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1. Basic elements and law
1.1 Lumped circuits

Lumped circuit which is obtained by connecting lumped elements such as resistors,
capacitors, inductors, transformers, and so on.

(1) The key property associated with lumped elements is their small size Lo
compared to the wavelength A corresponding to their normal frequency of
operation: Lo<<A.

(2) From the more general electromagnetic field point of view, lumped
elements are point singularities, that is, they have negligible physical
dimensions.

3) To exhibit the implications of the restriction on size, let us consider the
following case. f'is the frequency and A is the wavelength of waves.

c=3x10%m/s
£_3><108m/s_

Forf=1GHz=10°Hz, A=—=""——"=0.3m
f 10°1/s
8
Forf= 100 GHz = 10" Hz, 2= < =319m/5 5.,
/o 10"/s

Consequently, in this case, the lumped approximation may not be good (f
=100 GHz). At low frequency f (= Hz, kHz, MHz), this approximation is
very good.

For a two-terminal lumped elements, the current through the element and the voltage
across it are well-defined quantities.

1.2 Ideal battery
If the value of an ideal voltage source is constant, that is, it does not change with time,
an ideal voltage source is commonly represented by the equivalent notation.

1.3 Ideal current source



An ideal current source, which is a device that, when connected anything, will always

pull I (A) into terminal 2 and push I (A) out of terminal 1.
1

1.4 Ideal voltage source

This is a device that produces a voltage of v (V) across its terminals regardless of what
is connected to it. The terminal 1 is at an electric potential that is v Volts higher than that
of terminal 2.

1.5  Reference directions of voltages
The reference direction for the voltage is indicated by the plus and minus symbols
located near the terminals A and B.
A
I

1.6 Branch and node



In a lumped circuit, the two-terminal elements are called branches, and the terminals
of the elements are called nodes.

A lumped circuit with 6 branches and four nodes
1.7 Open-circuit and short circuit

A two-terminal element is called an open-circuit if it has a branch current identical to
zero, whatever the branch voltage may be.

A two-terminal element is called a short-circuit if it has a branch voltage identical to
zero, whatever the branch voltage may be.

2 Ohm’s law
If a resistor R has a voltage v across it and a current i going through it, then it is true
that v=1iR.

AV~

where R is a resistance.

3. KCL (Kirchhoff’s current law)
For any lumped electric circuit, for any of its nodes and at any time, the algebraic sum
of all branch currents leaving the node is zero.



J2 »
Arbitrary network

Jn+1

((Example))

KCL at node 1
_js_j1+j6:0 (1)
KCL at node 2

_jg_j2+j5:0 (2)



Addition of Egs.(1) and (2);
—Js—Ja—JitJs=0
which corresponds to the KCL at the network denoted by the green line

((Note))

1. KCL is independent of the nature of the elements.
2. KCL expresses the conservation of charge at every node.

Zin =0 where i = 94,
p dt

((Example)) general source

By KCL,

i=i+i, (1)
We also have the relation

v=—e, +Ri, )
From Egs.(1) and (2), we have

vt+e, =R(i+i,)

4. KVL (Kirchhoff’s voltage law)
The algebraic sum of the potential difference across all elements in complete around
any closed-circuit loop must be zero.



DAV =0

closedloop

D
(a) KVL applied to the loop I, asserts that
V,+vs—v, =0
The reference directions of branches 4 and 5 agree with the reference direction of loop I,
whereas the reference direction of branch 6 does not agree with that of loop 1. We, therefore,
assign plus signs to v4 and vs, and a minus sign to ve.
(b) KVL applied to the loop II, asserts that
-V, +v,+v.-v, =0
((Note)) KVL is independent of the nature of the elements.

((Example))



—— W\ .
-—— 5 —_—
1 i3
28V — =
Vo 4
§
By KVL,
-284+v,+v,=0 for loop 1
and
vi+tv—v,=0 for loop 11

By using Ohm’s law, we obtain

Y
zzzf,
v
1325
v
zlzgl
v
V3:l3:§
From Eq.(2),
v 4y
V, =V, +Vv=—+Vv=—o
3
Sl 14 v
47 43 3
By KCL at the node A,
- +i,+i;=0
=iy i =2l
1 2 3 3 3 3

(1)

)

3)



Substituting these into Eq.(1) yields that

210V 4y 14y
3 3 3
v=06V
5. typical circuits

(a) Wheatstone bridge

A Wheatstone bridge is a measuring instrument invented by Samuel Hunter Christie in
1833 and improved and popularized by Sir Charles Wheatstone in 1843. It is used to
measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg
of which includes the unknown component. (Wikipedia).

For loop 1
RI, +RJI,—R)I,=0
For loop 2
R (I, -1,)-R,({,+1,)-RI,=0

For loop 3



R, +R,(I, +I,)—~E=0
We use Mathematica to solve these equations.

I = E(R2R3 — R1R4)
> RRR,+RR,R,+RR.R, +R,R.R, + (R, +R)(R, +R,)R,

_ E{RRs + Ry(R; + R, + Ry)}
RR,R, + RR,R, + RR.R, + R,R,R, + (R, + R)(R, + R,)R,

1

ja E{R,R, + R(R,+ R, + R,)}
: RR,R,+RR,R,+ RR,R, + R,R,R, + (R, + R))(R, + R,)R,

When /5 = 0, we have the condition
R R, =R,R,

Suppose that Ri, R>, and R3 are known and R4 is unknown. Using the above relation, R4 is
determined as

((Mathematica))



For mesh 1

1= eql =R1 I1 +R5I5-R21I2 ==

out[1]=

For mesh 2

2= €92 = R3 (I1-1I5) -R4 (I2+ I5) -R51I5-=

out[2)=

I1R1-I2R2+I5R5=0

(I1-1I5)R3- (I2+I5) R4-I5R5 =

For mesh 3

In[3]:=

out3]=

In[4]:=

Out[4]=

{{I1-> (E1 (R4R5+R2 (R3+R4+R5))) /
(RLR2R3+R1R2R4 +R1 R3 R4 +
R2 R3 R4 + (R1 +R3)
T2 5 (E1 (R3R5+R1 (R3 +R4 +R5))) /
(RLR2R3+R1R2R4 +R1 R3 R4 +
R2 R3 R4 + (R1 +R3)

I5 5 (E1 (R2R3 -R1R4)) /
(RIR2ZR3+R1R2R4 +R1 R3 R4 +
R2 R3 R4 + (R1 +R3)

eq3 =R2I2 +R4 (I2+1I5) =E1

I2R2 + (I2 +I5) R4 =E1

(R2 + R4) R5),

(R2 + R4) R5),

(R2 + R4) R5) } }

eg4 = Solve[{eql, eq2, eq3}, {I1, 12, I5}] //
FullSimplify

We consider the case R1=x, R2 = R3 = R4= R5=1 (), and E=1 V. What

is the dependnce of x on the current 15?

ngr= I51=I5/. eq4[[1]] /.
{Rl-x,R2-51,R351,R4>51,R5>1,
El-> 1}

out[8]=

n[11:= Plot[I51, {x, 0.8, 1.2},
AxesLabel » {"R1", "I5"},
PlotStyle -» {Thick, Red},
Background -» LightGray]

out[11]=

1+3x+2 (1+x)

15

0.02 -

0.01 -

—0.01 -

—0.02 -

0.9

1.0

R1



(b) Ladder circuit: application of the principle of superposition

Va VB Ve VD VE Vo

We consider a ladder circuit where all the resistors has R (£2). What are the current of the
branches and voltages of nodes. Suppose that Vr = V.



I ==L
R
V,=V.+LR=2V,
Ve P
R R
)%
g=5+5_7§
V, =V, +RI, =2V, +3V, =5V,
LA
R R
P 1
R R R
V.=V, +RI, =5V, +8V, =13V,
_Ve _13V,
R R
217,
L=I+I = RO
V, =V.+RIL, =13V, + 21V, = 34V,
s Vs 340,
* R R
19:17+18:55V°

V,=V,+RI, =34V, + 55V, =89V,

where £ =89V,., or V, = 8_Z; Using this value of Vo, we can determine the current and

voltages.

(©) 2x2 square lattice
We consider a 2x2 square lattice. Each branch has a 1€). What is the total resistance
between A and B?



From the symmetry, the points with red circles has the same electric potential. The
same things occur for the points with green circles and the points with blue circles.

Then we can fold this square lattice along the AB line (symmetric line).



12 112

112

1/2

or

112

112

112

Then the total resistance between A and B is 3/2 Q.

(d) Hexagon
Each branch has a resistance of 1 Q. From the symmetry, we choose the currents of
branches. We calculate the resistance between A and B.



Vv

wor = Vap =20, =20 + 1,
Vio=1,=2i—1I,

1, =2i +1,

We get
i, = 2i,
.3
I =—1,
gl 44y
I, 5, 5

(e) Three dimensional circuits with high symmetry

(2]




We consider a cubic circuit where each side has a resistance of 1 Q. What is the total
resistance between the points A and B?

We notice that the points B, C, and D are at the same electric potential. The points E,
F and G are at the same potential. So we can put together these points. The equivalent
circuit is given by

13

EF.G

16

13

Then the total resistance between A and H is

Rmt = 2 + l = EQ
3 6 6
5. Examples of circuits from textbook

((Example-1))
Figure 27-12 shows a circuit whose elements have the following values:

£ =30V, &£=60V,
Ri=20Q, R=40Q .



il
The three batteries are ideal batteries. Find the magnitude and direction of the current in
each of the three branches.

i1=-05A, »=025A.
((Mathematica))

eql=21il - 3 +23il +4 (i1+1i2) +6==0// Simplify
3+811+412 =0

eq2=-6+2i2 + 4 (i1+i2) +6+ 2i2 =0 // Simplify
i1+2i2 =0

Solve[{eql, eq2}, {il, i2}]
{{ile -%, i2 5 %}}

((Example-2))

Electric fish is able to generate current with biological cells called electroplaques,
which are physiological emf devices. The electroplaques in the type of electric fish known
as a South American eel are arranged in 140 rows, each row stretching horizontally along
the body and each containing 5000 electroplaques. The arrangement is suggested in Fig.
27-13 a; each electroplaque has an emf of 0.15 V and an internal resistance  of 0.25 Q.



Electroplaque - ey =

g 3
= 5000 electroplaques per row - 750 V
e
(Ill“
e
1L
L EAM—HEAA— - — AN ——] ¥
140 rows I'l > Reow
| {—5-vYW
|
a [ 8
+]g= +]g= +|y—- v row
LA RANA— —ih/VV‘—J DAL R
I VWA
R, R,
(a) VWA (b) VWA
Reow
VWA
Ry Eron ;
£ VWA i -~
row = 750V =
- a L b \/I\,/V\
_:—qlv_— b « Yeq
Reow
WA 3
R, VWA
(¢) VWA (d) i

We now consider the circuit shown in Fig.b. From the symmetry of the circuit, the point b
are at the same electric potential. Then we can put together these points b, leading to much
more simple circuit shown in Fig.c.

— & tRI+R,I=0

Erow 30 0934

‘"R, +R, 80892

where
£, =150V
R, = 5000x0.25 _ 2920
R, =800Q2
6. Maximum power transfer (impedance matching)

What value of Rp will result in the maximum amount of power absorbed by the load
resistance RL? Here R; is the internal resistance of the battery.



e

RL w

By Ohm’s law,

v, =(R +R))i,

The power dissipated at the load RL is given by

2 2
.2 Ry v X
P=Ri, =—"—"—

(R+R,)’ R (x+1)

with x = R,

F .

s

2
\%

S

P has a maximum at x = 1. The maximum value of Pis P, = e
((Impedance matching))

Given a practical voltage source with an internal resistance Rs, the maximum power that
can be delivered to a resistance load Ry is obtained when RL = R, and the power is

((Mathematica))



f1l = ;D[f1l, x] // Simplify
(1+x)?
1-=

-:1+z<:j:|3

AxesLabel -» {"x=RL/Rs", "B/ (vs?/Rs) "1
P/(vs*/Rs)
025}

Plot[fl, {x, 0, 10}, PlotStyle - {Thick, Red}, Background - LightGray,

0.20
015t
010 H

0.05

L L - x=RL/Rs
2 4 6 8 10
Fig. P/(vs*/Rs) vs x = Ri/Rs. This has a maximum at x = 1.
7. RC circuit
(a) Charging
— ®a
R
.
% b
E ——

L

In the above circuit, the switch is connected to the terminal a at 1 =0,



e

|
O

Ve

-&+Ri.+v. =0
. dv,
=

Then we have a first-order differential equation,

RCPe y ¢

with an initial condition, v.(0) =0 and i.(0)=0

The solution of this differential equation is

t

ve(t)=e(l—e ")
The current ic is obtained as

t
) 5 %
o) =2e*

Note that 7= RC is a time constant. vc(¢) is continuous at ¢ = 0, while iC(t) is discontinuous

at = 0. In this sense, vc(t) is a variable suitable to the solution of the differential equation.
((Mathematica))



il
vl

If[x<0, 0, 0] +If[x>0, Exp[-x], 0]
If[x<0, 0, 0] +
If[x>0, 1-Exp[-x], 0]
Plot[{wvl, i1}, {x, -1, 5},
PlotStyle » {{Thick, Red},
{Thick, Green}},

Background -» LightGray,
AxesLabel - {"t/RC", "vC/e, iC/(e/R)"}]

vC/e, 1IC/(e/R)
1.0}

08l

0.6

04}

021

— . e #/RC

Fig. time dependence of vc/g(red, continuous at £ = 0) and ic/(&/R) (green, discontinuous
att=0).

((Note)) How to determine the relaxation time 7. The tangential line at # = 0, passes at (¢ =
7, V=1"10).



Out[10]= 0.8 /

0.6
0.4}

0.2r

(b) Discharging

Vs AN —

Ve

Ri.+v.=0

dv
i.=C—%
¢ dt

Then we have a first-order differential equation,

RCPe 4y —0
dt

with an initial condition, v.(0) = ¢ and i.(0) = 0. The solution of this differential equation
is

t
vo(t) = ge *€

The current ic is obtained as



t
: £ —=
ic(t) = —Ee K€

((Mathematica))

il =If[x<0, 0, 0] +If[x >0, -Exp[-x], 0];
vli=If[x<0,1, 0] +If[x>0, Exp[-x], 0];
Plot[{vl, 11}, {x, -1, 5},
PlotStyle - {{Thick, Red},
{Thick, Green}},
Background - LightGray,
AxesLabel » {"t/RC", "vC/e, iC/(e/R)"}]

vCJe, iC/(e/R)

ﬂ
0.5
L A | A SR M t C
-1 - 1 2 3 4 y R
—0.5F
—10f

Fig.  time dependence of vc/g(red, continuous at £ = 0) and ic/(&/R) (green, discontinuous
att=0).

8. Circuit including the capacitor C: technique how to solve the problem



We now consider the difference between the voltage vc across a capacitor at a time ¢ =
to and that at a time ¢ = fot¢,

to+e

velty +&)=ve(ty) :% J-ic(t)dt

to

where ic(?) is the current flowing through the capacitor. This integral gets arbitrarily small
if £ gets arbitrarily small. This means that vc(?) is continuous at any time ¢.

In conclusion, if we choose i and vc as the variables for the analysis of the circuits, we can
determined smoothly the time dependence of ir. and vc from their initial conditions.

((Example-1)) RC circuits

NG B ST 2

For #<0, there is no current across the capacitance.

6=r4+t=Y or  w0)=12V
36 2

v =6i or  i(0)=2A.

Ve =3i=6V or  ve(0)=6V

ic(0)=0
For £~0



p = Ldve
€10 dt

v==-3[=—v
2 C

Then we have a first order differential equation,

% +5v.=0, or ve(t) = v (0)e™ = 6e™
1 dv

()= — Ve - 3

e (t) 10 dt

v(t)=3e™

((Mathematica))



Fig

10
10.1

VC=I£f[t<0,6, 0] +If[t>0, 6%, 0];
IC=I£f[t<0,0, 0] +If[t>0, -3e>%, 0];
V=If[t<0,12, 0]+If[t>0, 3%, 0];
Plot[{VC, IC, V}, {t, -0.5, 1},
PlotStyle » {{Thick, Red}, {Thick, Green}, {Thick, Blue}},
AxesLabel » {"t(s)", "vC,iC,v"}]

vC,iC,v

12

10F

i 8

N

wwwwwwwwwwwwwwwwwwww t(s)
-0.4 -0.2 0.2 04 0.6 0.8 1.0

time dependence of vc (red), ic (green), and v (blue). Only vc(?) ic continuous at ¢
=0.

Typical examples
Problem 27-39 (SP-27)

In Fig., ¢=12.0 V, R1 = 2000 Q, R> =3000 Q, and R3 = 4000 2. What are the potential
differences (a) Va — Vs, (b) V8 — Ve, (¢) Ve — Vb, and (d) Va — V?

((Solution))



e=120V
R =2KkQ
R>=3kQ
R3=4kQ
=1, +1,.
Loop 1:
-&+Ri,+R (@1, —-i,)=0
Loop 2:
Ri,—Rji,—R)i,=0
Loop 3

Ri, +R,(i; +i,)- R, —-1,)=0

We have 4 unknown parameters and 4 equations. So we can solve. See the Mathematica
calculations for detail.

i1 =4.875 mA, i» =2.250 mA



i3=2.625 mA, is=-0.375 mA.
(a) v, =V, =Ri, =525V

(b) Ve — Ve =—Riji, =1.50V

(c) Ve =V, =R (i, —i,) =525V
(d) v, =V, =R, =675V
((Note))

(R +R,+R))¢

i = =4.875mA
2RR, + RR, +R,R,
__ RIRIE 5504
> 2RR,+RR,+R,R,
__ RrRIE ;) ersma
> 2RR,+RR,+R,R,
R =R)e  _ _0375ma

I, =
* 2RR,+RR,+R,R,

((Mathematica))



eql =il =i2 +1i3

il1=12+1i3

eq2 = - +R2i2 + Rl (i2 - id) =0

(i2-14) RL+1i2R2-€ = 0

egq3=R1i3 -R3i4 - R2i2 =0

i3R1-1i2R2-14R3 =0

eqd = R3i4 +R2 (i3 +id) -R1 (i2-i4) =0

~(i2-14) R1 + (i3 +14) R2+ i4R3 = 0

sql = Solve[{eql, eq2, eq3, eq4}, {il, i2, i3, i4}] //

Simplify
, (RL+R2+2R3) € , (R2 +R3) €
{{11% , 13 > ,
R2 R3+R1 (2 R2 +R3) R2R3 +R1 (2 R2 + R3)
05 (R1L+R3) € L id4 o (R1 -R2) € }}
R2 R3+R1 (2 R2 +R3) R2 R3 +R1 (2 R2 + R3)

rulel = {R1 » 2000, R2 » 3000, R3 - 4000, € »12.0}

{R1 - 2000, R2 - 3000, R3 > 4000, € »12.}

sq2 = sql /. rulel

{{i1->0.004875, i3 >0.002625,
i2-50.00225, 14 - -0.000375}}

vAB=R1i3 /. sql[[1]] /. rulel

5.25

vBC=-R3i4 /. sql[[1]] /. rulel

1.5

vCD = Rl (i2-i4) /. sql[[1]] /. rulel

5.25

VAC=R2i2 /. sql[[1]] /. rulel

6.75
11. Hint of HW-26
Problem 27-68

Figure displays two circuits with a charged capacitor that is to be discharged through a
resistor whena switch is closed. In Fig.(a), R1 = 20.0 Q and C; = 5.00 uF. In Fig.(b), R> =



10.0  and C> = 8.00 wF. the ratio of the initial charges on the two capacitors is g20/qo1 =
1.50. At time ¢ = 0, both switches are closed. At what time ¢ do the two capacitors have the
same charge?

(@) ()

((Hint))
R1=20.0Q
C1=5.00 pF
R>=10.0Q
C> =8 uF
qo2/qo1 = 1.5

v +Ri =0

. dv,

i =C—

dt

or

v+ RC, % =0

v (t) =y (O)e*f/(Rlcl)
Ql (t) = Clvl (t) — C1V1 (O)e—t/(Rlcl) — que_t/(Rlcl)

APPENDIX

1. Ammeter and voltmeter

In carrying out experiments on electric circuits in the laboratory, it is frequently useful
to have available a means for measuring the current flow through — and the potential drop
across — a given circuit element. The two instruments that have been developed for these
purposes are the ammeter and the voltmeter. An ammeter is a device used to measure
current. Normally it is connected in series with other circuit elements. In ideal case, there
is no internal resistance. In other words, there is no potential drop across the ammeter. A
voltmeter measures the potential difference between any two points in a circuit. In ideal
case, the internal resistance is infinity. No current flows in the voltmeter.



R4

h J

ST g O

In this circuit, the ammeter (denoted by A in the circle) measures the current flowing in the
resistor Ri, while the voltmeter (denoted by V in the circle) measures the voltage across
the resistor R».

2. Fruit battery; how to get an ideal battery

I had a good opportunity to do some experiment of fruit battery at my home. Through
the experiments, I learned how to get a high quality fruit battery which has a high voltage
and a small internal resistance. Note that an ideal battery has no internal resistance.

When copper and zinc electrodes were installed in fruit (lemon), a voltage is generated
between two electrodes. The voltage was about 0.95 V. I found a relatively large internal
resistance between two electrodes. When the distance between two electrodes was less than
2 mm, the internal resistance drastically decreased. Based on this, my fruit battery was
greatly improved. I found one of the best way to get a battery with relatively high voltage
and small internal resistance. The copper and zinc electrodes are separated by a wet paper
towel with a small amount of lemon drops and salt (NaCl), so that the distance between
two electrodes is less than 2 mm. When four of these batteries are connected in series, I get
a battery with the voltage 3.8 V and a small internal resistance. When a LED is connected,
a bright light was on.



IQ

1

I

1

l

1

N

\
Wet paper towel
with some lemon
juice

3. Exercises
I got the following problem from Japanese book on Problems and Solutions in
Electriciy and Magnetism, which I used when I was a undergraduate student.

&

Bl

)

t_ tf

The circuit consists of resistance R and capacitance C in series. The following voltage is
applied between A and C. Find the time dependence of the voltage between B and A.

v, =Vetve =Ri+ve =V[u (t—t)—u_ (t—1,)]



vczéj-idt, i=Cc=c

Thus we have

v. =CR e
dt

+V,

N

For O0<t<t, ve=0

The initial condition at 7 =¢,: v, =0. For ¢, <t <1,

dv

CR—C+v. =V,

The solution of the first order differential equation
Ve (t) = V[l —e

At t= t
ve(t,)=V,[1- e —t,)/(RC)]

For t>1,

dv,
dt

CR

+v.=0

The solution is

v, () =ve(t,)e T
_ Vo[l B e—(t,»—t[)/(RC) ]ef(H/ )(RC)
— Vo[ef(H/ Y(RC) ef(t—t[)/(RC)]

t./(RC J/(RC _
:Vo[e/ ( )_et1 (R )]e t/(RC)

The charge Q, is stored in the capacitor C, When the resistance R is connected to both
sides of capacitor. Find the time dependence of voltage and charge of the capacitor.

The charge ¢



VC,4-i]€:: 0. Ve 4‘]?(?'——;— =0

with the initial condition

where

=% _cd

dt dt

The solution of the first order differential equation

v ::gzleunC)

e

4. Infinite resistor network (square)
https://www.mathpages.com/home/kmath668/kmath668.htm
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Infinite Grid of Resistors

Remain, remain thou here,
While sense can keep it on. And, sweetest, fairest,
As I my poor self did exchange for you,
To your so infinite loss, so in our trifles
I still win of you: for my sake wear this...
Shakespeare

There is a well-known puzzle based on the premise of an “infinite™ grid of resistors connecting
adjacent nodes of a square lattice. A small portion of such a grid is illustrated below.
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Between every pair of adjacent nodes is a resistance R, and we’re told that this grid of resistors
extends “to infinity™ in all direction, and we’re asked to determine the effective resistance
between two adjacent nodes, or, more generally, between any two specified nodes of the lattice.

For adjacent nodes, the usual solution of this puzzle is to consider the current flow field as the
sum of two components, one being the flow field of a grid with current injected into a single
node, and the other being the flow field of a grid with current extracted from a single (adjacent)
node. The symmetry of the two individual cases then enables us to infer the flow rates through
the immediately adjacent resistors, and hence we can conclude (as explained in more detail
below) that the effective resistance between two adjacent nodes is R/2. This solution has a
certain infuitive plausibility, since it’s similar to how the potential field of an electric dipole can
be expressed as the sum of the fields of a positive and a negative charge, each of which is
spherically symmetrical about its respective charge. Just as the electric potential satisfies the
Laplace equation, the voltages of the grid nodes satisfy the discrete from of the Laplace
equation, which is to say, the voltage at each node is the average of the voltages of the four
surrounding nodes. It’s also easy to see that solutions are additive, in the sense that the sum of
any two solutions for given boundary conditions is a solution for the sum of the boundary
conditions.



If we accept the premise of an infinite grid of resistors, along with some tacit assumption about
the behavior of the voltages and currents “at infinity”, and if we accept the idea that we can treat
the current fields for the positive and negative nodes separately, and that applying a voltage to a
single node of the infinite grid will result in some current flow into the grid, the puzzle is easily
solved by simple symmetry considerations. We assert (somewhat naively) that if we inject (say)
four Amperes of current into a given node, with no removal of current at any finite point of the
grid, the current will flow equally out through the four resistors, so one Ampere will flow toward
each of the four adjacent nodes. This one Ampere must flow out through the three other lines
emanating from that adjacent node, as indicated in the left hand figure below.

The figure on the right shows the four nodes surrounding the “negative” node, assuming we are
extracting four Amperes from that node (with no current injected at any finite node of the grid).
Again, simple symmetry dictates the distribution of currents indicated in the figure. Adding the
two current fields together, we see that the link between the positive and negative nodes carries a
total of 2 Amperes away from the positive node, and the other three links emanating from the
positive node carry away a combined total of 1 + 1 + 1 - (2a + B) =2 Amperes. Thus the direct
link carries the same current as all the other paths, so the resistance of the direct link equals the
effective resistance of the entire grid excluding that link. The direct link is in parallel with the
remainder of the grid, so the combined resistance is simply R/2.



