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Capacitance (F) 

 

1 F = 1 C/V 

1 F = 10-6 F  (: micro) 

1 nF = 10-9 F  (n: nano) 

1 pF = 10-12 F  (p: pico) 

1 fF = 10-15 F  (f: femto) 

1 aF = 10-18 F  (a: atto) 

 

1. Parallel plate capacitance 
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The capacitance C is defined by 
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((Note)) Example 

 
225 5 25 0.05A m cm m    ,  50.01 10d mm m   

 

1.11C F  

 

2. Cylindrical capacitor 
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Since Vba<0 (the higher potential at r = a and the lower potential ar r = b), we put 

 

Vba = -V (V>0). 

 

The capacitance C is given by 
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3. Spherical capacitance 
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Since Vba<0 (the higher potential at r = a and the lower potential ar r = b), we put 

 

Vba = -V (V>0). 

 

The capacitance C is given by 

 






















ab

ab

ab

ab

V

V

V

q
C 0

0 4
4




. (spherical capacitance) 

 

4. Isolated capacitance 

 

What is the capacitance when a R  and b →∞, we have 

 

RC 04  

 

where 

 

0 = 8.854187817 x 10-12 C2/Nm2 

 

((Units)) 

 

[F] = C/V = C2/(CV) = C2/J = C2/(Nm) 

 

or 

 

[F] = C2/(Nm) 

 

What is the capacitance of the Earth? 

 

C=708.981 F. 

 

where the radius of the Earth (R) is 

 

R = 6.372 x 106 m 

 

5. Capacitors in parallel and in series 

 

5.1 Parallel connection 
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5.2 Series connection 
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6. Examples 

6.1 Example-1 

One frequency models real physical system (for example, transmission lines or nerve 

axons) with an infinitely repeating series of discrete circuit elements such as capacitors. 

Such an array is shown here. What is the capacitance between terminals X and Y for such 

a line, assuming it extends indefinitely? All of the capacitors are identical and have 

capacitance C.  

 

 
 

(Schaum’s outlines Physics for Engineering and Science, by M.E. Browne) p.281. 

 

((Solution)) 

We assume that the effective capacitance Ceff is defined by the equivalent circuit given by 

 

 
 

From this equivalent circuit, we have the following relation 
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6.2 Example-2 

A 6 F capacitor is charged by a 12 V battery and then disconnected. It is then 

connected to an uncharged 3 F capacitor. What is the final potential difference across 

each capacitor? 

 

((Solution)) 

V0 = 12 V 

C1 = 6 F 

C2 = 3 F 

 

 
 

(a) t<0 

 

 
 

 011 VCQ = 72 C. 

 

(b) t>0 
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Then we have 

 

CVCQ

VV

24

8

2 


 

 

7. Typical examples ((25-26)) 

Figure displays a 12.0 V battery and three uncharged capacitors of capacitances C1 = 

4.00 F, C2 = 6.00 F, and C3 = 3.00 F. The switch is thrown to the left side until capacitor 

1 is fully charged. Then the switch is thrown to the right. What is the final charge on (a) 

capacitor 1, (b) capacitor 2, and (c) capacitor 3? 

 



 
 

 

C1 = 4.00 F, C2 = 6.00 F, C3 = 3.00 F. V0 = 12.0 V 

 

((Solution)) 
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From these relations we get 

 

1V 8V,  2

8

3
V  V, and 3

16

3
V   V. 

 

2 3 16Q Q  C. 
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8. The Energy of capacitance 

To “charge up” a capacitor, we have to remove electrons from the positive plate and 

carry them to the negative plate. In doing so, one fight against the electric field, which is 

pulling them back toward the positive conductor and pushing them away from the negative 

one. How much work does it take, then, to charge the capacitor up to a final amount Q? 

Suppose that at some intermediate stage in the process the charge on the positive plate is 

q , so that the potential difference is /q C . the work you must do to transport the next piece 

of charge, dq, is 
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where F is the force and q F E  and 0

q
V Ed

C
   The total work necessary, then, to go 

from 0q   to q Q , is 
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where Q is the total charge, Q CV , V  is the final electric potential of the capacitor. 

Using the work-energy theorem, we have the potential energy U as 
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((Note-1)) Feynman 

Recalling that the capacity of a conducting sphere (relative to infinity) is 

 

04C R  

 

where R is the radius of sphere. Thus the energy of a charged sphere is 
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((Note-2)) 

 

The energy density u is defined by 
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where Ad is the volume, 0 A
C

d


 , and V Ed . The total energy of the capacitance can be 

rewritten as 
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9. Example Problem ((25-68)) 

A cylindrical capacitor has radii a and b in Fig. Show that half the stored electric 

potential energy lies within a cylinder whose radius is abr  . 

 

((Solution)) 

 
 

((Solution)) 

From the Gauss’ theorem, we have 
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The energy density is 
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The total energy U is 
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Uhalf is defined as 
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abr  . 

 

10. Dielectrics in the presence of electric field: atomic view 

The molecules that make up the dielectric are modeled as dipoles. The molecules are 

randomly oriented in the absence of an electric field.  

 

 
Suppose that an external electric field is applied. This produces a torque on the molecules. 

The molecules partially align with the electric field. 



 
 

An external field can polarize the dielectric whether the molecules are polar or nonpolar. 

The charged edges of the dielectric act as a second pair of plates producing an induced 

electric field in the direction opposite the original electric field 

 
 

11. Experiment (I) Charge remained constant 

 

Walter Lewin” 8.02X MIT Physics, Electricity and Magnetism 

Lecture 8 

 

The capacitance of a set of charged parallel plates is increased by the insertion of a 

dielectric material. 
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We discuss the physical meaning of   using the following experiments. 

 

(a) Step-1 (closed circuit) 

The capacitance ( 0C ) is charged to the charge 0Q  by connecting a voltage source 0V . 

 



0 0 0Q C V  

 

 
 

(b) Step-2 (open circuit) 

The voltage source is disconnected from the circuit. The charge remains unchanged 

during this process. 

 

0 0 0Q C V  

 

 
 

(c) Step-3 (open circuit) 

A dielectric material is inserted into the space between two electrodes of the 

capacitance. The capacitance changes from 0C C . The voltage across the capacitance 

changes. 
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The free charge 0Q  remains unchanged, while the voltage across the capacitance changes 

from 0V  to V ,  

 

0Q CV  

 

or 

 

0 0 0Q C V CV   

 

Suppose that 
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(The dielectric medium is inserted into the interlamellar space of the capacitance) 

 

Then we have 
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where d is the separation distance between two electrodes of the capacitance. We note that 
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we get 
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12. Experiment II Constant voltage source 

(a) Step-I 

The capacitance ( 0C ) is charged to the charge 0Q  by connecting a voltage source 0V . 

 

0 0 0Q C V  

 

 
 

(b) Step-II 
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While the battery continues to be connected, the dielectric is inserted into a gap between 

two electrodes of the capacitance. While the voltage remains unchanged as 0V , the charge 

changes from 0Q  to Q. 

 

 
 

0Q CV  

 

Since 0C C , we have 
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The electric field E remains unchanged during this process, since the applied voltage is 

kept constant. 

 

((Note)) 
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0 0 0 ( ' ')f f PCV C V A A        , 
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' 'f P f     

 

or 

 

' 'f f P     

 

13. Polarization vector P 

 

 



 

Suppose that the molecules with permanent electric dipole moments are lined neatly, 

all pointing the same way, and frozen in position. There are N dipoles (with electric dipole 

moment p) per cubic meters. We shall assume that N is so large that any macroscopically 

small volume d contains quite a large number of dipoles. The total dipole strength in such 

a volume is pNd. At any point far away from this volume element compared with its size, 

the electric field from these particular dipoles would be practically the same if they were 

replaced by a single dipole moment of strength pNd. We shall call pN the density of 

polarization, and denoted it by P. Then Pd is the dipole moment to be associated with any 

small volume element d.  
 

14. Feynman’s comment on the expression of b and b 

Feynman’s lecture on physics 

 

 
 

We consider the above situation, where P is uniform in the above figure. We have a 

positive charge at the one side 

 

Q = enA 

 

and a negative charge  

 

-Q = -enA, 

 

where A is the surface area,  is the displacement, -e is the electron charge, and n is the 

number of electrons per unit volume. From the definition, the surface charge density is 

given by 
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where p (= e) is the electric dipole moment. The vector P is the polarization vector. The 

magnitude P is the electric dipole moment per unit volume. 

What happens to b when P does not point to the direction perpendicular to the surface? 

 

 
 

The total charge in the surface region (d) is equal to 

 

Q' = enAd 

 

When the angle between P and the normal unit vector n (perpendicular to the surface) is , 

the relation between d and  is given by 

 

 cosd  

 
 

Then the surface charge density is 
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or 



 

b  P n  

 

From the Gauss’ law,  

 

bd da da       P P n . (1) 

 

Since the total charge is equal to zero, we have 

 

0  dad bb  , (2) 

 

where b is the volume charge density.  

 

 
 

From Eqs.(1) and (2), we get 

 

bd d      P  

 

or 

 

b    P  

 

((Note)) We define the current density due to the polarization vector P as 
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which corresponds to the continuity of the polarization current. 

 

15. Displacement vector: Derivation of the b and b from the electric potential 

(a) 1D case 

Here we also assume that there is no net charge in the system. So we have only the 

dipole moments to consider as sources of a distant field. The figure shows a slender column, 

or cylinder, of this polarized material. Its cross section is da, and it extends vertically from 

z1 to z2. The polarization density P within the column is uniform over the length and points 

in the positive z direction. Now we calculate the electrical potential, at some external point, 

of this column polarization. An element of the cylinder, of height dz, has a dipole moment 

Pdadz. It contribution to the potential at the point A can be described by 
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This is precisely the same as the expression for the potential at A that would be produced 

by two point charges, a positive charge of magnitude Pda sitting on the top of the column 

at a distant r2 from A, and a negative charge of the same magnitude at the bottom of the 

column. The source consisting of a column of uniformly polarized matter is equivalent to 

two concentrated charges. 

 

(b) General case 

We consider a finite piece of dielectric material which is polarized. We define a 

polarization P(r’) at each point r’ in the system. Each volume d’ is characterized by an 

electric dipole moment P(r’)d’. The contribution of the electric potential at the point r 

from the moment P(r’)d’ is given by 
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Then the entire potential at point r is obtained as 
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We use the formula of the vector analysis, 
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where f is any scalar point function and A is an arbitrary vector point function. The prime 

indicates differentiation with respect to the prime coordinates. Letting A = P and 
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where the volume integral of 
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r r
 is replaced by a surface integral through the 

application of the Gauss’ theorem and n’ is the outward normal to the surface element da’. 

Here we define 

 

b nP   P n , 

 

and 

 

b    P . 

 

The surface charge density b  is given by the component of the polarization P normal to 

the surface and the volume charge density b  is a measure of the nonuniformity of the 

polarization P in side the system. So we have the final form of V(r) as  
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(c) Electric displacement D 
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with 

 

P  P  

 



where P is the polarization vector (charge per unit area). Thus we have 
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or 
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It is customary to give the combination 0 E P  a special name, the electric displacement 

vector and its own symbol D, 
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Using the Gauss’s law, we have 
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16 Capacitance with dielectric (I) 

Here we discuss the capacitance of the dielectric. 

 



 
 

In this figure, f  is the free charge. P is the polarization vector. The inductive charge 

ind b
   is given by 
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where n is the vector normal to the boundary. The total electric field E is obtained as 
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using the Gauss’s theorem. Note that 
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where  is dielectric constant of dielectric. 

 

Gauss’ law with dielectrics 

 

0 fd q    E a  

 

________________________________________________________________________ 

Table:  Dielectric constants 

 

 
 

(vacuum) = 1.000000 

(paper) = 3.5 

(transformer oil) = 4.5 



(SrTiO3) = 310 

(liquid water at 25°C) = 78.5 

 

_______________________________________________________________________ 

The polarization vector is defined as 
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leading to the relation 

 
1    

 

where  is called the electric susceptibility. 

 

17. Capacitance of dielectric (II) 

The capacitance C of the dielectric is defined by 

 

fQ
C

V
 . 



 

where 0C  is the capacitance of the vacuum. The validity of this definition is explained in 

Sec. 
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and 
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Thus we have the capacitance, 
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18. Capacitors with dielectrics in series and in parallel connections 

We calculate the capacitance of this system. Two capacitors are connected in series. 
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Next we calculate the capacitance of the system where two capacitors are connected in 

parallel 
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19. Work-energy theorem for capacitance (I) 

Walter Lewin: 8.02X Electricity and Magnetism 

 

We consider the capacitance consisting of two conducting plates which are parallel to 

each other. The separation distance between two plates id d. The upper plate is positively 

charged; Q A , while the lower late is negatively charged as Q A   . The electric 

field is constant is given by 

 

0

E



  

 

We now consider a case when the upper plate is moved upward by a force F (along the x 

direction). Note that the weight of the upper plate is negligibly small. We use the work-

energy theorem, 

 

K W U     



 

 
 

The work is given by 

 

W Fdx U    

 

where F is the conservative force, and U is the potential energy 
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Since 
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the force F is  
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which is an attractive force. If you want to move the plate to the upward, you need to 

apply an external force 
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So we have the work 
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where Ax is the volume. The electric field energy density is obtained as 
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20. Work energy theorem for capacitance 

(1) Force on a capacitance plate: (Problem 3-26) Purcell and Morin 

A parallel-plate capacitor consists of a fixed plate and a moval plate that is allowed to 

slide in the direction parallel to the plates. Let x be the distance of overlap as shown in Fig. 

The separation between the plates is fixed. 

(a) Assume that the plates are electrically isolated, so that their charges Q  are 

constant. In terms of Q and the (variable) capacitance C, derive an expression for 

the leftward force on the movable plate. 

(b) Now assume that the plates are connected to a battery, so that the potential 

difference V is held constant. In terms of V  and the capacitance C, derive an 

expression for the force. 

(c) If the movable plate is held in place by an opponent force, then either of the above 

two setups could be the relevant one, because nothing is moving. So the forces in 

(a) and (b) should be equal. Verify that this is the case.  

 

 
 

(a) Q = constant 

 

Work-energy theorem 
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with Q CV . The force F is given by 

 

U F  

 

or 
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for the 1D system. Note that 
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The capacitance C increases with increasing x. 

 

0( )
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(b) V = constant 

 

Work-energy theorem: 
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where bW  is the work required to move each of the charge increment. 
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Then we have 
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for the 1D system, where 
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21. Displacement vector D 

 

 
Fig. P is the polarization of the dielectric. f is the free surface charge density due to the 

free charges located on the two parallel plates. b ind  , b is the bound surface 

charge density due to the polarization of the dielectric. E0 is an external electric 

field. E is an electric field inside the dielectrics. b is equal to P. 
0

0 
P

EE  . P is 

related to E through EP 0 . 

 

The external field E0 inside the air (the space between two parallel metal plates is air) 

is given by 
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or 

 

0 f fd q   E a�  

 

The electric field inside the dielectric (the space between two parallel metal plates is 

filled with dielectric) is given by 
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or 

 

0 eff f bd q q q     E a�  

 

where qf is the free charge density and qb is the bound charge density. 

Here we define the electric displacement D by 

 

0f fD E     (electric displacement) 

 

or 

 

fd q  D a�   

 

This equation states Gauss’ law in its general form. It is applicable to any dielectric medium 

as well as to a vacuum. This is a useful way to express Gauss’ law, in the context of 

dielectrics, because it makes reference only to free charges, and free charge is the stuff we 

control (Griffiths, Introduction to electrodynamics). 

 

Since f E E , D is described as 
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Then we get 
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0 fd q    E a�  (Gauss’ law with dielectric) 
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leading to the formula 
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22. Application of the Gauss’ law 

We apply the Gauss theorem on the Gaussian surface (cylindrical surface) 
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Since f D   and in P  , we have 

 

0E D P   ,  0D E P   

 



 
 

23. Example: D and E for the capacitor 

We consider the simple case of the capacitor where the dielectric with k between two 

parallel plates. 

 

The displacement vector D is given by 
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D is related to the electric field E by 
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or 
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Fig. f   and ind b  in this Fig. 

 

The electric field E is also derived as 
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The bound surface charge b is obtained as 
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In summary, we show the schematic diagram for the fields D and E in the dielectric in 

the parallel-plate capacitor; the displacement vector D depends only on the free charge and 

is the same inside and outside (air gaps). 
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24. Maxwell/s equation with E, D, and P 

The effect of the polarization is equivalent to a charge density b  given by 

 

b    P  

 

The divergence of E is related to the effective charge density eff by 
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where f  is a free charge density. This equation is rewritten as 
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We define D as 
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with 
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In summary 
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25. Example: D and E for the simple case with spherical symmetry 

We consider the simple case of dielectric sphere where the point charge is located at 

the center. 

 

 
 

We apply the Gauss’ law for the Gaussian surface (dashed line) 
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where qf (= q) is the free charges. The electric field E is related to D by a relation 
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Then we have 
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The effective charge inside the dashed line (qeff) is evaluated as 
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Here qeff consists of free charge (q) and bound charge (qb). 
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26. Example Problem 25-53 (SP25-53) 

The space between two concentric spherical shells of radii b = 1.70 cm and a = 1.20 

cm is filled with a substance of dielectric constant  = 23.5. A potential difference V = 

73.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the 

device, (b) the free charge q on the inner shell, and (c) the charge q’ induced along the 

surface of the inner shell. 

 



 
 

((Solution)) 

a = 1.20 cm 

b = 1.70 cm 

 = 23.5 

Vba = 73.0 V 

 

We apply the Gauss’ law for the Gaussian surface (dashed line) 

 

fd q q  D a   (true charge) 

 

Then we have 
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or 
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Using the relation give by  
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The electric field E is derived as 
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(b) 
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(c) 

Gaussian surface (dotted line in the vicinity of r = a) 

 

0 eff bd q q q     E a�  

 

where qb is the bound charge (induced charge) 

 

For the Gaussian surface just outside r = a,  
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The electric field E is also given by 
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Using the dielectric constant , we have 
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APPENDIX 

Surface charge density in terms of the polarization vector ((Feynman)) 

We now consider the situation in which the polarization vector P is not everywhere the 

same. If the polarization is not constant, we would expect in general to find a charge density 

in the volume, because more charge might come into one side of a small volume element 

than leaves it on the other. How can we find out how much charge is gained or lost from a 

small volume?  

We calculate how much charge moves across any imaginary surface when the material 

is polarized. The amount of charge that goes across a surface is just P times the surface 

area if the polarization is normal to the surface. Of course, if the polarization is tangential 

to the surface, no charge moves across it. Following the same arguments, it is easy to see 

that the charge moved across any surface element is proportional to the component of P 

perpendicular to the surface.  

 

(a) The case of polarization vector which is normal to the top of the surface 

We assume that the electric dipole moment is normal to the top of the surface. 

 



 
 

 
 

The surface charge density is obtained as 
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which is equal to the magnitude of the polarization vector, where V A  

 

(b) The case of polarization vector which is not normal to the top of the surface 

We assume that the electric dipole moment is not normal to the top of the surface. 

 



 
 

 
 



 
 

The surface charge density is 
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or 

 

P  P n . 

 

where  cosV A  . 

 

 

((Feynman)) 

In his book, Feynman derived the expression P  P n  using the following Fig. 

 



 
 

Fig. The charge moved across an element of an imaginary surface in a dielectric is 

proportional to the component of P normal to the surface. d  . 
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