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Here we discuss the electric field near a dielectric (the polarization vector P) for the two cases;
(1) in the absence of an external electric field and in the presence of the external electric field.

1. Electric field in the vicinity of dielectric medium in the absence of external electric
field
(a) Lorentz field (local field)
A field which acts on and polarizes an atom a Lorentz field. Here we discuss the electric field
inside of a dielectric sphere in the absence of external electric field. This field is called a Lorentz

field and expressed by
P
3¢g,

where P is the polarization vector. The electric field outside the sphere is the same as one from an
electric dipole moment

_ 47 R’
3

p P,

where R is the radius of dielectric sphere.



The Lorentz field due to the surface charge of the polarization vector can be calculated as follows.
Let the direction of the polarization be the z axis and the angle measured from the z axis be €. The
charge density on the surface is P-n= Pcos@. The surface area is 27 RsinO(Rd6) . So the total
charge on this surface area is [27 R sin #RdO]P cos @ . This charge produces an electric field at the

origin O. The electric field along the z axis is

;2 [27R sin @RAO|P cos B(cos b)) = £ sin @ cos” Od6
4re,R 2¢,

So the resultant electric field is obtained as
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(b) Electric field outside the dielectrics
The electric potential of the electric dipole moment (» > R) is given by

y _ peos f
dre,r
where
3
p= 472R P (the electric dipole moment)

where P is the magnitude of the polarization vector P, and z =rcos@ . The electric field outside
the sphere is obtained as
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Note that in the polar coordinate



E=-VV(r,0)
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At the top of the dielectric sphere, (r =R, €=0),

E =0,

X

E = ;= T
dre,R°  4dme R 3 3¢,

2p 2 4 R’P= 2P (outside at top, north pole)
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Fig. Electric field inside and outside the dielectric sphere, in the absence of an external electric
field.

28 Boundary condition of the electric field and displacement vector at the top of sphere
The normal component of the electric field is discontinuous, while the tangential component
of the electric field is continuous.



The normal component of the electric field is discontinuous on the boundary surface.

(a) Normal component of the electric field

_2p
out, L 350 s
leading to
P
Eout,J_ - Ein,J_ =
‘90

(discontinuity)

(b) Normal component of the displacement vector

O O

D ut, L = gOE ut, L =

in,L

Din’l:gOE. +P:_§+P:%P



leading to

D(mt,L = Dln,i (Contlnulty)
(¢) Tangential component of the electric field
Eout,// =0 s Em,// =0 ) (ContiHUOUS)

This example illustrates the general rules for the behavior of the field components at the surface
of a polarized medium. The normal component of the electric field E is discontinuous at the surface
boundary, while the component of E parallel to the boundary surface remain continuous.

3. Analytical method from the Laplace equation with the boundary condition
Laplace equation

E=-V/V, V-E=-VV =0 for >R and r <R

The solution of the Laplace equation is given as follows.

V(r,0)=) (4r'+ ﬁfl )P (cos )

1=0 r

or

7, (r.0)= Y 7 B(cos). V,(r.8) =Y. A4r'P(cosd)

I
=07 =0

V(r,0) is continuous at » = R

V(r=R,0)=V,(0)=> AR'P(cosb) = Z%B(cos 0)
=0 1=0

20+17% .
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((Boundary condition))

(_6I/Uut + aV:n )r:R =i60(0) :LP'n = PCOSG
81" 81’ 80 80

since the normal component of E on the surface is discontinuous.

3 (2 +1)AR""P(cosO) = 1o (6)
2 RP :
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For r <R,
V= ircos&
3g,
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The electric field is given by

oV 1oV 1 or

E=-VV=-e—-¢———-¢—————
or r 06 rsin@ o¢

For r <R,

V= ircos@
3e,

and

E = i(—er cosf+e,sinf) = —ie
) 2

z

where

e.=—e cosf+e,sind

For r>R

V :——2c059
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Cdmey? dmeyr’
where p is the electric dipole moment.

((Mathematica))



Clear["Global *"];

P

Vi[r_, & ] := r Cos[&] ;

3 €0

r2xRule =
Thread[{r, 6, ¢} » CoordinatesFromCartesian[{x, y, z}, Spherical]]

z
{r‘ex/x2+y2+zz,9+Ar‘cCos{
A/ X% +y? 4 Z?

V2D1 =Vi[r, 6] /. r2xRule /.y -0 // Simplify;

] , @ »> ArcTan[X, y]}

rulel={R-1, P->1, €0~ 1};

V2D11 = V2D1 /. rulel

z

3

Ex1 = -D[V2D11, x] // Simplify;
Ezl1 = -D[V2D11, z] // Simplify;



gl = ContourPlot[Evaluate[Table[V2D11 == &, {x, -0.5, 0.5, 0.02}]],

{X: ‘3: 3}: {Z: _3: 3}:
ContourStyle -» Table[{Thick, Hue[©0.03 1]}, {i, @0, 60}],
RegionFunction - Function[{x, z}, x*+2z* <1]];

g2 = StreamPlot[Evaluate[{Exl, Ez1}], {x, -3, 3}, {z, -3, 3},
RegionFunction - Function[{x, z}, x*+2z* <1]];
P R?

— Cos[2] ;
3€e0 p2

v2[r_, @] :=

V2D2 = V2[r, 6] /. r2xRule /.y - 0 // Simplify
PR®zZ

3 (x*+ 22)3/2 €0

rulel={R-»>1, P->1, €0-» 1};

V2D22 = V2D2 /. rulel

z

3 (XZ " ZZ) 3/2




Ex2 = -D[V2D22, x] // Simplify;
Ez2 = -D[V2D22, z] // Simplify;
g3 = ContourPlot[Evaluate[Table[V2D22 == a, {a, -2, 2, ©.01}]],

{X: _3J 3}: {Z: '31 3}:
ContourStyle -» Table[ {Thick, Hue[©0.03 1]}, {i, @, 60}],
RegionFunction - Function|[{x, z}, x*+2? > 1]];

g4 = StreamPlot [ Evaluate[{Ex2, Ez2}], {x, -3, 3}, {z, -3, 3},

RegionFunction - Function|[{x, z}, x*+2* > 1]];

g5 = ParametricPlot[{Cos[©], Sin[©]}, {6, 0, 27},
PlotStyle » {Thick, Black}];

Show([gl, g2, g3, g4, g5, PlotRange - All]
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4. Alternative way of deriving the electric field of a polarized sphere



There are two spheres of charge: a positive sphere and a negative sphere. Without polarization
the two are superimposed and cancel completely. But when the material is uniformly polarized, all
the plus charges move slightly upward (the z direction), and all the minus charges more slightly
downward. The two spheres no longer overlap perfectly: at the top there is a cap of leftover positive
charge and at the bottom a cap of negative charge. This leftover charge is precisely the bound
surface charge o, .

E, (4mr?) =22 oy E. = p(r.~r)=———ps
& 3 3¢g, 3¢g,

E (4nr*)= i4—7[(—,07”_3), E = _11 or.
& 3 & 3

where p is the charge density. Thus the resulting electric field is given by

E =E +E :L,o(r+ -r)= —Lpé
3¢g, 3¢g,

where



The electric dipole moment p is defined by
Np = Ned

where N is the total number of electric dipole moments. The electric polarization is
P=%=np=ne5=p§, or po =eP

Using this expression of P, we have

Boundary condition



Outside of the sphere (electric field of electric dipole)

2pcosd psiné
(Eout ),, :—3’ ( out ),9 :—3
4re,R 4re,R
4
P=
4—”R3
3
Inside of the sphere
__P
in 380
3p
(E,) =———cos0=—3ZR cos9-——L _cos0
g & 3¢g, 4re,R
3p
3
(E,) _ P Gino-—242R o —%siné’
¢ 3¢, 3¢, 47e,R

(a) Boundary condition for £



Normal component:

3p Pcos@ Pn
( out )r ( in )r 4 80R3 COS go 80

Tangential component:

(Eout )0 _(Ein )9 =0

(b) Boundary condition for D

(Dout ),, _(Din ), = 80 (Eout ),, _[‘C"O (Em ), +Pr]
=¢&(E,,) —(E,) —Pcosd]

out J

(¢) General case
In general, we have the following boundary conditions for E and D



<

Fig. ¢=1.&=2.and 6’1=%

E xn=E,xn
E,=FE, (tangential component)
where n is the unit vector normal to the boundary surface.

E sin6, = E,sin6,

or

(1



Dfn

Fig. ¢=1.&=2.and 491:%_

D -n=D,-n
D, =D,, (normal component)
D, cos6 = D,sinb,

Since D, =¢,E,, and D, = ¢,E,, we have

&E cosf =¢E, cosO, 2)

From Egs.(1) and (2), we have



tand) tan0,

& &

S Example-1
(a) Method using the boundary condition

We put a plane of dielectric with an infinitely large area and a finite thickness in the presence
of a uniform electric field E,. The angle between the electric field E| and the normal vector n is

0,. We discuss the detail of the electric field inside the dielectric. The dielectric constants of

vacuum and dielectric are g, and &, respectively.

We note that the tangential component of the electric field is continuous on the boundary surface.
E sinf =E,sin0,

The normal component of the displacement vector is continuous on the boundary surface.
D, cos6, =D, cos8, or &k, cosb, = ¢E, cos b,

where



These equations lead to the relation

& &
tand, =—tan@,, 0, = arctan[— tan 6, ]
2 &
with
&
K=—
80

(b) Alternative way using the polarization vector
We discuss the above problem in alternative way.

A dielectric sphere in a uniform external electric field

o
E,=—te,.
y
)
wit
o, =Pcosb,



The normal component:

Pcosd
E,cosf, =E, cos6 — 8%
2
E,(14 y,)cos 8, = E cos 6,
or
E,(14 y,)cos8, = E cos 6,
or
E,kcos0, = E, cos6,
or
ek, cosb, =g E cos b,
&£
Note that Y. =—-1=x-1
)
D,=¢,E,+P, P=¢y E,
or
¢k, =¢E, +¢,x E,
Ko = N
)
6. Example-2

E ¢

0s 6,

_ &X.E, cosb,
)



Eo

+ + + + + + + + + + +

Fig. The sources of the field Eo remain fixed. The dielectric sphere develops some polarization
P. The total field E is the superposition of Eo and the field of this polarized sphere.

(a) Method-1

R =¢x.E,
where X, =Kk-1
E =E, _ A =E, _LgoZeEo = (I_L)Eo
3¢, 3g, 3

P = g1 F = 62,0~ E,



P
0

1 Xe
=E, _3_50}((3(1_ 3 )Eo

0

T P
=[1 3;@(1 3)]Eo

1
P= 6By = or 1= 201 ’g )E,
E-E -5
3¢g,

1 1 V4
=F —¢c.y[1——y.(1-£91E
0 3¢, ool 3Ze( 3 NE,

1 1 2 K3
=FE[1-——y +(—— +(—=£)'|E
ol 37(6 ( 3Ze) ( 3)] 0

Repeatedly we get the final form

r__ B ___ B _3 £
1 1 K+2
1+ I+ (k-1
3 %e 3( )
(b)  Method-2
P=¢,y E
where Y. =k—1
P 1
E=FE —=E — e x. E
0 3¢, 0 3¢, 0Xe
EQ+%42)=E,
3
e E, E, _ 3 E,
K+2

11
1+~ I+ (k-1
3 Xe FE=t)



7. Electric field around a dielectric sphere in the presence of external electric field

We consider a dielectric sphere in the presence of a uniform external electric field. Suppose
that a uniform electric field ( £") is produced inside the dielectric sphere. The electric potential is
expressed by

V., =—E"rcosé.

The electric field outside the sphere is sum of (i) a uniform external electric field E, along the z

axis and (i) the electric field produced by electric dipole moment arising from dielectric sphere.
The electric potential is expressed by

3

R
=—Eyrcosf+E'—-cost
r

V.

out

3

=(—E;r+ E'%) cos@

Note that V;, and V,

out

satisfy the Laplace equation. In the limit of » — oo,

4

out

=-Ercosd.
((Boundary condition))
(a) for r=R, V. =V

R?
—E"R=-ER+E'—,
R

leading to
E,=E'+E".

(b) The normal component of D is continuous on the boundary surface,

Vi _ OV,
M =g—1,
or or

leading to



&,(E, +2E") = ¢E"

Using the above equations, we get

Ev: 8_80 E En: 380 E
£+2¢, 0’ £+2¢, ’

So we have
3¢g,
Ve, == E,rcos@ (r<R)
&
_ 3
Vo =E0[—rcose+[ £~ % JR—ZCOSQ] (r>R)
e+2g )r

The electric field inside the sphere is obtained as

E =-e v, =e, 3¢, E,
£+ 2¢,

The electric field outside the sphere

Eout = _er aVOW - _eg
or r 06

3
—¢E, cos@[1+2( £ % jR—3]
e+2¢g )r

197

out

e—¢ R
+e E sinO[—r + 0 | —
oo [ (6‘4—280]7”2]

At the top of the sphere,

E+2¢, ) &+12¢,

_3E, E—&,
£+2¢,

(E,,~E,). =E0[1+2[ £ 5% j— 3




We note that the normal component of the displacement vector D is continuous on the top of the
sphere,

(Daut)l =(Din)L
with

D

out

=¢g,E

out

D, =¢E, +P
Thus we get
(gOE(mt )J_ = (gOEin + P)L

or

E— &
P, :80(Eout_Ein)l :380E0[8+280 j
0

The polarization vector is
p=3£"% |oE, = 3(’“—_1ngEO
E+2¢, K+2

&
where K=—.
80

The polarization vector P is rewritten as

in

3
- 2J50Eo =(xk—-1)e,E

PZ(K—I)(

where

E, = b Eoz( : jEO
£+2¢, K+2




The electric dipole moment p is

_ 47 R®
3

3 —
_ 47R 3¢,E, E—&,
3 £+2¢,

= 476, R°E,| L%
£+2¢,

P

p

=ak,

where « is the polarizability

a=47g,R° ( £ % j = 475, R (

E+2¢,
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Fig. Electrical field around a dielectric sphere in the presence of an external electric field along
thez axis. R=1. E,=1. x=3.

((Mathematica))



Electric field produced by a uniformly polarized sphere of radius R

Clear["Global %"];
rulel= {R>1, x> 3, E0-> 1};

3
Vi[r_, &€ ] = - r E@ Cos[&] ;
K+ 2
y 4
r‘2xRu1e={r'->'\/x2+y2+zz,e->ArcCos[ ],
\/x2+y2+z2

¢ - ArcTan[x, y] };

V2D1 = Vi[r, ©] /. r2xRule /.y - @ // Simplify;
V2D11 = V2D1 /. rulel;

Ex1 =-D[V2D11, x] // Simplify;
Ez1l = -D[V2D11, z] // Simplify;



gl = ContourPlot [Evaluate[Table[V2D11 = a, {a, -5, 5, @.1}]],

{X: '3: 3]’: {Z, '3: 3]’:

ContourStyle » Table[{Thick, Hue[©.031i]}, {i, 0, 60}],
RegionFunction - Function[{x, z}, x* +z* <1]];

g2 = StreamPlot[Evaluate[{Exl, Ez1}], {x, -3, 3}, {z, -3, 3},

RegionFunction - Function[{x, z}, x*+2z* <1]];

— Cos[&]

x-1)\ R3 )
V2[r , @] :=EO@ |-rcCos[é&] + ]

x+2) p? )
V2D2 = V2[r, 6] /. r2xRule /.y -»> 0 // Simplify;
V2D22 = V2D2 /. rulel;

Ex2 = -D[V2D22, x] // Simplify;
Ez2 = -D[V2D22, z] // Simplify;

I



g3 = Contour'Plot[Evaluate[Table[V2D22 =a, {a¢, -5, 5, 0.1}]1],
{X: _3: 3]’) {Z: _3: 3]’)
ContourStyle -» Table[{Thick, Hue[©0.031i]}, {i, 0, 60}],
RegionFunction - Function[{x, z}, x*+ 2% > 1]];

g4 = StreamPlot[Evaluate[{Ex2, Ez2}], {x, -3, 3}, {z, -3, 3},

RegionFunction - Function[{x, z}, x* +z* > 1] ];

g5 = ParametricPlot[ {Cos[©], Sin[©]}, {6, @, 27},
PlotStyle -» {Thick, Black}];

Show[gl, g2, g3, g4, g5, PlotRange -» All]

3-I

N .




8. Electric fields in cavities (atomic sites) of a dielectric

Microscopic view of the dielectrics (Feynman)

Earlier in the history of physics, when it was supposed to be very important to define every
quantity by direct experiment, people were delighted to discover that they could define what they
meant by E and D in a dielectric without having to crawl around between the atoms. The average
field E is numerically equal to the field Eo that would be measured in a slot cut parallel to the field.
And the field D could be measured by finding Ey in a slot cut normal to the field. But nobody ever
measures them that way anyway, so it was just one of those philosophical things.

We consider the capacitor consisting of two parallel plates. Suppose that the space between
two parallel plates is filled with a dielectric. What is the electric field E inside the dielectric?

Fig.  The field at any point A in a dielectric can be considered as the sum of the field in
a spherical hole plus the field due to a spherical plug.

The electric field inside the dielectric, before the sphere is removed, is the sum of the field
from all charges outside the spherical volume plus the fields from charges within the polarized
sphere. That is, if we call the field in the uniform dielectric, we can write

E=E, +E

plug

where E, , is the field in the hole and E,, is the field inside a sphere which is uniformly

polarized (see Fig.). The fields due to a uniformly polarized sphere are shown in Fig. The electric
field inside the sphere is uniform, and its value is

P
Eplug = —3—(9() (2)

Using (1), we get



:E+i. 3)

E
! 3¢g,

E-E

ole — plug

The field in a spherical cavity is greater than the average field by the amount3i. (The spherical
80

hole gives a field 1/3 of the way between a slot parallel to the field and a slot perpendicular to the

field.)

9. Microscopic theory: Clausius-Mossoti relation
In a liquid we expect that the field which will polarize an individual atom is more like £, ,

than just E. If we use the £, ,, for the polarizing field, then P becomes

P=¢,NaE, , =¢,Na(E +i)
3¢g,
or

p- ENakE
l—lNa
3

Remembering that x —1 = i, we have
€y

l—lNa
3

which gives us the dielectric constant of a liquid in terms of « , the atomic polarizability. This is
called the Clausius-Mossotti equation. Whenever N« is very small, as it is for a gas (because the
density N is small), then the term Nea /3 can be neglected compared with 1, and we get our old
result,

Kx—1=N«o

Let’s compare the value of x with some experimental results. It is first necessary to look at gases
for which, using the measurement of x, we can find « . For instance, for carbon disulfide at zero
degrees centigrade the dielectric constant is 1.0029, so N is 0.0029. Now the density of the gas
is easily worked out and the density of the liquid can be found in handbooks. At 20 °C, the density



of liquid CS; is 381 times higher than the density of the gas at 0 °C. This No /3 means that N is
381 times higher in the liquid than it is in the gas so, that—if we make the approximation that the
basic atomic polarizability of the carbon disulfide doesn’t change when it is condensed into a liquid
Nea in the liquid is equal to 381 times 0.0029, or 1.11. Notice that the N /3 term amounts to
almost 0.4, so it is quite significant. With these numbers we predict a dielectric constant of 2.76,
which agrees reasonably well with the observed value of 2.64.

works very well. The dipole moment induced in each molecule is

p=aFE
where «a is the polarizability of every molecule. The resulting polarization of the medium P is
P=Np=NcaE
10. Electric field at the disk-like hole
We cut a hole (thin slab) inside the dielectric. What is the electric field inside the hole? There

is a surface charge (due to the polarization) around the hole, leading to the electric field given by
Pl& (=ov/ &) parallel to the external electric field Eo (= o/ ).

[ ] *+0of
Sb
Ehole
i O 1
Y E
b
[ ] -of
P - = %b
+ + T+ +
- I H—M—_—‘—--ﬁ-cb
Ep|ug=cb/8°

From the principle of superposition, the electric field in the hole is given by

=E—(—£)=E+£

&y &y
_%/7% 0 _9 _D

E-F

plug

E,

ole —



or

D
Ehale =
&

Here D is called electric displacement vector (or electric flux density). D =0, .

11. Electric field at the cylindrical hole
The measured electric field E is obtained in a usual way by cutting a needle-like (cylindrical)

hole parallel to the external field (Eo) and placing a test charge in the hole
[ ] +of

-Gb

Ehole

%p

- 0§

Since there is no surface charge around the hole because of the needle-like shape, the electric field
inside the hole is

E-E 9, 7%

plug ~

E=

E hole —

&y
since

E 0

plug

9. Electric field at the spherical hole
For a spherical hole, the electric field is is given by

E, . =E—Ep,ug =E—(—3i)=E+3i
&y &y

This is the Lorentz relation.



| ] +of

-Gb

Y  Enhole
Gb

((Note))
The electric field (Enole) acting at an atom in a cubic site (in the hole) is the macroscopic field

E plus P/(3&) from the polarization of the other atoms in the system.
12. Langevin-Debye formula
We assume that an electric dipole moment p of each molecule in the presence of an electric
field. The potential energy is given by
U=-p-E=-pEcost

N is the number of molecules per unit volume and is the angle between p and E. The polarization



8
The polarization P is given by
P= Np<cos 6’>
where
7 PEcos®
v kyT .
.[e T o8 64O Ie cos@(2rsin Gd0)
<cos¢9>: — =
[e "7 da j e " (2zsin6do)

0

and kg is the Boltzmann constant.

E
For simplicity we put x = k’; and s =cosé. Then we have
B

1

J-e”sds
<cos t9> == =cothx 1 L(x)

J-e‘“ds o

-1

where L(x) is the Langevin function.

((Mathematica)) Derivation of the Langevin-Debye formula



j_llExp[s x] sds
f1 = // Simplify
J:llExp[s x] ds

—} + Coth[x]
X

Plot[f1l, {x, ©, 5}, AxesLabel » {"x = pE/kgT", " L(x)"},
PlotStyle » {Red, Thick}, Background -» LightGray]
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Series[f1l, {x, 0, 10}]
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For x<<1, the Langevin function is approximated as

X X3 X
Lx)=2-21.  .~Z
(0=3"% 3

and the derivative dL(x)/dx at x = 0 is equal to 1/3. Using this we have a Langevin-Debye formula,



2
P=npX-NPE_ Nop
3 3k,T

2

p

B

where o = is called the polarizability.

13. Clausius-Mossotti relation
Suppose that there are electric dipole moments in the hole. The electric field in the hole is

Ehole = E +i
3e,

Then the polarization P in the hole is given by

P=NaE,,, = Na(E + 3i) ,
&

0

leading to
Na
P= I_MEZEOZEZ{;‘O(K—I)E
3e,

From this relation, we have the Clausius-Mossotti relation

or

(z«—l]_ﬂ
Kk+2) 3¢,

14. Ferroelectric
Suppose that there are electric dipole moments in the hole. The electric field in the hole is
given by Ehole,



E, .L=E+AP

where A is dependent on the shape of the hole.
We use the Langevin-Debye formula

y= = L) (@)

sat

where P, = Np is the saturation polarization and x is given by

2

x=Phe - Py gpy P op AP P

k,T kT k,T~ k,T Np
2
_P g, ANp y
kT kT
or

k,T

y=—t_(x-L_F) (b)
ANp kT

where 4 = 1/(3&) for the sphere. For any particular E, this is a straight-line relationship between y

= P/Psy and x. The x intercept is at %E , and the slope is lkBTz .

B

The intersection of two curves

denoted by (a) and (b) gives us the solution for P/Psa.
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We now look at how the solutions will go for various circumstances. We assume that £ = 0. The
slope of the line (b) is proportional to 7. When the slope is larger than 1/3, there is no solution for
finite value of P. For T>T., we have a solution P/Ps.t = 0. On the other hand, for 7<T., we have a
solution for the finite value of P/Psi. The characteristic temperature Tc is called a Curie

temperature, and is given by

2
T - 3ANp
ky

Then a dielectric material should polarize itself spontaneously below T-.

15. Spontaneous polarization
When £ =0. y is given by

—3—Tx—3tx
Y T

c

with ¢ = T/T.. The reduced temperature (¢) dependence of the spontaneous polarization is a solution

ofy:3T—Tx and y=L(x).

c
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APPENDIX



APPENDIX-I Depolarization factor for the Epiug
If Py, Py, and P, are the components of the polarization P referred to the principal axes of an
ellipsoid, then the components of the depolarization field are written as

E.x = _NXPX
Ey = _NyPy
EZ = _NZPZ

Here Nx, Ny, N; are the depolarization factors; their values depend on the ratios of the principal
axes of the ellipsoid. The N’s are positive and satisfy the sumrule N .+ N +N_=1.

i N

Shape Axis (CGS) S

Sphere any 4/3 1/3
Thin slab normal 4 1
Thin slab in plane 0 0
Long circular eylinder longitudinal 0 0

Long circular cvlinder transverse 27 1/2

If Ey is uniform and parallel to a principal axis of the ellipsoid, then we have

E-E-NL
&y

Then the polarization P is given by
P =g yE =&,y (§E, — NP)
or

P: 8OZ
1+ Ny

0

APPENDIX 1II Units

T=pxE



[e]=[N-m]

F N V
[E]—[?] _[E] _[Z]
[p]1=[C-m]
U=-p-E

[W]=[J]=[N-m]

[PE]=[qLE]=[N -m]=[J]




