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1. Current and current density 

If charge dQ passes a point in space in time dt, we define the current at the point as 
 

dt

dQ
I   [C/s] 

 
Current is measured in A (ampere). 
 

1 A = 1 C/s 
 
The direction of current is positive in the direction of motion of positive charges. 
 

 
There are n particles per m3, on the average, all moving with the same velocity v and 
carrying the same charge q.  

Imagine a small frame of area A fixed. a time t? The amount of charge passing the 
frame in a time t, is Q = nq(Avt). So the current I is 
 

nqvA
t

Q
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
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Here we define the current density J as 
 

vnqv
A

I
J   [A/m2] 

 
where the charge density  is defined as  
 



nq   [C/m3] 

 
((Note)) Current due to the orbital motion of particle (charge q) 

Suppose that one particle (charge q and mass m) rotates with the velocity v around a 
circle (radius r). 
 

 
 
The current I is given by 
 

T

q
qfI   

 
where T is the period and f (=1/T) is the frequency. The number of rotation around the orbit 
is 1/T per unit time (sec). Since T = 2r/v, the current I is rewritten as 
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We now calculate the value of the magnetic moment defined by 
 

22
2 qvr

r
r

qv
IA  


  

 
where A is the area of the orbit (see Chapter 29). The angular momentum L is given by 
 

mvrL   
 
Then the ratio of the magnetic moment to the angular momentum is  
 

m

q
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
 = constant 



 
2. Resistivity and conductivity 

2.1 Definition 

The current density J is proportional to the applied electric field E,  
 

EJ   
 
where s is the conductivity. Note that J = I/A. Assuming that the electric field is constant 
in the system (conductor), the potential difference over length l is given by 
 

ElV  . 
 
Then we have 
 

l
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According to the Ohm’s law, the resistance R is defined by 
 

A

l
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l
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1
  [, Ohm]. 

 
where the resistivity  /1  [m]. 

 
George Simon Ohm (1787 – 1854). 
 



 
 

 
 
2.2 Resistance of metal ring 

We consider a metal ring of resistivity whose inner radius a, whose outer radius is b, 
and whose length is h.  



 
 
To find the electric field in the ring, we note that from the symmetry, the current density J 
has a radial component only. Since 
 

J E , 
 
the electric field E is also radial. Then the current density Jr at the radius r is 
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The electric field Er at the radius r is 
 

dr

dV
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I
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where V is the electric potential.  
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The resistance R is 
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((Note)) Another method 



From the definition of the resistance, R can be also calculated as follows. The 
resistance dR between radius r and r + dr is given by 
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Then we have 
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2.3 Resistance of metal spherical shell 

From the symmetry, the current density J has a radial component.  
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Then the electric field Er at the radius r is 
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dV

r

I
Er 

24
 

 
where V is a electric potential.  
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The resistance R is 
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((Note)) Another method 

We consider a metal spherical shell of resistivity whose inner radius a, whose outer 
radius is b. The resistance dR between radius r and r + dr is given by 
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Then we have 
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3. Electric power and Joule heating 

 

 
 
Suppose that the potential difference V set up by the battery is maintained, a steady current 
I is produced in the circuit. The amount of charge dQ moving through the voltage difference 
V leads to the the work done on the system 
 

[( ) ] ( )W Fd Q E d Q V U         

 
Thus the potential energy U  is 
 

U VdQ    

 
which is negative. So the dissipated power is obtained as 
 

dU dQ
P V IV

dt dt
     [W] 

 
When V IR   (Ohm’s law), the resistive dissipation is 
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through the resistance R. 
 
4. Resistances in combination 

4.1 Series connection 
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Then we have 
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4.2 Parallel connection 
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Then the resulting resistance R is such that 
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4. Temperature dependence of resistivity 

4.1 Resistivity of metal at high temperatures 

Since the electrical resistivity of a conductor such as a Cu wire is dependent upon 
collisional processes within the wire, the resistivity could be expected to increase with 
temperature since there will be more collisions. An intuitive approach to temperature 
dependence leads one to expect a fractional change in resistivity which is proportional to 
the temperature change: 
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where T0 is a selected reference temperature, 0 is the resistivity at that temperature, and 
 is called the temperature coefficient of resistivity. At T0 = 293 K. 0 = 1.69 x 10-8 
m.for Cu. 

Since the resistance of a conductor with uniform cross sectional area is proportional 
to the resistivity, one can find the effect of temperature on resistance. 
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4.2 Resistivity of metal at low temperatures 

For metals, the resistivity is nearly proportional to the temperature. A nonlinear region 
always exists at very low temperatures. The resistivity usually reaches some finite value as 
the temperature approaches absolute zero 

 
 

((Matthiessen’s rule)) 
The net resistivity is given by a sum of L and i 
 

1  L  

 
where L and i are the resistivities due to the scattering of conduction electrons by phonon 
(lattice vibration) and by imperfections, respectively. 
 
((Residual resistivity i)) 

The residual resistivity near absolute zero is caused primarily by the collisions of 
electrons with impurities and imperfections in the metal. 
 
5. Classical theory (Drude theory) 

 



 
 

Paul Karl Ludwig Drude (July 12, 1863 – July 5, 1906) 
 

A theory of metallic conductivity based on average velocities was developed by Drude 
in 1900. Lorentz in 1905 reinvestigated the problem, using Boltzmann transport equation 
and a simplified model of the collisions between the electrons and atoms in the lattice.  

We consider a particle (mass m and charge q) in the presence of a uniform electric field. 
The motion of the particle is described by 
 

qE
v
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where  is the relaxation time of the particle. At t = ∞, the velocity (the drift velocity, the 
terminal velocity) becomes constant (steady state), 
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Then the current density is 
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This drift velocity is different from the Fermi velocity. The conductivity is obtained as 
 

m

nq 


2

  (Drude formula) 



 
6. Classical picture and quantum mechanical picture for the conduction 

6.1 Quantum mechanical picture (Sommerfeld) 

In 1928, Sommerfeld recalculated the conductivities along the lines of Lorentz’s theory, 
but replacing classical statistics by Fermi-Dirac statistics. The Pauli exclusion principle 
prevents more than two electrons from being present in the lowest energy level. There are 
two electrons (spins up and down) in each energy level. The kinetic energy of the electrons 
in that last filled level is called the Fermi energy. The electrons are required to have this 
value of energy in order to "jump up" to the next, empty energy level. At finite temperatures 
some electrons will gain energy and move to higher states because of thermal energy, 
leading to the conduction. In the theory of Sommerfeld, the electrical conductivity is given 
by 
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where n is the number of conduction electrons, and F is the relaxation time of electrons 
having the Fermi energy.  

The high conductivity of metals is to be ascribed to the Fermi velocity vF at the top of 
the Fermi distribution, rather than a high density of free electrons, which can be set slowly 
drifting. The Fermi velocity vF is related to the Fermi energy EF by 
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6.2 Drift velocity and Fermi velocity 

 



 
Fig. The zig-zag black line represents the motion of charge carrier in a conductor. The 

net drift speed is small. The sharp changes in direction are due to collisions. The 
net motion of electrons is opposite the direction of the electric field. 

 
For ordinary currents, the drift velocity vd is on the order of mm/s in contrast to the 

Fermi velocity vF of the electrons themselves which are on the order of 106 m/s.  
The drift velocity is the average velocity that an electron attains due to an electric field. 

In general, an electron will rattle around in a conductor at the Fermi velocity randomly. An 
applied electric field will give this random motion a small net velocity in one direction 
 
 



 
Fig. Fermi sphere with radius kF.  
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Fig. The shift of the Fermi sphere in the presence of an electric field along the 

negative x direction. 
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Fig. Drift velocity and Fermi velocity. The drift wavevector is the displacement of the 

entire Fermi sphere (which is generally very very small), whereas the Fermi 
wavevector is the radius of the Fermi sphere, which can be very large. Drude theory 
makes sense if one thinks of it as a transport equation for the center of mass of the 
entire Fermi sphere. i.e., it describes the drift velocity. Scattering of electrons only 
occurs between the thin crescent that are the difference between the shifted and 
unshifted Fermi spheres.  



 
 



 
 
Fig. Electron scattering processes in k-space. The dashed circle represents the Fermi 

surface in thermodynamic equilibrium ( 0xE  ). Under the influence of an electric 

field xE  and for a constant current, the Fermi surface is displaced as shown by the 

full circle. (a) When the electric field is switched off, the displaced Fermi surface 
relaxes back to the equilibrium distribution by means of electron scattering from 
occupied states ( ) to unoccupied states (� ). Since the states A and B are at different 
distances from the k-space origin (i.e., have different energies), the relaxation back 
to equilibrium must involve inelastic scattering events (e.g., phonon scattering). (b) 
For purely elastic scattering (from states A to B), the Fermi sphere would simply 
expand. When the field is switched off, equilibrium can only be achieved by 
inelastic scattering into states C within the dashed (equilibrium) Fermi shpere. (H. 

Ibach and H. Luth, Solid-State Physics, 4-th edition (Springer, 2009). 

 
 
 
6.3 Evaluation of drift velocity: 



The 12-gauge copper wire in a typical residential building has a cross-sectional area of 
A=3.31x10-6 m2. It carries a constant current of I = 10.0 A. We find the drift velocity of the 
electrons in the wire. Assume each copper atom contributes one free electron to the current. 
The density of copper is  = 8.92 x 103 kg/m3. 
The drift velocity is given by 
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The number density is 
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where V is the volume, M is the molar mass, and NA is the Avogadro number. 
For Cu (monovalent), we have 
 

363.5 10M    kg/mol, 8920   kg/m3 
236.023 10AN    

 
Using these values, we have the number densuty 
 

288.461 10n   /m3 
 
Thus the drift velocity is 
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This velocity is much lower that the Femi velocity. 
 
((Note)) 

For Cu (fcc), there are 4 Cu atoms per conventional SC unit cell with a lattice constant 
a; 3.61a  Å. Each Cu atom has one conduction electron. Thus the number density is 
 



3

4
n

a
  228.50 10n   /cm3 = 8.50 x 1028/m3. 

 
6.4 Evaluation of thermal velocity of electrons 

We note that the drift velocity is amazingly smaller than the root-mean square velocity 
vrms for the conduction electron. The root-mean square velocity of conduction electron can 
be evaluated as 
 

m

Tk
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3
  = 1.168 x 105 m/s =116.8 km/s 

 
at T = 300 K, from the relation 
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5.5. Relaxation time of conduction electrons in Cu 

In quantum mechanics (solid state physics), the conductivity is obtained as 
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This relation is formally equivalent to that of the Drude model. The relaxation time, is that 
of electrons at the Fermi level. The effective mass *m  replaces the free electron mass m. 

Here we estimate the relaxation time  from the above relation. For example, we 
consider Cu at 300 K.  
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What is the order of the relaxation time ? 
 
The density of Cu is given by 
 

31094.8 Cu kg/m3. 

 
The molar mass of Cu is given by 
 

MCu= 63.546 g = 63.546 x 10-3 kg/ Cu mol 
 
The number of Cu atoms/m3 is given by 
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where NA is the Avogadro number. We assume that each Cu atom contributes to one 
conduction electron (mass m and charge q = -e). Then the number density n is obtained as 
 

1Cu
Cu A

Cu

n N
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
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The relation time Cu  is estimated as  
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((Mathematica)) 

 
 
6.5 Mean free path 

It is possible to obtain crystals of Cu so pure that their conductivity at liquid He 
temperature (4 K) is nearly 105 times that at room temperature; for these conditions 

9102   s at 4 K. The mean free path l of a conduction electron is defined as 
 

Fvl   

 
where vF is the Fermi velocity; vF = 1.57 x 106 m/s. Thus the mean free path is given by 
 

l(4 K) = 3x10-3 m = 3 mm 
 
l(300 K) = 3x10-8 m = 300 Å. 
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23
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,
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3
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7=
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ρCu NA
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ê. Physconst ê. rule1

8.47228×1028

τCu =
me σCu

nCu qe2
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2.47127×10−14



Note that the mean free path is the average distance an electron travels between collisions.  
 
6.6 Summary 

The drift velocity vd is very small compared to the Fermi velocity vF; vd<<vF, v ≈ 10-2 
m/s, vF ≈ 106 m/s for Cu. The quantum mechanical picture for the conduction is quite 
different from the classical one. In the classical picture, the current is carried equally by all 
electrons, each moving with a very small drift velocity vd. On the other hand, In the 
mechanical picture, the currents is carried only by very small fraction of electrons, all 
moving with the Fermi velocity vF. Since only electrons at the Fermi surface contribute to 
the conductivity, we can define the mean free path of electrons as l = vF. We can estimate 
the mean free path for metal at room temperature 100 Å.  
 
7. Fermi-Dirac statistics of metals 

Conduction electrons are Fermions. They obey a Fermi-Dirac distribution function 
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where kB is the Boltzmann constant and EF is the Fermi energy. The Fermi velocity vF is 
defined by 
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where m is the mass of electron. 

According to the Pauli’s exclusion principle, each state is occupied by one electron. 
Only the conduction electrons having the Fermi energy EF contribute to the electrical 
conductivity. 
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8. Free electron density and electrical resistivity of metals 

8.1 Electron configfuration in the periodic table 

 

(1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10|(4s)2(4p)6(4d)10(4f)14|(5s)2(5p)6 ((5d)10…. 
 
Atoms with filled n shells have a total angular momentum and a total spin of zero. 
Electrons exterior these closed shells are called valence electrons. 
 
H (1s) 
He (1s)2 
Li (1s)2|(2s)1 
Ba (1s)2|(2s)2 
B (1s)2|(2s)2(2p)1 
C (1s)2|(2s)2(2p)2 
N (1s)2|(2s)2(2p)3 



O (1s)2|(2s)2(2p)4 
F (1s)2|(2s)2(2p)5 
Ne (1s)2|(2s)2(2p)6| 

Na (1s)2|(2s)2(2p)6|(3s)1 

Mg (1s)2|(2s)2(2p)6|(3s)2 
Al (1s)2|(2s)2(2p)6|(3s)2(3p)1 
Si (1s)2|(2s)2(2p)6|(3s)2(3p)2 
P (1s)2|(2s)2(2p)6|(3s)2(3p)3 
S (1s)2|(2s)2(2p)6|(3s)2(3p)4 
Cl (1s)2|(2s)2(2p)6|(3s)2(3p)5 
Ar (1s)2|(2s)2(2p)6|(3s)2(3p)6 
K (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)1 
Ca (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)2 
Sr (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)3 
Ti (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)4 
V (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)5 
Cr (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)6 
Mn (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)7 
Fe (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)8 
Co (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)9 
Ni (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10| 
Cu (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10|(4s)1 
 

What is the conduction electron in metals? We consider a metal such Cu. The electron 
configuration of Cu is given by 
 
Cu: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)1 
 
The s electron in the outermost shell becomes conduction electrons. 
 
8.2 Free electron density of metallic elements 

 
n (1022/cm3) = n (1028/m3) 



 
 

(Ashcroft and Mermin, Solid State Physics) 
 

8.3 Measured resistivity of metals 

 

The electrical resistivity of metals  (cm) [= 10-2 ( m)]. 
 



 
 
9. Classification by the energy scheme 

 

Energy band of insulator, metal, semimetal, and semiconductor 
 

 

 
 
Fig. Schematic electron occupancy of allowed energy bands for an insulator, metal, 

semiconductor, and semiconductor. The vertical extent of the boxes indicates the 



allowed energy regions. The shaded areas indicate the regions filled with electrons. 
In a semimetal (such as Bi) one band is almost filled and another band is nearly 
empty at absolute zero. The left of the two semiconductors shown is at a 
temperature, with carriers excited thermally. The other semiconductor is electron-
deficient because of impurities. 

 
 
Energy band structure electron for one dimensional metal 
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10. Semiconductor 

10.1 The Doping of Semiconductors  

The addition of a small percentage of foreign atoms in the regular crystal lattice of 
silicon or germanium produces dramatic changes in their electrical properties, producing 
n-type and p-type semiconductors.  
 
10.2  p-Type Semiconductor 



The addition of trivalent impurities such as boron, aluminum or gallium to an intrinsic 
semiconductor creates deficiencies of valence electrons,called "holes".  
 

 

 
 

 
 
10.3 n-type Semiconductor 

The addition of pentavalent impurities such as Sb, As or P contributes free electrons, 
greatly increasing the conductivity of the intrinsic semiconductor. 



 

 

 

 
 
11. Superconductors 

11.1 Nature of superconductivity 

If mercury is cooled below 4.1 K, it loses all electric resistance. This discovery of 
superconductivity by H. Kammerlingh Onnes in 1911 was followed by the observation of 
other metals which exhibit zero resistivity below a certain critical temperature. The fact 
that the resistance is zero has been demonstrated by sustaining currents in superconducting 
lead rings for many years with no measurable reduction. An induced current in an ordinary 
metal ring would decay rapidly from the dissipation of ordinary resistance, but 
superconducting rings had exhibited a decay constant of over a billion years! 

One of the properties of a superconductor is that it will exclude magnetic fields, a 
phenomenon called the Meissner effect. The disappearance of electrical resistivity was 
modeled in terms of electron pairing in the crystal lattice by John Bardeen, Leon Cooper, 
and Robert Schrieffer in what is commonly called the BCS theory. A new era in the study 
of superconductivity began in 1986 with the discovery of high critical temperature 
superconductors.  
 
11.2 The disappearance of the resistivity 



The electrical resistivity  of many metals and alloys drops suddenly to zero when the 
specimen is cooled to sufficiently low temperature. 
 

 
 

 
11.3 Meissner effect 

[Meissner & Ochsenfeld (1933)] 
A bulk superconductor in a weak magnetic field will act as a perfect diamagnetism, 

with zero magnetic induction in the interior. 
 

 
 

 



 
 
Fig. Meissner effect in a superconducting sphere cooled in a constant applied magnetic 

field; on passing below the transition temperature the lines of induction B are 
ejected from the sphere 
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Fig. Magnetic field distribution around a superconducting sphere of radius R. 

For an external magnetic field which is relatively low, there is a complete 

Meissner effect. The length of arrows does not corresponds to the 

magnitude of B. 

 
When a specimen is placed in a magnetic field and is then cooled through the critical 
temperature for superconductivity, the magnetic flux originally present is ejected from the 
specimen. The demagnetizing field contribution is negligible (cylinder). 
 

04  MHB   (CGS units) 
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Magnetization vs magnetic field for the Type-I (blue) and type-II (red) 
superconductors. Meissner phase in the type I superconductors, the Meissner and 
mixed phases in type II superconductors. 

 
12. Typical examples 

12.1 Problem 26-36 (SP-26) 

Figure shows wire section 1 of diameter D1 = 4.00 R and wire section 2 of diameter D2 
= 2.00 R connected by a tapered section. The wire is copper ( = 1.69 x 10-8 m) and 
carriers a current. Assume that the current is uniformly distributed across any cross-section 
area through the wire’s width. The electric potential change V along the length L = 2.00 m 
shown in section 2 is 10.0 V. The number of charge carriers per unit volume is 8.49 x 
1028 m-3. What is the drift speed of the conduction electrons in section 1 
 



 
((Solution)) 
D1 = 4R 
D2 = 2R 
L = 2 m 
n = 8.49 x 1028 m-3 
V2 = 10 V 
 = 1.69 x 10-8 m 
 
Equation of continuity for the current, 
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Since I1 = I2, we have 
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Ohm’s law 
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Then the drift velocity v1 in the section 1 is 
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1   = 5.438 x 10-9 m/s 

 
12.2 Problem 26-54 (SP-26) 

Figure (a) shows a rod of resistive material. The resistance per unit length of the rod 
increases in the positive direction of the x axis. At any position x along the rod, the 
resistance dR of a narrow (differential) section of width dx is given by dR = 5.00 x dx, 
where dR is in ohms and x is in meters. Figure (b) shows such a narrow section. You are to 



slice off a length of the rod between x = 0 and some position x = L and then connect that 
length to a battery with potential difference V = 5.0 V (Fig.(c)). You want the current in 
the length to transfer energy to thermal energy at the rate of 200 W. At what position x = 
L should you cut the rod? 
 

 
 
 
((Solution)) 
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When V = 5 V, and P = 200 W, we have 
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or 
 

L = 0.224 m 
 
13 Hint of home work (HW-26) 

13.1 HW26-34 

Swimming during a storm. Figure shows a swimmer at distance D = 35.0 m from a 
lightning strike to the water, with current I = 78 kA. The water has resistivity 30 m, the 
width of the swimming along a radial line from the strike is 0.70 m, and his resistance 
across the width is 4.00 k. Assume that the current spread through the water over a 
hemisphere centered on the strike point. What is the current through the swimmer? 
 



 
 
((Hint)) 
 

 
 
r = 0.7 m 
R = 4 k 
I = 78 kA 
D = 35.0 m 
w = 30 m 
 
The current density: 
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The electric field Er in the water 
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13.2 HW 26-35 (***) 

In Fig., current is set up through a truncated right circular cone of resistivity 731 m, 
left radius a = 2.00 mm, right radius b = 2.30 mm and length L = 1.94 cm. Assume that the 
current density is uniform across any cross section taken perpendicular to the length. What 
is the resistance of the cone? 

 

 
 
((Hint)) 
 = 731 m 
a = 2.00 mm 
b = 2.30 mm 
L = 1.94 cm 
 

 
 



The expression of the straight line AB: 
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The resistance dR between x and x +dx, 
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APPENDIX-A 

Measurement of the resistance of the ground using the four probes methods 

A.1 Electric potential V 

We consider a point source of current at the surface of the ground at the origin. What 
is the electric potential V at a distance r from the origin in the ground? 
 

 
 
From the symmetry, the current density Jr has the radial component, 
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The electric field Er is defined by 
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from the Ohm’s law, where  is the resistivity. Then the potential V at a distance r away 
from the source point is 
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Next we consider two point sources of the current I1 and I2 on the surface of the ground. 
From the principle of superposition, the potential V at a point from the point source 1 
(current I1) at the distance r1 and from the point source 2 (current I2) at the distance r2, is 
obtained as 
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When I1 = I and I2 = -I (the special case), we have 
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A.2 Four-probes method 

We want to measure the resistance between two points on the surface of the ground. 
We use the four probes methods, where there are two current probes and two voltage probes. 
The resistance R is obtained as 
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V
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where V is the voltage between the voltage probes (C and D) and I is the current flowing 
between two current probes (A and B). 
 



 
 
 
The potential at the point C is 
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while the potential at the point D is 
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Then the voltage difference between the points C and D is 
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We define the array constant or geometrical factor k as 
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The resistivity is expressed by 
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(a) Werner array 

We assume that 
r11 = a 
r22 = a 
r12 = 2a 
r21 = 2a, 

 
Then we have 
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(b) Schlumberger array 

We assume that 
r11 = r22 = s - a 
r12 = r21 = s + a, 
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Then we have 
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APPENDIX B  Bloch electron in a periodic potential of quantum box 

We discuss the energy band of conduction electron (spin 1/2 fermion) in metal, which 

is one-dimensional. In a quantum box with a well potential, the wave number of electrons 

becomes discrete due to the Heisenberg’s principle of uncertainty. The energy dispersion 

of electrons is quantized. In a real metal, the electrons are not completely free but move in 

a weak periodic potential due to atoms in the unit cells of lattice. These electrons are called 



Bloch electrons. For a monovalent metal, there is one electron per unit cell, contributing to 

Bloch electrons. For a divalent metal, there are two electron per unit cell. The energy 

dispersion of the Bloch electrons is periodic as a function of wave number with the 

periodicity of the reciprocal lattice, forming an energy band. The energy gap is formed at 

the boundary of the Brillouin zone, as a result of the Bragg reflection of electrons. The 

electrons are fermions and obey the Pauli’s exclusion principle. All the states below the 

Fermi energy are occupied by electrons at T = 0 K. If the number of electrons per unit cell 

is even, the Fermi energy coincides with the energy gap. The system becomes insulator. If 

the number of electrons per unit cell is odd, the Fermi energy is not equal to energy gap. 

The system is still metallic.  

 

B 1. Energy dispersion for free electron 

Electrons are quantum mechanical particles (fermions). They behave like a particle as 

well as a wave. The momentum p (= mv) of the electron is related to the Broglie wavelength 

  as  
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 is the wave number, h is the Planck constant and ℏ  is the Dirac constant 
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ℏ ). The energy E of electron is given by the energy dispersion 
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in a free space, where k is the wave number and k is continuous. 

 



 

 

Fig. Plot of energy versus wavenumber for a free electron, where k is the wave number 

and is continuous. 

 

B 2. Quantum box: Heisenberg’s principle of uncertainty 

We consider a free electron gas in 1D system. The Schrödinger equation is given by 
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and k  is the energy of the electron in the orbital.  
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Fig. Electrons in a well-potential with size L. The potential is infinity outside the box. 

The determination of the energy eigenvalue of such an electron by using 

Schrödinger equation is called the quantum box problem.  

 

The orbital is defined as a solution of the wave equation for a system of only one 

electron:one-electron problem. Using a periodic boundary condition: 

)()( xLx kk   , we have 
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where k has a discrete value 
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The energy dispersion is essentially the same as that of free electron. However, the energy 

level is quantized, since the wave number becomes discrete. 

  

 
 

Fig. Energy dispersion curve for the electron in a quantum box. 

 

The wave number is no longer continuous. It takes discrete values of k whose division is 

given by 
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((Heisenberg’s uncertainty of principle)) 
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The discreteness of the wave number is derived from the Heisenberg’s principle of 

uncertainty. 
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When Lx  , we have 
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((The Pauli’s exclusion principle)) 

The one-electron levels are specified by the wavevectors k and by the projection of the 

electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 

Therefore associated with each allowed wave vector k are two levels: 

 

,k , ,k . 

 

B.3. Periodic potential: Bloch theorem 

In metals, there are many atoms. They are periodically arranged, forming a lattice with 

the lattice constant a. We consider conduction electron in the presence of periodic potential 

(due to a Coulomb potential of positive ions). The electrons undergo movements under the 

periodic potential as shown below. Such electrons are called the Bloch electrons. 

According to Bloch, the wave function of the Bloch electrons can be expressed by 
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where )(xuk  is a periodic function of x with the periodicity a, 
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So we have 
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Note that the wave function satisfies the boundary condition 
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since 1ikLe . We note that )(xuk  can be expressed 

 

  
G

Gkk iGxuxu )exp()( , 

 

by using the Fourier series, where G is the reciprocal lattice 
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   (n is integer). 

 

 
 

Fig. Periodic lattice of lattice constant a. The form of potential energy of an electron in 

a one-dimensional lattice The positions of the ion cores are indicated by the points 

(blue solid circles) with the separation a (lattice constant). 

 
When k is replaced by k + G, 
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since 12  niiGa ee  . This implies that )(xGk   is the same as )(xk , 

 
)()( xx kGk   . 

 
So the energy eigenvalue of )(xGk  is the same as that of )(xk , leading to the periodicity 

of kE  as 

 

kGk EE  . 

 
We also note that the relation kk    is always valid, whether or not the system is centro-

symmetric. Then the energy dispersion of k  vs k can be obtained by the superpositionof 

the curve of GkE  vs k with G changed as a parameter. 
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the value of k is chosen as 
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The energy dispersion thus obtained is shown in the Fig. as shown below. 

 



 
 

Fig. The parabolic energy curves of a free electron in one dimension, periodically 

continued in reciprocal space. The periodicity in real space is a periodic lattice with 

a vanishing periodic potential (empty lattice). The first Brillouin zone ( 

 

The energy vs k consists of branches denoted by the number of band (band-1, band-2, band-

3,…) in the first Brillouin zone. As we discuss later, there are energy gaps between adjacent 

bands. 
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The first Brillouin zone is defined as 
a

k


 . There are N states in the first Brillouin zone. 

When the spin of electron is taken into account, there are 2N states in the first Brilloiun 

zone. Suppose that the number of electrons per unit cell is nc (= 1, 2, 3, …). Then the 

number of the total electrons is ncN. 

 

(a) nc = 1. So there are N electrons. N/2N = 1/2 (band-1: half-filled). 

(b) nc = 2. 2N/2N = 1 (band-1: filled). 

(c) nc = 3. 3N/2N = 1.5 (band-1: filled, band-2: half-filled). 

(d) nc = 4. 4N/2N = 2 (band-1: filled, band-2: filled). 

 

When there are even electrons per unit cell, bands are filled. Then the system is an insulator. 

When there are odd electrons per unit cell, bands are not filled. Then the system is a 

conductor. 

 

B.4. Bragg reflection at the boundary of the Brillouin zone 

Just like x-ray, the electrons undergoes a Bragg reflection under the condition of 
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This can occurs when 
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where G is the reciprocal lattice,  
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As a result of the Bragg reflection, one can find a standing wave, leading to the energy gap 

at the boundary of the first Brillouin zone. We note that the magnitude of the energy gap 

can be evaluated from the time-dependent perturbation with the degenerate system. In the 

unperturbed system, the two independent states 
a

k


  and 
a

k


'  are degenerate in 

energy. In the presence of weak perturbation due to the Fourier component of a periodic 

potential, these two states are combined into two different state with different energy. The 

difference of the energy leads to the energy gap. 



 

1D system: 

For For the 1D system this condition at the zone boundary at k = G/2 = ±/a.  

 
 

 
 

Fig. Condition of the Bragg reflection for the 1D case. |k| = |k - G|. G = 2/a. k’ = k – G. 

 

B 5. The zone scheme of energy band 

There are several zone schemes of energy band 
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(a) Extended zone scheme. 

(b) Reduced zone scheme. 

(c) Periodic zone scheme. 

 

These three schemes are equivalent because of the two features, 
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for the Bloch electrons. 
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Fig. Three zone schemes for the 1D system. Extended zone scheme. Reduced zone 

scheme. Periodic zone scheme.  



 

B 6. Occupied states below Fermi energy 

 
 

Fig. Half filled energy band (first Brillouin zone). Band-1 (in the first Brillouin zone) 

and band-2. The total number of states is 2N states for the first Brillouin zone when 

the system consists of N unit cells. 
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Fig. Energy band with 2N filled states (full filled state) in the first Brillouin zone. The 

2N states are allowed in the first Brillouin zone. The energy gap is associated with 

the Bragg reflection at the boundary of the first Brillouin zone 
a
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Fig. Occupation of energy states below the Fermi energy.  

 

B.7 Metal and insulator 

N is the number of unit cell. The size of the system is L = Na, where a is the lattice 

constant. The number of states in the Brillouin zone is equal to 2N, where the factor 2 

comes from the spin 1/2.  

Suppose that there is one conduction electron per atom. In this case there are N electrons. 

Since there are 2N states in the first Brillouin zone, a half of states in the Brillouin zone are 

occupied. 

k, k,k, k,

F



 

When there is one conduction electron per atom. In this case there are N electrons. Since 

there are 2N states in the first Brillouin zone, a half of states in the Brillouin zone are 

occupied. So the system is metallic. 

 

When there are two conduction electrons per atom. In this case there are 2N electrons. 

Since there are 2N states in the first Brillouin zone, all states in the first Brillouin zone are 

occupied. The system is insulator. 

 

When there are three conduction electrons per atom. In this case there are 3N electrons. 

Since there are 2N states in the first Brillouin zone, all states in the first band are occupied. 

A half of the states in the second band are occupied by the remaining electrons. The system 

is metallic. 
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