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1. Electric potential 

The electrostatic force is a conservative force. This means that the work it does on a 

particle depends only on the initial and final position of the particle, and not on the path 

followed. With each conservative force, a potential energy can be associated. 

 

UWK c  ,  (energy-work theorem) 

 

where K is the kinetic energy and Wc is the work due to the electrostatic force (conservative 

force). The potential energy U associated with a conservative force F is defined in the 

following manner  

 

cW d dU  F r . 

 

To describe the potential energy associated with a charge distribution the concept of the 

electric potential V is introduced. The electric potential V at a given position is defined as 

the potential energy of a test particle divided by the charge q of this object: 

 

( ) ( )U qVr r . 

 

Since qF E , this equation can be rewritten as 

 

cW q d dU qdV   E r , 

 

or 
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or 

 

V V


   


E
r

 

 

where V  is the gradient of V. 

 

For the Cartesian coordinate (x, y, z) 
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For the spherical coordinates [  cos,sinsin,cossin rzryrx  ] 

 

1 1

sin
r

r r r
   

  
  

  
e e e  

 

For the cylindrical coordinates [ zzx  ,sin,cos  ] 
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The unit of the electric potential is the volt (V) and The unit of the electric field is V/m. 

 

1 V = 1 J/C = 1 Nm/C.  

 

1 N/C = 1 V/m 

 

A unit for the energy commonly used in physics is defined the electron volt (eV). 

 

1 eV = (1.602176487 x 10-19 C)(1V) = 1.602176487 x 10-19 J 

 

qe is the charge of electron (negative charge) and is given  

 

qe = -e 

 

with e = 1.602176487 x 10-19 C 

 

 

((Note-1)) Relation between work done and potential energy (Work-energy theorem) 

 
qF E  

 

W d q d q V d qV U             F r E r r   

 

((Note-2)) 

We consider the work to move charge (q>0) from infinity to a finite distance r, where 

the positive charge Q is located at r = 0. 
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where F is the repulsive force, and is given by 

 

2
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The displacement vector is 

 

sinrd dr rd r d     r e e e . 

 

The scalar product is 

 

F
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Using the work energy theorem, we have 
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Using the electric field E, 

 

qF E , U qV , 

 

we have the final form for the electric potential, 

 
r
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or 

 

V E . 

 

((Note)) The path integral 

 

 

Fig. Path integral sd E ds  E r  along the path 123 and the path 341 
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We use the Stokes’ theorem for the path integral, 

 

( )d d    E r E r�  

 

Suppose that the electric field E is expressed by 

 

V E . 

 

Leading to 0 E . Then we have 

 

0d  E r�  

 

and 
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Thus the path integral is independent of any path between the points 1 and 3. 

 

 

2. Potential differences in a uniform electric field 

We consider the two parallel conducting plates which are separated by a distance d. A 

battery V is connected between these two plates. The electric field E is assumed to be 

uniform.  

 
EddEVVdV  )0()0()(  

 

or 

 

EdV   

 

Note that the direction of the electric field is from the higher electric potential to the 

lower electric potential. 

 



 
 

or 
 

 
 

 

 

((Example)) Walter Lewin: 8.02x-MIT Physics II Electricity and Magnetism (Chapter 5) 

Suppose that the two parallel conducting plates are separated by a distance d. A battery 

V is connected between these two plates. The electric potential V is linearly proportional to 

the position x: V = 0 at x = 0 and V = 103 V at x = d = 0.01 m. So the electric potential V is 

given by 

 
510V x  (0 x d  ). 

 

as a function of x. The electric field is constant, 



 

510
x

dV
E

dx
    V/m,  

 

The direction of the electric field is from the high voltage point to the low voltage point. 

 

 
 

The direction of the electric field (denoted by the green line) is along the negative direction. 

The red line denotes the constant V with V = 0 – 1000 V. The equi-potential line with the 

constant V is perpendicular to the electric field E. 
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3. Electric potential due to point charges 

The electric field due to a point charge q is given by 
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where 0)( V . 
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((Mathematica)) 

Plot3D of the electric potential due to a positive charge located at x = y = 0 

 

 
 

((Mathematica))  

Plot3D of the electric potential due to a negative charge located at x = -0.1, y = 0 and a 

negative charge located at x = 0.1 and y = 0. 

 



 
 

The electric potential at a point P in space due to two, or more point charges is obtained 

from the superposition principle. 
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where ri is the distance from the point P to the charge qi. 

 

In the case of a continuous charge distribution, the electric potential is the integral of 

all the contributions from the point-like charge elements 
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4. Electric field and equipotential surface 

 

 
 

The electric field lines are everywhere perpendicular to the equipotential surfaces. 



If the points A and B are lie on the same equipotential surface, then by definition, we 

have VA = VB, or 

 

V = 0. 

 

The electric potential difference is described as 

 

V d   E r , 

 

where dr is a displacement (= AB) that lies entirely on an equipotential surface (V = 0). 

leading to 

 

0d E r  

 

or, E must be perpendicular to the equipotential surface. 

 

 
 

Fig. The electric field line is perpendicular to the equipotential surface. 

 

5. Electric potential energy 

5.1 Two charges (proton and electron) Bohr model in a hydrogen atom 



 
 

We now consider the potential energy of a system of the two charged particles. If V2 is 

the electric potential at a point P due to a charge q2, the work an external agent must do to 

bring a second charge q1 from infinity to the point P without acceleration is q1V2. The 

electric potential energy of a pair of point charges is given by 
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The hydrogen atom consists of a proton (a charge e) and an electron (a charge –e). The 

potential energy is given by 
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where the electron rotates around a proton, with a radius r. U is negative since the 

interaction is attractive. 

 

 
The total energy of the electron is 
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where r = rB is the Bohr radius; rB = 0.529177 x 10-10 m. 

E is negative and equal to -13.6 eV. 

 

((Mathematica)) 

 

 
 

5.2 More than two charges 

If there are more than two charges present, the potential energy of the system is 

obtained by finding the energy of each pair of charges and then summing to obtain the total 

energy. For three charges we obtain 
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Physconst = 9eV → 1.602176487 10
−19

, qe → 1.602176487 10
−19

,

me → 9.1093821545 10−31, rB → 0.52917720859 10−10, ε0 → 8.854187817 10−12=

9eV → 1.60218× 10
−19

, qe → 1.60218 ×10
−19

,

me → 9.10938× 10
−31

, rB → 5.29177 ×10
−11

, ε0 → 8.85419 ×10
−12=

E1 =
1

2
 −

1

4 π ε0
 
qe2

rB

−
qe2

8 π rB ε0

E1êeV ê. Physconst

−13.6057



 

For q1, the electric potential V1 due to q2 and q3 and the potential energy U1 are given by 
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For q2, the electric potential V2 due to q1 and q3 and the potential energy U2 are given by 
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For q3, the electric potential V3 due to q1 and q2 and the potential energy U3 are given by 
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Therefore we get the potential energy for the three charges as 
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where the factor 1/2 is necessary since we count twice for each pair. In general case, 
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for the N-charges system. This equation can be rewritten as 
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for the continuous system. 

 

((Example)) Potential energy of sphere with constant charge density  . 



 

The electric potential is given by 
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(see APPENDIX). Then the potential energy is obtained as 
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The energy is proportional to the square of the total charge and inversely proportional to 

the radius. We can also interpret this equation as saying that the average of 1/ ijr  for all 

pairs of points in the sphere is 6 / (5 )R . 

 

6. Electric potential due to an electric dipole moment 

Find the electric potential due to an electric dipole moment far from the dipole. 

 



 
 

Fig. Finding the electrical potential V at the point P. 

 

(a) Approximation-1 

Line BA is on the z axis. The positive charge is at (0, 0, a) and the negative charge is 

at (0, 0, -a). We consider an electrical potential at the point P, due to the electric dipole 

moment ( 2p qa ). 
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where   is an angle between the vector OP  r
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 and the z axis. The electric potential due 

to the electric dipole moment (0, 0, )pp  is given by 
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where (0, 0, )pp  and p r  cospr  p r . 2p qa . Using the electric potential given 

by 

 



2

0

cos

4

p
V

r




 , 

 

the electric field can be expressed by 
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Note that in the polar coordinate 
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leading to 
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When 
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cos
3

   , zE  becomes equal to zero. 

In general case, the electric field due to the electric dipole moment can be expressed by 
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Fig. Electric field of the electric dipole moment p at the origin. 
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Fig. Electric field due to an electric dipole moment (Purcell and Morin). E.M. Purcell 

and D.J. Morin, Electricity and Magnetism, 3rd edition (Cambridge, 2013). 
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Electric field  produced by an electric dipole moment
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(b) Approximation-2: Calculation using the Legendre generating function 
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We use the generating function of the Legendre function, 
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where x = cos, t = a/r, Pn(x) is a Legendre polynomial. 

 

)157063(
8

1
)(

)33035(
8

1
)(

)35(
2

1
)(

)13(
2

1
)(

)(

1)(

24

5

24

4

2

3

2

2

1

0













xxxxP

xxxxP

xxxP

xxP

xxP

xP

 

 

Then we have 
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The first term (and the dominant term for r>>a) is 

 



2

0

2

1

0

2

1

0

1

0

cos

4

1)(cos

4

)(cos

4

2
])(cos[

2 r

p

r

Pp

r

Paq

r

a
P

r

q
V













  

 

which is the electric dipole potential and p = 2aq is the electric dipole moment. 

 

7. Electric potential of the electric dipole (general case) 

The electric potential of the electric dipole is given by 
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The entire electric potential at point r is obtained by summing the contributions from all 

parts of electric dipoles at the point r’, 
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where P is the electric polarization vector. Using the relation 
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Thus we get 
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The volume charge density is defined by 
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The surface charge density is defined by 
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7. Electric potential due to ring 

 

 
 

Charge Q is uniformly distributed on a ring of radius a. Determine the electric potential 

at a point on the axis of the ring a distance z from the center. 
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The electric field E is directed along the z axis. 
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8. Electrical potential due to disk 

(a) Simple case 

A disk of radius (a) carriers a uniform surface charge density . Find the potential on 

the axis at point A, a distance z from the center. 
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The electric field E is along the z axis. 

 

For z>0, we have 
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For z<0, we have 
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((Mathematica)) 

 

 
 

(b) The application to the calculation of the electric potential due to sphere 

(outside) 

 

We show that the electric potential V (outside the sphere charged with Q) is given by  
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In the previous calculation, we choose the following replacement in the the calculation of 

V due to the disk. 
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Then we have an electric potential outside the sphere (radius R), 
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((Note)) 

This is a good lesson for the calculation of V. Through this calculation, we realize that 

it is much easier for one to calculate the electric field first using Gauss’ law. Then the  

electric potential can be calculated from the integral of electric field. 

 

((Mathemtatica)) 

 



 
 

9. Electric potential due to spherical shell 

A spherical shell of radius R carries charge Q uniformly distributed over the surface. 

Determine V inside and outside. 

 

 
 

A spherical shell of radius R carries charge Q uniformly distributed over the surface. 

Determine V inside and outside. For r>R, we have 
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 ) inside the shell. Note that V should be continuous at r = R (boundary 

condition). The potential inside a shell is equal to the potential at the surface of the shell. 

 

((Mathematica)) 



 
 

10. Electric potential due to sphere 

10.1 Direct calculation of the electric potential (method-1) 



 
 

An insulating sphere of radius R has uniform volume charge density . Determine the 

potential everywhere. Later we realize that the method-2 (using the Gauss’ law) is much 

easier than the method-1. The method-2 will be shown after this discussion. 

 

For r>R, we have the electric potential given by 
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The electric field is directed along the radial direction. 
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For r<R, the charge within a sphere (radius r) is 
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Then the electric potential V1 arising from the part within r (0 – r) 
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The electric potential V2 arising from the charge between r and R, is calculated as a sum 

of the shell (r’ – r’+dr’) (r<r’<R). We note that the potential inside a shell is equal to the 

potential at the surface of the shell.  

 
 

Fig. Sphere (blue) with radius r. Sphere (black) with radius R. Spherical shells (regions 

between spheres with black and brown, brown and green, green and red, red and 

blue), and so on are schematically shown. 
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Thus the resulting electric potential is  
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10.2 Method-2 (using the Gauss’ law) 

The electric field E is given by 
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Then the electric potential inside the sphere is 
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11. Electric potential due to a charged rod (case-I) 
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A total charge Q is distributed uniformly along a straight rod of length L. Find the 

potential at point P at a distance h from the midpoint of the rod. The potential at P due to a 

small segment of the rod, with length dx and charge dQ, located at the position is given by 
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with the line charge density  = Q/L 
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((Mathematica)) 

 



 
 

12. Electrical potential due to a charged rod (Case-II) 

A rod of length L has a uniform linear density . Determine the potential at a point P 

on the axis of the rod a distance from one end. 
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13. Electric potential due to a circled wire 

 

 
 

A rod with uniform linear charge density  is bent into the shape above. Find the 

potential at the center for this configuration. We use the above results. Then we have 
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14. Method of images 

(a) A point charge near a conductor plane 

We assume that there are two point charges as shown in this figure. The distance 

between the two point charges is 2a. We notice that the plane, since it is halfway between 

the two charges, has zero potential. This implies that the right-half plane picture is the same 

as that obtained from a point charge in front of a conducting sheet. 

 

 



 
(Feynman Lectures on Physics)  

 

 
We consider a point on the conducting sheet at the distance from the point directly 

beneath the positive charge. The electric field at this point is normally to the surface and is 

directed into it. The electric field resulting from both the positive point charge and the 

negative point charge is normal to the sheet and is given by 
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From the Gauss’ law, the surface charge density is given by 
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We note that the total induced charge is - q as it should be. 
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We show the ContourPlot of the normalized surface charge density which is given by 
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Fig. ContourPlot of the normalized surface charge density in the (x/a, y/a) plane. 
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(b) A point charge near a conducting sphere 

We find the fields around a conducting sphere which has a point charge near it. Now 

we must look for a simple physical situation which gives a sphere for an equipotential 

surface. As shown in this figure, the field of two unequal point charges has an equipotential 

that is a sphere. If we choose the location of an image charge- and pick the right amount of 

charge- may be we can make the equipotential surface fit our sphere. 

 

 
 



Fig. Electric field lines for a = 1, b = 3, q = 3, and 1)/('  baqq . The zero-

equipotential surface exists as a sphere of radius 1 centered at x = 0 and y = 0. The 

charge of (q = 3) and the charge (q’=-1) are located at x = 1/3 and x = 3, respectively. 

 

 
 

Fig. The point charge q induces charges on a grounded conducting sphere whose fields 

are those of an image charge q’ placed at the point shown. AP = r1, P’A = r2, OA = 

a, OP = b, OP’ = a2/b, q’ = (-a/b)q. We choose b = 3, a = 1, q = 3, q’=-1. OP’ = 1/3, 

OA = 1, OP = 3 in the above figure (using Mathematica).  

 

Assume that one wants the equipotential surface to be a sphere of radius a with its center 

at the distance b from the charge. Put an image of the strength qbaq )/('   on the line 

from the charge to the center of the sphere, and at a distance a2/b from the center. The 

sphere will be at zero potential. 

The mathematical proof is given as follows. The potential V at P from q and q’ is given 

by 
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The potential will be zero at all points for which 

 

0
'

21


r

q

r

q
 or 

q

q

r

r '

1

2  . 

 

If q’ is placed at the distance OP’ = a2/b from the center, the ratio (r2/r1) has the constant 

value a/b. 

In fact, suppose that 'AOP  is similar to POA . Then we have 
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What is the attractive force between the point charge q and the conducting sphere? This 

force is equal to the attractive Coulomb force between q and q’. 
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(c) A conducting sphere in the presence of a uniform electric field 

 

 
 

 
 

How does the electric field change when the conducting sphere (radius a) is put in the 

uniform electric field E0 along the x axis. Suppose that this electric field is generated by 

two point charges of Q at x = -R and –Q at x = R. The electric field at the sphere is 

2Q/(40R
2). In the limit of R→0, the field is parallel to the x axis. 
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Now we consider the image charges of Q at x = -R and –Q at x = R, concerning the 

conducting sphere. The image charges (
R

a
Q ) are located at Rax /2 . Then these 

image charges form an electric dipole with the electric dipole moment, 
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The electric potential of the electric dipole moment is given by 
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From the superposition principle, the resulting potential is a sum of Vdipole and original 

uniform field (E0) along the x axis, 
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Fig. Electric field distribution near a conducting sphere in the presence of a uniform 

electric field. a = 3 and E0 = 1. The electric field should be zero everywhere inside 

the sphere.  

 

15. Typical examples 

15.1 Problem 24-22 (SP-24) 

 

In Fig.(a), a particle of charge +e is initially at coordinate z = 20 nm on the dipole axis 

through an electric dipole, on the positive side of the dipole. (The origin of z is at the dipole 

center.) The particle is then moved along a circular path around the dipole center until it is 

at coordinate z = -20 nm. Figure (b) gives the work Wa done by the force moving the 

particles versus the angle  that locates the particle. The scale of the vertical axis is set by 

Was = 2.0 x 10-30 J. What is the magnitude of the dipole moment? 



 
 

((My solution)) 

R = 20 nm 
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U can be rewritten as 
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Then we have 
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15.2 Problem 24-30 (SP-24) 

 

Figure shows a thin plastic rod of length L = 12.0 cm and uniform positive charge Q = 56.1 

fC lying on an x axis. With V = 0 at infinity, find the electric potential at point P1 on the 

axis, at distance d = 2.50 cm from one end of the rod. 

 



 
 

((Solution)) 

Q = 56.1 fC 

d = 2.50 cm 

L = 12.0 cm 
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15.3 Problem 24-114 

 

A point charge q1 = +6.0e is fixed at the origin of a rectangular coordinate system, and a 

point charge q2 = -10e is fixed at x = 8.6 nm, y = 0. The locus of all points in the xy plane 

for which V = 0 (other than infinity) is a circle centered on the x axis, as shown in Fig. Find 

(a) the location xc of the center of the circle and (b) the radius R of the circle. (c) Is the xy 

cross section of the 5 V equipotential surface also a circle? 

 



 
((Solution)) 

q1 = 6 e 

q2 = -10 e 

a = 8.6 nm 

e = 1.602176487 x 10-19 C Charge of electron 

 

 
 

(a) and (b) 

The electric potential V is equal to zero, 
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This is the circle of radius (15a/16) at the center (-9a/16, 0). 

 

(c) 
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16. Hint of HW-24 

16.1 Problem 24-11 *** 

A nonconducting sphere has radius R = 2.31 cm and uniformly distributed charge q = + 

3.50 fC. Take the electric potential at the sphere’s center to be V0 = 0. What is V at radial 

distance (a) r = 1.45 cm and (b) r = R. 

 

((Solution)) 
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R = 2.31 cm 

 

 

Gauss’ theorem 
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16.2 Problem 24-33*** 

The thin plastic rod shown in Fig has length L = 12.0 cm and a nonuniform linear charge 

density  = cx’, where c = 28.9 pC/m2. With V = 0 at infinity, find the electric potential at 

point P1 on the axis, at distance d = 3.00 cm from one end. 
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((Solution)) 

L = 12.0 cm 

c = 28.9 PC/m2 

d = 3 cm 
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16.3 Problem 24-56 

Figure a shows an electron moving along an electric dipole axis toward the negative side 

of the dipole. The dipole is fixed in place. The electron was initially very far from the 

dipole, with kinetic energy 100 eV. Figure b gives the kinetic energy K of the electron 

versus its distance r from the dipole center. The scale of the horizontal axis is set by rs = 

0.10 m. What is the magnitude of the dipole moment? 

 



 
((Solution)) 

rs = 0.1 m 

Intial kinetic energy Ki = 100 eV at x = ∞ 
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When r = x 
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The potential energy is given by 
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APPENDIX-I  Van der Graaff generator 

 

R.A. Serway and J.W. Jewett, Jr. Physics for Scientists and Engineers, 8th edition 

(Brooks/Cole, 2010). 



 
 

In 1929, Robert J. Van de Graaff (1901–1967) used this principle to design and build 

an electrostatic generator, and a schematic representation of it is given in Fig. This type of 

generator was once used extensively in nuclear physics research. Charge is delivered 

continuously to a high-potential electrode by means of a moving belt of insulating material. 

The high-voltage electrode is a hollow metal dome mounted on an insulating column. The 

belt is charged at point A by means of a corona discharge between comb-like metallic 

needles and a grounded grid. The needles are maintained at a positive electric potential of 

typically 104 V. The positive charge on the moving belt is transferred to the dome by a 

second comb of needles at point B. Because the electric field inside the dome is negligible, 

the positive charge on the belt is easily transferred to the conductor regardless of its 

potential. In practice, it is possible to increase the electric potential of the dome until 

electrical discharge occurs through the air. Because the “breakdown” electric field in air is 

about 3 x 106 V/m, a sphere 1.00 m in radius can be raised to a maximum potential of 3 x 

106 V. The potential can be increased further by increasing the dome’s radius and placing 

the entire system in a container filled with high-pressure gas.  



 

 

 

 
 

The electric potential V of the Van der Graaff generator is given by 
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where Q is the surface charge of the conducting sphere (radius R) for the Van der Graaf 

generator. The electric field E is expressed by 
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or 

 

V ER . 

 

The capacitance C is given by 

 

04C R . 

 

For the Earth, C = 708.981 F. For the Sun, C = 0.0774393 F. For the Van de Graaff, C = 

700 pF (for R = 0.27 m).  



Suppose that 63 10E    V/m. 

 
6(3 10 )V ER R    

 

Using this relation, we have 

 

R V 

3mm 10 kV 

3 cm 100 kV 

30 cm 1 MV 

3 m 10 MV 

 

APPENDIX-II 

The electric potential from a uniformly charged sphere 

(Griffiths Example 2.8) 

 



 
 

We find the electric potential of a charged sphere of radius R, which carries a uniform 

density  . The electric potential at the point P is given by 
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Noting that 
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Using the integral formula 
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we get 
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(a) z R   (outside the sphere) 
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(b) z R   (inside the sphere) 
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APPENDIX-III:  Lightning rod 

 

A lightning rod (US, AUS) or lightning conductor (UK) is a metal rod mounted on a 

structure and intended to protect the structure from a lightning strike. If lightning hits the 

structure, it will preferentially strike the rod and be conducted to ground through a wire, 

instead of passing through the structure, where it could start a fire or cause electrocution. 

Lightning rods are also called finials, air terminals or strike termination devices. 

In a lightning protection system, a lightning rod is a single component of the system. 

The lightning rod requires a connection to earth to perform its protective function. 

Lightning rods come in many different forms, including hollow, solid, pointed, rounded, 

flat strips or even bristle brush-like. The main attribute common to all lightning rods is that 

they are all made of conductive materials, such as copper and aluminum. Copper and its 

alloys are the most common materials used in lightning protection. 

https://en.wikipedia.org/wiki/Lightning_rod 

 

Now, suppose two metal spheres with radii 1r and 2r  are connected by a thin conducting 

wire, as shown in Figure 1. 

 

 
 

Fig. Two conducting spheres connected by a wire. 



 

Charge will continue to flow until equilibrium is established such that both spheres are at 

the same potential 1 2V V V  . Suppose the charges on the spheres at equilibrium are 1q  

and 2q . Neglecting the effect of the wire that connects the two spheres, the equipotential 

condition implies 
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assuming that the two spheres are very far apart so that the charge distributions on the 

surfaces of the conductors are uniform. The surface charge densities on spheres 1 and 2 

are related to the charges q1 and q2 as 
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The two equations can be combined to yield 
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The surface charge density   is inversely proportional to the radius r. It is concluded 

that the regions with the smallest radii of curvature have the greatest  . Thus, the 

electric field strength on the surface of a conductor is greatest at the sharpest point. The 

design of a lightning rod is based on this principle. 

 



 
 

((Feynman)) 

 

R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics vol. II 

(Basic Books, 2010). 

 

We would like now to discuss qualitatively some of the characteristics of the fields 

around conductors. If we charge a conductor that is not a sphere, but one that has on it a 

point or a very sharp end, as, for example, the object sketched in Fig., the field around the 

point is much higher than the field in the other regions. The reason is, qualitatively, that 

charges try to spread out as much as possible on the surface of a conductor, and the tip of 

a sharp point is as far away as it is possible to be from most of the surface. Some of the 

charges on the plate get pushed all the way to the tip. A relatively small amount of charge 

on the tip can still provide a large surface density; a high charge density means a high field 

just outside. 

 



 
 

Fig.1 The electric field near a sharp point on a conductor is very high. 

 

One way to see that the field is highest at those places on a conductor where the radius 

of curvature is smallest is to consider the combination of a big sphere and a little sphere 

connected by a wire, as shown in Fig.2 It is a somewhat idealized version of the conductor 

of Fig.1. The wire will have little influence on the fields outside; it is there to keep the 

spheres at the same potential. Now, which ball has the biggest field at its surface?  
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Fig.2 The field of a pointed object can be approximated by that of two spheres at the same 

potential. 

 

The electric potential is the same when two spheres are connected with a wire, 
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where 
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Noting that the electric field is 
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we have 
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Thus the electric field becomes large when the radius of curvature becomes small. 

 

 

APPENDIX-IV Van de Graaff generator and standard value of electric field 

for air dielectric break down 

 



 
 



 
 

Although air is normally an excellent insulator, when stressed by a sufficiently high 

voltage (an electric field of about 3 x 106 V/m or 3 kV/mm), air can begin to break down, 

becoming partially conductive. Across relatively small gaps, breakdown voltage in air is 

a function of gap length times pressure. 

 



 
 

Fig. Schematic diagram of the van de Graaff. R = 0.3 m. C = 33.4 pF. The standard 

value of air dielectric breakdown is 3kV/mm = 3000 kV/m=3MV/m). 

 

The voltage and the electric field of the Van de Graaff; 
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The capacitance: 

 

04C R  

 

When R = 0.3 m, 33.4C  pF. 

 

For 63 10E   V/m = 3000 kV/m (which is the breakdown electric field of air), 
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V = 3x105 V = 300 kV, 10Q   C. 

 

REFERENCES 

R.A. Ford, Homemade Lightning, Creative Experiments in Electricity, 3rd edition 

(McGraw-Hill, 2002). 

 

APPENDIX 

 
 

Here we find the electric potential at the point ( , )P x z  due to the electric dipole moment 

with 2p qd . We also find the expression of the electric field at the point ( ,0).Q x  

 

Electric potential from the electric dipole moment: 

For 
2 2( )x d z   and 

2 2( )x d z  , the distances between the electric dipolements 

and the point ( , )P x z ; 
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The electric potential: 
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where  2p qd . Thus the electric field is obtained as 
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