d = 

9.40 mm and uniform volume charge density  = 5.80 C/m3. The origin of an x axis is at 

the slab’s center. What is the magnitude of the slab’s electric field at an x coordinate of (a) 

0, (b) 2.00 mm, (c) 4.70 mm, and (d) 26.00 mm? 

 

 
((Solution)) 

 = 5.80 C/m3 

d = 9.40 mm 

 
 

For 0<x<d/2 For x>d/2 



0

0

)2(
1

2







x
E

axaE





 

0

0

2

1
2







d
E

adaE





 

 

x = 0  E = 0 

x = 2.0 mm E = 1.31 x 10-6 N/C 

x = 4.7 mm E = 3.08 x 10-6 N/C 

x = 26.0 mm E = 3.08 x 10-6 N/C 

 

 
 

_______________________________________________________________________ 

11.4 Problem 23-55 (SP-23) 

 

A solid nonconducting sphere of radius R = 5.60 cm has a non-uniform charge distribution 

of volume charge density  = (141 pC/m3) r/R, where r is radial distance from the sphere’s 

center. (a) What is the sphere’s total charge? What is the magnitude E of the electric field 

at (b) r = 0, (c) r = R/2.00, and (d) r = R? (e) Sketch a graph of E vs t. 

 

((Solution)) 

R = 5.60 cm 

R

Ar
  with A = 14.1 pC/m3. 
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(b) 

For r>R 

 

2

0

2

0

3

2

0

)(
444

1

r

RAR

r

AR

r

Q
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Here we put 
0

0
4
AR

E  .  

 

2

0

1




E

E
 (>1) 

 

with 
R

r
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For r<R 
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0

2 )(4
1
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r
R

A

drrrEr
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

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
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or 

 
2
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0

2
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
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











R

r
E

R

rAR
r

R

A
E


 

 

This can be rewritten as 

 

2

0


E

E
 (<1) 

 

(a) At r = 0,  E = 0 

(b) At r/R = 0.5 E = 5.57 x 10-3 N/C 

(c) At r/R = 1,  E = 2.23 x 10-2 N/C 

 



 
 

12. Advanced problem 

 

12.1 AP-1 

A sphere of radius 2a is made of a nonconducting material that has a uniform volume 

charge density . (Assume that the material does not affect the electric field.) A spherical 

cavity of radius a is now removed of from the sphere. Show that the electric field within 

the cavity is uniform and is given by Ex = 0 and Ey = a/(30). 

 

((Solution)) 
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The electric field E1 due to the sphere (radius 2a, uniform charge density ) is given by 

 

1
1

03





R

E  

 

The electric field E2 due to the sphere (radius a, uniform charge density -) is given by 

 

2
2

03




 
R

E  

 

From the superposition principle, the resultant electric field E is given by 

 

1 2 1 2

0 0

( )
3 3

 
 

    E E E R R R  

 

12.2 AP-2 

Charge is distributed throughout a sphere of radius R with density rr /)( 0  . Find 

E everywhere. Express the field outside the sphere in terms of the total charge Q in the 

sphere. 

 

((Solution)) 

We apply the Gauss’ law. 

For r<R, the Gaussian sphere is a sphere with a radius r. 
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or 

2

0

02 2
4 rEr




   or 
2

00

2

0

0

42

1

22 R

Q

R

Q
E




   (r<R) 

Here we note that the total charge Q is given by 
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For r>R,  

 

QErdAE
0

2 1
4


   

 

or 

 

2

04 r

Q
E


  (r>R) 

 

 
 

12.3 AP-3 

We now consider a simple system where a positive point charge is located (h) above 

an infinite plane conductor. Suppose that xy plane is the surface of a conductor. What sort 

of the electric field and charge distribution can we expect?  

0 1 2 3 4 5 6
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EêHQêH4pe0R2L



 

 
 

The electric field is always perpendicular to the surface of a conductor, at the conductor’s 

surface. Very near the point charge Q, on the other hand, the presence of the conducting 

plane can make little difference. The electric field line must start out from Q as if they were 

leaving a point charge radially. (Purcell E&M). 

How do we really solve the problem? The answer is, by a trick, but a trick that is both 

instructive and frequently useful. We find an easily soluble problem whose solution, or 

piece of it, can be made to fit the problem at hand. Here the easy problem is that of two 

equal and opposite point charges, Q and –Q in the plane which bisects the line joining the 

two charges. 
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h
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The electric field along the z axis in the x y plane is given by 
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The surface charge density  is given by 
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The total surface charge is calculated as 
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It means that all the flux leaving the charge Q ends on the conducting plane. 

 

 
 

Fig. The Plot3D of the minus of the surface charge density with h = 1 and Q = 1. 

 

 
 



Fig. From E.M. Purcell and D.J. Morin, Electricity and Magnetism, 3rd edition 

(Cambridge, 2013). Fig.3.11 p.138.  

 

13. Hint of HW-23 

13.1 Problem 23-28 (HW-23) 

Figure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged 

cylindrical shell. Both are nonconducting and thin and have uniform surface charge 

densities on their outer surfaces. Figure (b) gives the radial component E of the electric 

field versus radial distance r from the common axis. The vertical scale is set by Es = 3.0 x 

103 N/C. What is the linear charge density of the shell? 

 

 
((Solution)) 

r1 = 3.5 cm 

E1= 1 x 103 N/C 

E2 = -2 x 103 N/C 



 
For r<r1, 

 

Gauss’s law 

 

r
E

hrhE
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1
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13.2 Problem 23-52 

A charged particle is held at the center of a spherical shell. Figure gives the magnitude 

E of the electric field versus radial distance r. The scale of the vertical axis is set by Es = 

10.0 x 107 N/C. Approximately, what is the net charge on the shell? 

 



 
((My solution)) 

a = 2.5 cm 

b = 3.0 cm 

E(a) = 0.2 Es 

E(b) = 0.8 Es 

Es = 10.0 x 107 N/C 

 

 
 

Inside the shell (r<a) 

 

2

04 r

q
E


  
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APPENDIX 

((Example)) Solution of Laplace’s equation with a boundary condition 

 

D.J. Griffiths, Introduction to Electrodynamics, 4th edition (Peason, 2013). 

Example-8, p.141 

 

An uncharged metal sphere of radius R is placed in an otherwise uniform electric field 

0 zE e . The field will push positive charge to the northern surface of the sphere, leaving a 

negative charge on the southern surface. This induced charge, in turn, distort the field in 

the neighborhood of the sphere. Find the potential in the region outside the sphere. 

 

 



 
 

The sphere is an equipotential – we may as well set it to zero. Then by symmetry the 

entire xy plane is at potential zero. This time, however, V does not go to zero at large z. In 

fact, far from the sphere the field is 0 zE e , and hence 

 

0V E z C   

 

Since 0V  , in the equatorial plane, the constant C must be zero. Accordingly, the 

boundary conditions for this problem are 

 

(i) 0V     at r R  

(ii) 0 cosV E r    for r R≫  

 

We must fit these boundary conditions with a function of the form, 

 

1
0

( , ) ( ) (cos )l l
l ll

l

B
V r A r P

r
 






   

 

which is the general solution of the Laplace’s equation; 2 0V  . The first condition yields 

 



1
0l l

l l

B
A R

R 
    

 

or 

 
2 1l

l lB A R    

 

So 

 
2 1

1
0

( , ) ( ) (cos )
l

l

l ll
l

R
V r A r P

r
 






   

 

For r R≫ , the second term in parentheses is negligible, and therefore condition (ii) 

requires that 

 

0

0

(cos ) cosl

l l

l

A r P E r 




    

 

Evidently only one term is present: 1l  . In fact, since 1(cos ) cosP   , we can read off 

immediately 

 

1 0A E    all other lA ’s zero 

 

Conclusion: 

 
3

0 2
( , ) ( ) cos

R
V r E r

r
     

 

The first term 0 cosE r   is due to the external field. The electric field E is obtained as 

 
3

0 3

( , ) 2
(1 ) cosr

V r R
E E

r r





   


 

 
3

0 3

1 ( , )
(1 )sin

V r R
E E

r r








   


 

 

0E   

 

At r R  

 

03 cosrE E  , 0E   

 



The electric field is normal to the surface of the sphere metal. The induced surface charge 

density is 

 

0 0 0( ) | 3 cosr r RE E       

 

As expected, it is positive in the northern hemisphere (0 )
2


   and negative in the 

southern ( )
2


   . Note that 0E  inside the metal sphere. So the tangential 

component is equal to zero for the inside and outside on the boundary, as is expected from 

the continuity of tangential components. The normal component of the electric field is not 

continuous. 

 

((Mathematica)) 





 
 

APPENDIX-I 

Proof: 

We verify the Coulomb’s law that the force between two point charges is proportional 

to 2r , where r is the distance between the two charges.  

 

Part I 

We consider a hollow spherical shell with uniform surface charge density. By 

considering the two small patches at the ends of the thin cones. We show that the electric 

field at any point P in the interior of the shell is zero. This then implies that the electric 

potential is constant throughout the interior. (E.M. Purcell and D.J. Morin, Electricity and 

Magnetism, 3rd edition (Cambridge, 2013). 

 

The electric field inside a uniform spherical conducting shell of charge is zero. It is true 

only if the Coulomb force depends exactly on the square of the distance. We consider a 

cone with apex at P and extending on either side to cut out surface elements 1dA  and 2dA . 

Let 1r  and 2r  be the distances of these elements from the point P. If   is the surface charge 

density, the field at P due to elements are 1

2

0 14

dA

r




 and 2

2

0 24

dA

r




 and act in opposite 

directions.  

 



 
 

Surface area B1C1A1:  1dA  

Surface area B2C2A2:  2dA  

 

Surface area B1H1:  2

1 1r d  

Surface area A2H2:  2

2 2r d  

 

The angles: 

 

1 1 1C B H   ,  2 2 2C B H    

 

Thus we have 

 
2

1 1sindA r d   ,  2

2 2sindA r d    

 

where d  is the solid angle subtended at P by the two elements of area.  

 

The electric field at the point P is 

 

O

P

A1

B1

C1

H1

H2

A2

B2

C2
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d

d



1 2 1 2

2 2 2 2

0 1 0 2 0 1 2

0
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4 4 4

( )
4 sin sin
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r r r r

d d
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
  

  

 
 



 

 

Hence the contributions to the field due to the two elements being equal and opposite, so 

cancel exactly.  

 

((Note)) The same figures as above for different configuration. 
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_______________________________________________________________________ 

Part-2 

 



 
 

Suppose that we start to find the law of electric force such that there shall be no change on 

the inner sphere. Let us assume a law of force such that the repulsion between two charges 

q, q’ at a distance r apart is ' ( )qq r . Let us calculate the electric potential at a point inside 

the sphere due to a charge spread entirely over the surface of the sphere.  

 
2( ) ( ) 2 sinV c r R d       

 

where 

 
2 2 2 2 cosr c R cR     

 

and 

 

sinrdr cR d   

 

Thus we have 

 

R
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r
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where R c r R c     and 

 

24

Q

R



  

 

We note that 

 

( ) ( )
r

f r r r dr


  , 

 

and 

 

'( ) ( )f r r r . 

 

Then we get the electric potential as 

 

2( ) ( ) 2

2
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[ ( ) ( )]
2

rdr
V c r R

cR

R
r r dr

c

Q
f R c f R c

cR

  

 






   



  

 

( )V c k , which is independent of c. 

 

2 [ ( ) ( )]ckR Q f R c f R c     

 

Taking a derivative of both sides with respect to c, 

 

2 [ '( ) '( )]kR Q f R c f R c     

 

or 

 

"( ) "( ) 0f R c f R c     

 

Suppose that 

 



"( )f r A  

 

'( ) ( )f r Ar B r r    

 

or 

 

( )
B

r A
r

    

 

The electric field is 

 

2

( )d r B
E

dr r


      (Coulomb’s law) 
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APPENDIX-II 

 



 
The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 

2θ, is the area of a spherical cap on a unit sphere is obtained as follows. 

 

0

0

( ) 2 sin

2 [ cos ]

2 (1 cos )

d





   

 

 

 

 

 


 

 

The total electric flux coming from a point charge with q, over the solid angle ( )  is 

 

0 0 0

( ) 2
(1 cos ) (1 cos )

4 4 2

q q q 
 

    


      . 

 



 
 

Suppose that there are two charges with +mq (m>2) and -q. Among the electric field lines 

starting from the charge +mq, a part of them enters into the charge with -q, while the other 

lines go to infinity. We determine the critical angle c , below which all the lines enter into 

the point charge with -q. 

 

The electric lines starting from the charge with +mq (m>2) over the solid angle 1( )  

 

1 1

0

(1 cos )
2

mq



   . 

 

The electric lines starting from the charge with -q over the solid angle 2( )  



 

2 2

0

(1 cos )
2

q



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The total electric lines 

 

1 2

0 0

(1 cos ) (1 cos )
2 2

tot

mq q
 

 
     , 

 

are conserved both for the initial and final states. For the case (I), we have 1 c   and 

2  . For the case (II), we have 1 0   and 2 0   (special case) 

 

0 0 0 0

(1 cos ) (1 cos ) (1 cos 0) (1 cos0)
2 2 2 2

c

mq q mq q
 

   
       , 

 

or 

 

2
cos 1c

m
   . 

 

For m = 4, 
3

c


  . For m = 6, 

6
c


  . 

 

(a) m = 3 

 
 



(b) m = 4 

 

 
 

(c) m = 6 

 
 

(d) m = 8 

 



 
 

(d) 

 

 
 


