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Here we discuss the electric field near a dielectric (the polarization vector P) for the two cases; 

(1) in the absence of an external electric field and in the presence of the external electric field. 

 

1. Electric field in the vicinity of dielectric medium in the absence of external electric 

field 

(a) Lorentz field (local field) 

A field which acts on and polarizes an atom a Lorentz field. Here we discuss the electric field 

inside of a dielectric sphere in the absence of external electric field. This field is called a Lorentz 

field and expressed by 
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where P is the polarization vector. The electric field outside the sphere is the same as one from an 

electric dipole moment 
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where R is the radius of dielectric sphere. 

 



 
 

The Lorentz field due to the surface charge of the polarization vector can be calculated as follows. 

Let the direction of the polarization be the z axis and the angle measured from the z axis be . The 

charge density on the surface is cosP  P n . The surface area is 2 sin ( )R Rd   . So the total 

charge on this surface area is [2 sin ] cosR Rd P    . This charge produces an electric field at the 

origin O. The electric field along the z axis is 
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So the resultant electric field is obtained as 

 

2

0 0 00

2
cos sin

2 2 3 3
z

P P P
E d



  
  

       

 

or 

 

03
 

P
E  

 



((Note)) Summary 
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(b) Electric field outside the dielectrics 

The electric potential of the electric dipole moment ( )r R  is given by 
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where 

 
34

3

R
p P


   (the electric dipole moment) 

 

where P is the magnitude of the polarization vector P, and cosz r  . The electric field outside 

the sphere is obtained as 
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Note that in the polar coordinate 
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leading to 
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At the top of the dielectric sphere, ( r R , 0  ), 
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Fig. Electric field inside and outside the dielectric sphere, in the absence of an external electric 

field. 

 

2. Boundary condition of the electric field and displacement vector at the top of sphere 

The normal component of the electric field is discontinuous, while the tangential component 

of the electric field is continuous.  
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The normal component of the electric field is discontinuous on the boundary surface. 

 

(a) Normal component of the electric field 
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(b) Normal component of the displacement vector 
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leading to 
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(c) Tangential component of the electric field 
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This example illustrates the general rules for the behavior of the field components at the surface 

of a polarized medium. The normal component of the electric field E is discontinuous at the surface 

boundary, while the component of E parallel to the boundary surface remain continuous. 

 

3. Analytical method from the Laplace equation with the boundary condition 

Laplace equation  
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The solution of the Laplace equation is given as follows. 
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( , )V r   is continuous at r R  
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((Boundary condition)) 
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since the normal component of E on the surface is discontinuous. 
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For r R , 
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For r R  
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The electric field is given by 
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For r R , 
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where p is the electric dipole moment. 

 

((Mathematica)) 
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4. Alternative way of deriving the electric field of a polarized sphere 
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There are two spheres of charge: a positive sphere and a negative sphere. Without polarization 

the two are superimposed and cancel completely. But when the material is uniformly polarized, all 

the plus charges move slightly upward (the z direction), and all the minus charges more slightly 

downward. The two spheres no longer overlap perfectly: at the top there is a cap of leftover positive 

charge and at the bottom a cap of negative charge. This leftover charge is precisely the bound 

surface charge b . 
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where   is the charge density. Thus the resulting electric field is given by 
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The electric dipole moment p is defined by 
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Boundary condition 

 



 
 

Outside of the sphere (electric field of electric dipole) 
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Inside of the sphere 
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(a) Boundary condition for E 
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Tangential component: 
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(b) Boundary condition for D 
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(c) General case 

In general, we have the following boundary conditions for E and D 
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where n is the unit vector normal to the boundary surface. 
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Since 1 1 1D E , and 2 2 2D E , we have 
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From Eqs.(1) and (2), we have 
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5. Example-1 

(a) Method using the boundary condition 

We put a plane of dielectric with an infinitely large area and a finite thickness in the presence 

of a uniform electric field 1E . The angle between the electric field 1E  and the normal vector n is 

1 . We discuss the detail of the electric field inside the dielectric. The dielectric constants of 

vacuum and dielectric are 0  and  , respectively. 

 

 
 

We note that the tangential component of the electric field is continuous on the boundary surface. 
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The normal component of the displacement vector is continuous on the boundary surface. 

 

1 1 2 2cos cosD D    or 0 1 1 2 2cos cosE E     

 

where 

 

1 0 1D E , 2 2D E  



 

These equations lead to the relation 
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(b) Alternative way using the polarization vector 

We discuss the above problem in alternative way. 

 

 
 

A dielectric sphere in a uniform external electric field 
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6. Example-2 



 
 

Fig. The sources of the field E0 remain fixed. The dielectric sphere develops some polarization 

P. The total field E is the superposition of E0 and the field of this polarized sphere. 
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Repeatedly we get the final form 
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(b) Method-2 

 

0 eP E   

 

where  1e    

 

0 0 0

0 0

1

3 3
e

P
E E E E 

 
     

 

0(1 )
3

eE E


   

 

0 0
0

3

1 1 2
1 1 ( 1)

3 3
e

E E
E E

 
  

  
 



 

7. Electric field around a dielectric sphere in the presence of external electric field 

We consider a dielectric sphere in the presence of a uniform external electric field. Suppose 

that a uniform electric field ( "E ) is produced inside the dielectric sphere. The electric potential is 

expressed by 
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The electric field outside the sphere is sum of (i) a uniform external electric field 0E  along the z 

axis and (ii) the electric field produced by electric dipole moment arising from dielectric sphere. 

The electric potential is expressed by 
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Note that inV  and outV  satisfy the Laplace equation. In the limit of r   ,  
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((Boundary condition)) 

 

(a) for r R , in outV V  

 
3

0 2
" '

R
E R E R E

R
    ,   

 

leading to 

 

0 ' "E E E  . 

 

(b) The normal component of D is continuous on the boundary surface, 
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The electric field inside the sphere is obtained as 
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The electric field outside the sphere 
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At the top of the sphere, 
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We note that the normal component of the displacement vector D is continuous on the top of the 

sphere, 

 

   out in 
D D  

 

with 

 

0out outD E ,  0in in D E P  

 

Thus we get 

 

 0 0( )out in  
 E E P  

 

or 

 

  0
0 0 0

0

3
2

out in E
 

 
  

 
     

P E E  

 

The polarization vector is 
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The polarization vector P is rewritten as 
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The electric dipole moment p is 
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where  is the polarizability 
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Fig. Electrical field around a dielectric sphere in the presence of an external electric field along 

the z axis. R =1. 0 1E  . 3  . 

 

((Mathematica)) 
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Electric field  produced by a uniformly polarized sphere of radius R

Clear "Global` " ;

rule1 R 1, 3, E0 1 ;

V1 r , :
3

2
r E0 Cos ;

r2xRule r x2 y2 z2 , ArcCos
z

x2 y2 z2

,

ArcTan x, y ;

V2D1 V1 r, . r2xRule . y 0 Simplify;

V2D11 V2D1 . rule1;

Ex1 D V2D11, x Simplify;

Ez1 D V2D11, z Simplify;



g1 ContourPlot Evaluate Table V2D11 , , 5, 5, 0.1 ,

x, 3, 3 , z, 3, 3 ,

ContourStyle Table Thick, Hue 0.03 i , i, 0, 60 ,

RegionFunction Function x, z , x
2

z
2

1 ;

g2 StreamPlot Evaluate Ex1, Ez1 , x, 3, 3 , z, 3, 3 ,

RegionFunction Function x, z , x
2

z
2

1 ;

V2 r , : E0 r Cos
1

2

R3

r
2
Cos ;

V2D2 V2 r, . r2xRule . y 0 Simplify;

V2D22 V2D2 . rule1;

Ex2 D V2D22, x Simplify;

Ez2 D V2D22, z Simplify;



 
 

g3 ContourPlot Evaluate Table V2D22 , , 5, 5, 0.1 ,

x, 3, 3 , z, 3, 3 ,

ContourStyle Table Thick, Hue 0.03 i , i, 0, 60 ,

RegionFunction Function x, z , x
2

z
2

1 ;

g4 StreamPlot Evaluate Ex2, Ez2 , x, 3, 3 , z, 3, 3 ,

RegionFunction Function x, z , x
2

z
2 1 ;

g5 ParametricPlot Cos , Sin , , 0, 2 ,

PlotStyle Thick, Black ;

Show g1, g2, g3, g4, g5, PlotRange All
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8. Electric fields in cavities (atomic sites) of a dielectric 

 

Microscopic view of the dielectrics  (Feynman) 

Earlier in the history of physics, when it was supposed to be very important to define every 

quantity by direct experiment, people were delighted to discover that they could define what they 

meant by E and D in a dielectric without having to crawl around between the atoms. The average 

field E is numerically equal to the field E0 that would be measured in a slot cut parallel to the field. 

And the field D could be measured by finding E0 in a slot cut normal to the field. But nobody ever 

measures them that way anyway, so it was just one of those philosophical things. 

We consider the capacitor consisting of two parallel plates. Suppose that the space between 

two parallel plates is filled with a dielectric. What is the electric field E inside the dielectric? 

 

 
 

Fig.  The field at any point A in a dielectric can be considered as the sum of the field in 

a spherical hole plus the field due to a spherical plug. 

 

The electric field inside the dielectric, before the sphere is removed, is the sum of the field 

from all charges outside the spherical volume plus the fields from charges within the polarized 

sphere. That is, if we call the field in the uniform dielectric, we can write 

 

hole plug E E E  

 

where hole
E is the field in the hole and plugE  is the field inside a sphere which is uniformly 

polarized (see Fig.). The fields due to a uniformly polarized sphere are shown in Fig. The electric 

field inside the sphere is uniform, and its value is 
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Using (1), we get 
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The field in a spherical cavity is greater than the average field by the amount
03

P


. (The spherical 

hole gives a field 1/3 of the way between a slot parallel to the field and a slot perpendicular to the 

field.) 

 

9. Microscopic theory: Clausius-Mossoti relation 

In a liquid we expect that the field which will polarize an individual atom is more like hole
E  

than just E. If we use the hole
E  for the polarizing field, then P becomes 
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Remembering that 
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which gives us the dielectric constant of a liquid in terms of  , the atomic polarizability. This is 

called the Clausius-Mossotti equation. Whenever N  is very small, as it is for a gas (because the 

density N is small), then the term / 3N  can be neglected compared with 1, and we get our old 

result,  

 

1 N    

 

Let’s compare the value of   with some experimental results. It is first necessary to look at gases 

for which, using the measurement of  , we can find  . For instance, for carbon disulfide at zero 

degrees centigrade the dielectric constant is 1.0029, so N  is 0.0029. Now the density of the gas 

is easily worked out and the density of the liquid can be found in handbooks. At 20 °C, the density 



of liquid CS2 is 381 times higher than the density of the gas at 0 °C. This / 3N means that N is 

381 times higher in the liquid than it is in the gas so, that—if we make the approximation that the 

basic atomic polarizability of the carbon disulfide doesn’t change when it is condensed into a liquid 

N  in the liquid is equal to 381 times 0.0029, or 1.11. Notice that the / 3N  term amounts to 

almost 0.4, so it is quite significant. With these numbers we predict a dielectric constant of 2.76, 

which agrees reasonably well with the observed value of 2.64.  

works very well. The dipole moment induced in each molecule is 

 

p E  

 

where  is the polarizability of every molecule. The resulting polarization of the medium P is 
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10. Electric field at the disk-like hole 

We cut a hole (thin slab) inside the dielectric. What is the electric field inside the hole? There 

is a surface charge (due to the polarization) around the hole, leading to the electric field given by 

P/0 (=b/0) parallel to the external electric field E0 (= f/0). 

 

 
 

 
 

From the principle of superposition, the electric field in the hole is given by 

 

0000

00

)(












D

P
E

P
EEEE

fbbf

plughole








 



 

or 
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Here D is called electric displacement vector (or electric flux density). fD  . 

 

11. Electric field at the cylindrical hole 

The measured electric field E is obtained in a usual way by cutting a needle-like (cylindrical) 

hole parallel to the external field (E0) and placing a test charge in the hole 

 
Since there is no surface charge around the hole because of the needle-like shape, the electric field 

inside the hole is 
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since  
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9. Electric field at the spherical hole 

For a spherical hole, the electric field is is given by 
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This is the Lorentz relation.  

 



 
 

 
 

 

((Note)) 

The electric field (Ehole) acting at an atom in a cubic site (in the hole) is the macroscopic field 

E plus P/(30) from the polarization of the other atoms in the system. 

 

12. Langevin-Debye formula 

We assume that an electric dipole moment p of each molecule in the presence of an electric 

field. The potential energy is given by 
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N is the number of molecules per unit volume and  is the angle between p and E. The polarization  



 
 

The polarization P is given by 
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and kB is the Boltzmann constant. 

For simplicity we put 
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where L(x) is the Langevin function. 

 

((Mathematica)) Derivation of the Langevin-Debye formula 
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For x<<1, the Langevin function is approximated as 
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and the derivative dL(x)/dx at x = 0 is equal to 1/3. Using this we have a Langevin-Debye formula, 
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  is called the polarizability. 

 

13. Clausius-Mossotti relation 

Suppose that there are electric dipole moments in the hole. The electric field in the hole is 

given by Ehole,  
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Then the polarization P in the hole is given by 
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From this relation, we have the Clausius-Mossotti relation 
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14. Ferroelectric 

Suppose that there are electric dipole moments in the hole. The electric field in the hole is 

given by Ehole,  

 



PEEhole   

 

where  is dependent on the shape of the hole. 

We use the Langevin-Debye formula 
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where NpPsat   is the saturation polarization and x is given by 

 

y
Tk

Np
E

Tk

p

Np

P

Tk

Np
E

Tk

p
PE

Tk

p

Tk

pE
x

BB

BBBB

hole

2

2

)(










 

 

or 
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where  = 1/(30) for the sphere. For any particular E, this is a straight-line relationship between y 

= P/Psat and x. The x intercept is at E
Tk

p

B

, and the slope is 
2Np

TkB


. The intersection of two curves 

denoted by (a) and (b) gives us the solution for P/Psat. 
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We now look at how the solutions will go for various circumstances. We assume that E = 0. The 

slope of the line (b) is proportional to T. When the slope is larger than 1/3, there is no solution for 

finite value of P. For T>Tc, we have a solution P/Psat = 0. On the other hand, for T<Tc, we have a 

solution for the finite value of P/Psat. The characteristic temperature Tc is called a Curie 

temperature, and is given by 
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Then a dielectric material should polarize itself spontaneously below Tc. 

 

15. Spontaneous polarization 

When E = 0. y is given by 
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with t = T/Tc. The reduced temperature (t) dependence of the spontaneous polarization is a solution 

of x
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APPENDIX-I  Depolarization factor for the Eplug 

If Px, Py, and Pz are the components of the polarization P referred to the principal axes of an 

ellipsoid, then the components of the depolarization field are written as 
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Here Nx, Ny, Nz are the depolarization factors; their values depend on the ratios of the principal 

axes of the ellipsoid. The N’s are positive and satisfy the sum rule 1 zyx NNN . 

 

 
If E0 is uniform and parallel to a principal axis of the ellipsoid, then we have 
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Then the polarization P is given by 
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APPENDIX II Units 
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