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1. Faraday’s law of induction 

1.1  Definition of magnetic flux 

An induced current is produced by a changing magnetic field. There is an induced 

emf associated with the induced current. A current can be produced without a battery 

present in the circuit. Faraday’s Law of Induction describes the induced emf. 

To express Faraday’s finding mathematically, the magnetic flux is used. The flux 

depends on the magnetic field and the area: 

 
 

The magnetic flux  through a surface A is given by 

 

A

d  B a  

 

in the units of  

 

Wb (Weber) = 1 T m2 

 

This is just the number of magnetic field lines passing through the surface. Suppose that 

the surface is bounded by a closed loop. Faraday has demonstrated that an emf is induced 

around a closed loop, if the magnetic flux through the loop changes with time. This is the 

Faraday’s law. 

 

dt

d
V


  

 

Here V is an emf measured in V (volts).  

 



Michael Faraday (1791-1867). 

 

 
 

1.2. Gauss’ law for magnetism 

The Gauss’ law for magnetism states that the magnetic flux out of every closed 

surface vanishes. Thus we have 

 

0d  B a�  

 

Comparison with the Gauss’ law for the electric field leads to the conclusion that there is 
no magnetic analogue of electric charge. We often describe this by saying that there are 

no magnetic monopole. The validity of this equation has been established by a vast of 
experiments. Despite continuing research no one has as yet ever detected the presence of 

a magnetic monopole.  
Using the Gauss’ theorem (mathematics), we have 
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d d     B a B r� �  

 

or 
 

div 0  B B  

 
in general.  



This expression is one of the four Maxwell’s Equations. Every field line that enters 
the surface also exits from it. The net flux through the surface is zero. It also follows that 

the magnetic field lines always form a closed loop. The magnetic field lines never have 
end points. Such a point would indicate the existence of a magnetic monopole. 

 
((Note)) Experimental arrangement for the Faraday’s law (H.E. White, 1940) 

 

 
 
Fig. Schematic diagram of Faraday’s experimental discovery of induced electric 

currents. (H.E. White, Classical and Modern Physics: A Descriptive Introduction 
(D. Van Nostrand, 1940). When the magnetic flux tends to increase, the induced 

current is generated according to the Lenz law. 
 

2. Ways of inducing an emf 

(a) The loop can be moved from one place to another place where B has a different 

strength, thereby changing the flux through the loop. 
(b) The loop can be rotated, thereby changing the number of B lines passing through 

it. 
(c) The shape of the loop can be changed, thereby changing its area. 

(d) The magnetic field B passing through the loop can be changed (perhaps by 
changing the current in a solenoid that is creating the magnetic field). 

 



3. Universal law of induction 

If C is some closed curve, stationary in coordinates x, y, z, if S is a surface spanning C, 

and if B(x, y, z, t) is the magnetic field measured in x, y, z, at any time t, then 
 

C S

d d
V d d

dt dt
        E s B a  

 
Using the Stokes’ law, we get 
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C S S

d d
d d d

dt dt
           E s E a B a  

 

Then it follows that 

 

t


  


B

E   (Maxwell’s equation) 

 

We will call this Faraday’s law. It was discovered by Faraday but was first written in 

differential form by Maxwell, as one of these equations. Let’s see how this equation gives 

the flux rule for circuits. 

 

((Note)) 

The induced electric field is a non-conservative field that is generated by a changing 

magnetic field. The field cannot be an electrostatic field because if the field were 

electrostatic, and hence conservative, the line integral would be zero. 

 

4. A conducting rod moving through a uniform magnetic field 

We consider a metal rod (conductor) which moves at a constant velocity (v) in a 

direction perpendicular to its length. Pervading the space through which the rod moves 

there is a uniform magnetic field B (//z) constant in time. There is no electric field in the 

reference frame F. 

The rod contains charged particles that will move if a force is applied to them. Any 

charge that is carried along with the rod, such as the particle of charge q moves through 

the magnetic field B and thus experience a force.  

 

( )q f v B  

 
The direction of the force is dependent on the sign of the charge q. When the rod is 

moving at constant speed and things have settled to a steady state, the force f must be 
balanced, at every point inside the rod, by an equal and opposite force. This can only 

arise from an electric field in the rod. The electric field develops in the following way. 
The force f pushes negative charges toward one end of the rod, leaving the other end 

positively charges. This goes on until these separated charges themselves cause an 
electric field E such that, everywhere in the interior of the rod, 

 



q E f . 

 
Then the motion of charge relative to the rod ceases. This charge distribution causes an 

electric field outside the rod, as well as inside. Inside the rod, there has developed an 

electric field  E v B , exerting a force qE which just balances the force ( )q v B . 

 

 
 

((Special relativity)) See Chapter 37S for the detail 

Let us observe the system from a frame S' that moves with the rod. What is the 
magnetic field B' and the electric field E'? Note that there is no electric field (E = 0) in 

the frame S ( 0)B . The E' and B' in the frame S' are related to those in the frame S as 

(special relativity, see Chapter 37S) 
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or 

 

3 3'B B , 2 3'E vB    

 

or 
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or 

 

'  E v B  

 

where 1
/1

1

22



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cv
  for v<<c and  = v/c. The magnetic field B' (= B) is almost 

equal to B. The electric field E' has only a component along the y' axis (the same as y 

axis). The presence of the magnetic field B' has no influence on the static charge 

distribution. 

 



 
 

Fig.: The electric and magnetic field in the S’ frame.  

 

5. A loop moving through a nonuniform magnetic field; understanding the 

Faraday’s law 

 



 
 

F denotes the force which acts on a charge q that rides along with the loop. We 

evaluate the line integral of F, taken around the whole loop. On the two sides of the loop 

which lie parallel to the direction of motion, F is perpendicular to the path element ds. So, 

there is no contribution to the line integral. Taking account of the contributions from the 

other two sides, each of length w, we have 

 

( ) ( )net a bW d q d qv B B w       F s v B s� � , 

 

where 
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b b

q

q
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F v B

F v B
 

 

From the definition, we get 

 

( )net a bW qV q d qv B B w     E s� , 

 

or 



 

( )a bV d v B B w    E s� . 

 

The electromotive force V is related in a very simple way to the rate of change of 

magnetic flux through the loop. The magnetic flux through a loop is the surface integral 

of B over a surface which has the loop for its boundary. 
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Fig. In the interval t , the loop gains an increment of the magnetic flux bB wv t  and 

loses an increment aB wv t . 

 

or 
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( )a b

d d
V d d d

dt dt

B B vw


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 

  E s E a B a� �  

 

((Special relativity)) See Chapter 37S for the detail 



We now consider the frame S' attached to the loop. 

 

 
 

Fig.: The electric and magnetic field in the S' frame. 

 

From the Lorentz transformation of E and B, 
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we have 
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For observers in the frame S’, Ea’ and Eb’ are genuine electric field. It is not an 

electrostatic field. The integral of E’ around the loop, which is the electromotive force V’, 

is given by 

 

' ( )a b a bV d vB w vB w vw B B      E s�  

 

which is the same as that obtained for the frame S. 

 

6. Lenz’ law 

6.1 Example 

The induced current is always such as to oppose the change of flux (or the motion) 

that generated it. Any induced current resulting from an induced emf is in a direction 

such that the flux due to it will oppose the change in flux that caused the induced emf. 

 

(i) 

 

 
 

When the magnet is moved toward the stationary loop, a current is induced as shown in 

(a). This induced current produces its own magnetic field that is directed as shown in (b) 

to counteract the increasing external flux. 

 

(ii) 

 
 



When the magnet is moved away the stationary loop, a current is induced as shown in (c). 

This induced current produces its own magnetic field that is directed as shown in (d) to 

counteract the decreasing external flux. 

 

Heinrich Lenz (1804 – 1865). 

 

6.2 Mathematical formulation for the Lenz’s law 
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where E  is the electric field along the orbit. 

 



 
 

When the magnetic field B (along the z axis) increases with time (dB/dt>0), the induced 

current flows in a clock-wise. The magnetic field induced by the induced current is 

shown by the red arrow (the negative z axis) (Lenz’s law). 

 

 
When the magnetic field B (along the z axis) decreases with time (dB/dt<0), the induced 

current flows in a counter clock-wise. The magnetic field induced by the induced current 

is shown by the red arrow (the positive z axis) (Lenz’s law). 

 

6.3 Direction of v in the form of ( )F q v B  determined from the Lenz’law 

Here we consider how to determine the direction of v in the form of ( )q F v B , 

based on the Lenz’s law. Suppose that a charged particle with the velocity v enters into 

the region in the presence of magnetic field B along the z axis (tending to increase). The 

particle undergoes a circular motion. The magnetic field is generated by this circular 

current. Because of the Lentz’s law, this magnetic is antiparallel to the original magnetic 

field. The positive charge rotates in clock-wise, while the negative charge rotates in 

counter clock wise. 

 

7. Moving loop in a uniform magnetic field: model of generator 

7.1 Principle 

 



 
 

In the region enclosed by blue line, there is a uniform magnetic field B, pointing into the 

page. R is the resistor  

 

 

 
 

The charges only on the segment ab experiences a magnetic force, 

 

( )mag q f v B  

 

The work done on the system is 

 

net magW d qvBh   f s  

 

where ds ia along the wire (ab). The emf V is  

 

vBh
q

W
V net   

 



This emf drives current around the loop in the clockwise direction. The current I is equal 

to 

 

R

vBh

R

V
I   

 

 
 

The force F1 due to the current is given by 
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vBh

R
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hBhIBF
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The agent that pulls the loop must exert a force F equal in magnitude to F1, if the loop is 

to move at constant speed. Thus the agent must therefore do work at the steady rate of  

 

R

vBh
vFP
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1   

 

The rate at which energy is dissipated in the loop as a result of the Joule heating by the 

induced current, 

 

R

vBh
RiP

222
2   

 

((Note)) 

fmag contributes nothing to work because it is perpendicular to the motion of charge. F 

contributes nothing to the emf, because it is perpendicular to the wire. 

 

7.2 Faraday’s law and Lentz’ law 

The total magnetic flux  is given by 

 

d Bhx   B a  



 

Bhv
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d
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
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The current direction is determined from the Lenz’ law. 

When the loop moves to the x-direction, the total flux (into the page) tends to 

decrease. According to the Lentz’s law, the induced current flows clockwise such that the 

total flux (into the page) tends to increase. 

 

8. Sliding conducting bar 

A metal bar of mass m slides frictionlessly on two parallel conducting rails a distance 

h apart. A resistor R is connected across the rails and a uniform magnetic field B, 

pointing into the page, fills the entire region. 

 

 
 

 

 
 

 

Fig. An emf is induced in a loop if the flux is changed by varying the area of the 

circuit. 

 

When the bar moves to the right at the speed v, The magnetic force fmag on the bar is 

given by 

 

( )mag

mag

q

f qvB

 



f v B
 

 



The work done on the system is 

 

net magW d qvBh   f s  

 

where ds ia along the wire (ab). The emf V is  

 

vBh
q

W
V net   

 

The current I flows in a counterclockwise direction. 

 

R

vBh

R

V
I   

 

Once the current flows in the loop, the force due to the current is exerted on the metal bar 

along the negative x direction. 

 

R
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We set up an equation of motion for the metal bar with the mass m. 
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or 

 
2 2

1Fdv B h
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dt m mR
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We assume that the initial velocity of the metal bar is v0 at t = 0. The solution of the 

differential equation is obtained as 
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The rate of the energy dissipated in the resistor is 
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or 
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((Note)) Experimental arrangement for demonstrating an induced current 

produced in a wire (H.E. White, 1940) 

 

 
 

Fig. Experimental arrangement for demonstrating an induced current produced in a 

wire while it is cutting across magnetic lines of force. (H.E. White, Classical and 

Modern Physics; A Descriptive Introduction (D. Van Nostrand, 1940). 

 

 

9. Self-inductance of solenoid 

We assume a uniformly wound solenoid having N turns and length l. Assume that l is 

much greater than the radius of the solenoid. The magnetic field inside a solenoid is 

 

niB 0  

 

The magnetic flux through each turn is  

 

nAiBA 0  

 

Then the emf across the solenoid is 

 

dt

di
nAN
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d
NV 0


  

 

for the coil of the N turn, where N = nl. The self-inductance L is defined by 

 



dt

di
LV   

 

leading to  

 

AlnL 2

0  

 

((Example)) 

For N = 2800, l = 0.6 m. r = 0.05 m = 5 cm, L = 0.129 H.  

 

This shows that L depends on the geometry of the object. The SI unit of L is H (Henry), 

named for Joseph Henry (1797 – 1878). 

 

1 H = V s/A = 1 T m2/A 

 

 
 

Born  December 17, 1797 

Albany, New York, USA 

Died  May 13, 1878 (aged 80) 

Washington, D. C., USA 

Nationality  United States 

Field  Physics 

Institutions  Albany Academy, 

Princeton University 

Smithsonian Institution 

Alma mater  Albany Academy 

Known for  Electromagnetic induction 

 



10. RL circuits 

10.1 Example-1 

An RL circuit contains an inductor L and a resistor R. When the switch is closed (at 

time t = 0), the current begins to increase. At the same time, a back emf is induced in the 

inductor that opposes the original increasing current. 

 

 
 

(a) Switching of SW from neutral position to a 

The switch SW is connected to the terminal a at t = 0,  

 

 
 

In this circuit, we have 

 

dt

di
Lv

vRi

L
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Then the first-order differential equation is obtained as 

 

 L
L Ri

dt

di
L  

 

with an initial condition, 0)0( Li  and 0)0( Lv . 



The solution of this differential equation is 
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L e
R

ti





 

 

The current iL is  

 

L

Rt

L etv


 )(  

 

Note that  = L/R is a time constant. 
 

We note that the current iL is continuous at t = 0. The voltage vL across the inductor L is 
discontinuous at t = 0. 

 
((Mathematica)) 
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Fig. time dependence of vL/ (red, discontinuous at t = 0) and iL/(/R) (green, 
continuous at t = 0). 

 
(b) Switching of SW from a to b 

 

 
 
We have 
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Then the first-order differential equation is obtained as 

 

0 L
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with an initial condition, 
R

iL


)0(  and 0)0( Lv . The solution is 
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The voltage vL is obtained as 
 

L

Rt

L etv


 )(  

 

We note that the current iL is continuous at t = 0. The voltage vL across the inductor L is 
discontinuous at t = 0. 

 
((Mathematica)) 

 

 
 



Fig. time dependence of vL/ (red, discontinuous at t = 0) and iL/(/R) (green, 
continuous at t = 0). 

 
((Note))  

The current (i) flowing through a inductance is a good variable for the calculation in the 
RL circuit, since i(t) is continuous at t = 0. The reason is as follow. 

We now consider the difference between the current iL passing through a inductor at a 

time t = t0 and that at a time t = t0+, 
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where vL(t) is the voltage across the inductor. This integral gets arbitrarily small if  gets 

arbitrarily small. This means that iL(t) is continuous at any time t0. 

 

10.2 Example-2 

We consider a RL circuit where es(t) = 8 V for t<0 (switch to a) and 0 V for t>0 

(switch to b) 

 

 
 

(a) For t<0 (SW to a), the current flows into the inductor, but not flows the resistance (12 

) (in the steady state). The inductance is in a short-circuit state. 
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(b) For t>0 (SW to b) 

 
 

or 

 

 
 

Noting that 12  //4  = 3 , we have 
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((Mathematica)) 

 



iL = If@t < 0, 2, 0D + IfAt > 0, 2 �
−3 t

, 0E;
vL = If@t < 0, 0, 0D + IfAt > 0, −6 �

−3 t
, 0E;

Plot@8iL, vL<, 8t, −0.5, 1<,
PlotStyle → 88Thick, Red<, 8Thick, Green<<,
AxesLabel → 8"tHsL", "iL,vL"<D
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Fig  time dependence of iL (red) and vL (green), Only iL(t) ic continuous at t = 0. 

 

11. Energy storage in a magnetic field 

We now consider the rate of energy 
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where E0i is the rate at which energy is being supplied by the battery, Ri2 is the rate at 

which the energy is being delivered to the resistor, and Li di/dt is the rate at which the 

energy is being delivered to the inductor. 

Let UB denote the energy stored in the inductor L at any time. The rate at which the 

energy is stored is 
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((Work-energy theorem)) 

We derive the form of magnetic energy using the work-energy theorem. 



The energy of inductance is given by 
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Using the work-energy theorem, we have 
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12. Magnetic energy density 

For the solenoid coil (the total number of turns; N, area; A and height; l), 
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leading to the self inductance L as 
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where Al  is the volume of the system. 

So the energy stored per unit volume, uB, is 
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where AlnL 2

0 . Since the magnetic field B is given by niB 0 , we have 
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This applies to any region in which a magnetic field exists (not just for the solenoid). 

 

13. Self inductance example-coaxial cable 

A long coaxial cable consists of two thin-walled concentric conducting cylinders with 

radii a and b. The inner cylinder carries a steady current i and the outer cylinder 

provides the return path for the current. We calculate (a) self inductance, and (b) the 

energy stored in the magnetic field for a length l of the cables. 

 

 
 

From the Ampere’s law, the magnetic field between radii a and b, is obtained as 
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The total magnetic flux  is 
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Then the self-inductance is obtained as 
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The total magnetic energy is 
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14. Mutual inductance 

Suppose that coils in two different circuits are near each other. The current I1 in coil 1 

can create the magnetic flux 21 in coil 2 and induces an emf in the coil 2. The mutual 

inductance of coil 2 with respect to the coil 1 is defined as 

 

12121 IM , 
dt

dI
M

dt

d
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Similarly, the current I2 in coil 2 can create the magnetic flux 12 in coil 1 and induces an 

emf in the coil 1. The mutual inductance of coil 1 with respect to the coil 2 is defined as 
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We can show that M12 = M21. 

 

15. Mutual inductance: example 

A square loop, side a, resistance R, lies a distance s from an infinite straight wire that 

carries current I. Now someone cuts the wire, so that the current I drops to zero. In what 

direction does the induced current in the square loop flow, and what total charge passes a 

given point in the loop during this current flows? 

 

 
 

where the magnetic field points out of the page. 
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The mutual inductance M is 
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The total charge Q is related to V through a relation, 
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When the current I decreases, the magnetic flux  inside the square decreases. Lenz law 

says that the induced current flows counterclockwise, so that the field of the induced 

current points out of the page. 
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16. Mutual inductance (formulation) 
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where M21 is the mutual inductance of the two loops. 
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It is not very useful for practical calculations, but it does reveal two important things 

about mutual inductance. 

 

(1) M21 is a purely geometrical quantity. 

(2) M21 = M12 = M 

 

17. Typical problems 

17-1 Problem 30-59 (SP-30) 

In Fig. after switch S is closed at time t = 0, the emf of the source is automatically 

adjusted to maintain a constant current i through S. (a) Find the current through the 



inductor as a function of time. (b) At what time is the current through the resistor equal to 

the current through the inductor? 

 

 
((Solution)) 
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Then we have  
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with the initial condition; i2(t = 0) = 0. The solution of this first-order differential 

equation is as follows. 
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Suppose that i1 = i2 at t = t0. 
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or 

 

2ln0
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L
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________________________________________________________________________ 

17.2 Problem 30-65 (SP-30) 

For the circuit of Fig., assume that  = 10.0 V, R = 6.70 , and L = 5.50 H. The ideal 

battery is connected at time t = 0. (a) How much energy is delivered by the battery during 

the first 2.00 s? (b) How much of this energy is stored in the magnetic field of the 

inductor? (c) How much of the energy is dissipated in the resistor? 

 

((Solution)) 

 = 10 V, R = 6.70 , L = 5.50 H. 
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Then we have a first-order differential equation, 
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The solution of this differential equation is 
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where 
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L
 .  

(a) The energy delivered by the battery 
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At t = 2 s, U 18.67 J 

 

(b) The energy stored by the inductor 
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At t = 2 s, LU 5.10 J 

 

(c) The energy dissipated by the resistor 
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At t = 2 s, RU 13.57 J 

 

We note that the energy is conserved. 
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17.3 ((Example-3))  RLC circuits 

 



 
 

 

For t<0 

 

 
 

 

iC(0)= 0,  vC(0) = 6 V 

iL(0)= 2 A,  vL(0) = 0 V 

 

For t≥0, 
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From KVL we have 
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We also have 
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where vC(0)= 6 V and iL(0)= 2 A, vL(0) = -10V 

The Mathematica is used to determine the time dependence of each voltage and current. 

 

((Mathematica)) 

 



 
 

17.4 Problem 30-76 (SP-30) 

A coil of N turn is placed around a long solenoid S of radius R and n turn per unit 

length, as shown in Fig. (a) Show that the mutual inductance for the solenoid 

combination is given by M = 0R2nN. (b) Explain why M does not depend on the shape, 

size, or possible lack of close packing of the coil. 

 



 
((Solution)) 

(a) 

niB 0  inside the solenoid C 

 

The magnetic flux: 
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The emf induced in the coil S 
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(b) 
M is the mutual inductance 
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which depends only on R and N. 
 

17.5 Problem 30-102 (SP-30) 

Figure shows a coil of N2 turns wound as shown around part of a toroid of N1 turns. 

The toroid’s radius is a, its outer radius is b, and its height is h. Show that the mutual 
inductance M for the toroid-coil combination is given by 
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((Solution)) 

 
 
Ampere’s law: 
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The magnetic flux is obtained as 
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The induced voltage is 
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with the mutual inductance 
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18. Faraday’s law and Kirchhoff voltage law (revised on July 22, 2023) 

During the class of MIT 802 Electricity and Magnetism, Walter Lewin showed an 

excellent discussion on the difference between the Faraday’s and Kirchhoff voltage law 
using the following example of circuit. 

https://www.youtube.com/watch?v=nGQbA2jwkWI&list=PLyQSN7X0ro2314mKyUiOI
LaOC2hk6Pc3j&index=18&t=0s 

 
For the Faraday’s law, we have 

 

d N
t
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  

� E l . 

 

Note that 
 

0d  E l� . 

 
without solenoid. Using the Stokes theorem, we have 

 

( ) 0d d     � E l E a , 

 
leading to 

 

V E . 

 

Here we use the following relation 
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where 1A and 2A on path considered. 

For convenience, we use the following figure, instead of the figured used by Prof. 

Lewin. 

 



 
 

Fig. Loop circuit (DABCD). A solenoid circuit with current Li is located 

inside the loop current. The points B and C are grounded for convenience. 

1 1V R i . 2 2V R i  . i is the loop current in the loop circuit (the direction is 

in counter clock-wise in this case after t = 0 when the solenoid current 

starts to flow). 

 

We consider the Faraday’s law for the above circuit. The circuit consists of two 

resistances 1R  and 2R . There is no voltage source. Instead of it, the magnetic field due to 

the solenoid locating at the center of the circuit is abruptly applied to the plane of the 

circuit (into page), leading to the increase of the magnetic flux with time t. The induced 

loop current i simultaneously starts to flow in a counter clock-wise (CCW) (see the above 

Fig.). It tries to decrease the magnetic field, according to the Lentz law. 

The path integral of electric field E along the closed path (DABCD) is 
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where N is the total number of turns for solenoid coils. Concretely, we have 
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Note that 
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Because of the emf ( )N
t





 generated from the abrupt change of magnetic flux of the 

solenoid, there occurs a loop current i in the circuit (ABCDA). The direction of the 
loop current can be uniquely determined by the Lentz law. When the current in the 

solenoid increases, the magnetic field is produced inside the loop ABCDA (the 
direction of magnetic field is into the page). According to the Lenz law, the induced 
current flows in the circuit in the clock-wise, so that the direction of the magnetic field is 

out of page in Fig. 
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since the points B and C are grounded; 0B CV V  . Thus, we have 
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The voltages at the point A and D are given by 
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We now evaluate the induced voltage associated with the change of magnetic flux, 
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where A is the area and l is the length of the coil. Note that n is the number turns per unit 

length ( N nl ) and L is the inductance of the solenoid, 

 
2

0L Al n . 

 

 
 
Fig.  Solenoid circuit for the coil which generates a magnetic field inside the 

loop circuit. L and LR  are the inductance and resistance. 0V  is the voltage 

of DC battery. After the switch S is on, the current LI flows through the 

solenoid, generating a time-dependent magnetic field. 
 

The current flowing in the solenoid is determined as follows. 
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  ,  (for 0t  ) 

 

with initial condition 0Li  , where Li  is the current flowing the inductance, LR  is the 

resistance, and L is the inductance of the solenoid. 0V  is the voltage source for the 

solenoid. Note that Li  is a good variable since it is continuous at t = 0. The solution for Li  

is obtained as 
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we have the final result for 
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Fig. The plot of 
0

( / )L Li R V  and 
0

/LV V  as a function of /x t   with the 

relaxation time 
L

R
  . While the normalized voltage 

0
/LV V  undergoes a 

discontinuous jump at t = 0, and exponentially decreases, tending to zero 

after finite times. The normalized solenoid current 
0

( / )L Li R V  

continuously starts to increase with t at t = 0, At t = 0, the solenoid circuit 
is switched to on. 

 

Using this LV  we get the voltages AV  and DV  as a function of t. 
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Fig. Plot of AV  and DV  as a function of t. When t = 0, the circuit of solenoid is 

switched to on. Note that 0B CV V   (grounded).  

 

((Demonstration by Walter Lewin)) 
 

 



 

Fig. Experimental result of the time dependence of AV  (left) and DV  (right) on 

the oscilloscope. At 0t  , the solenoid circuit is switched to on. (result 

from the experiment by Walter Lewin) 

 
((Note)) 

We note that similar problem is seen in Problem 7-53 (p.349) in a text book: 

David J. Griffiths, Introduction to Electrodynamics, 4th edition (Cambridge 

University Press, 2017). 

 

((Problem 7.53)) 

The current in a long solenoid is increasing linearly with time, so the flux is 

proportional to t: t  . Two voltmeters are connected to diametrically opposite points 

(A and B), together with resistors (
1

R  and 
2

R ), as shown in Fig. 1. What is the reading on 

each voltmeter? Assume that these are ideal voltmeters that draw negligible current (they 

have huge internal resistance), and that a voltmeter registers 
b

a

d E l  between the 

terminals and through the meter. 

[Answer; 
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Notice that 1 2V V , even though they are connected to the same points.] 

 

 
 

Fig.1 A circuit from the book of D.J. Griffiths. 

 

 

_____________________________________________________________________ 



APPENDIX-A  Stokes’ theorem 

 

Let S be a surface of any shape bounded by a closed curve C. If F is a vector, then 
 

( ) ( )
C S S

d d da        F l F a F n� . 

 
 

((Arfken)) Stokes’ theorem 
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C S

d d    F l F a�
 

 
Here C is the perimeter of S. This is Stokes’ theorem. Note that the sign of the line 

integral and the direction of da  depend on the direction the perimeter is traversed, so 

consistent results will always be obtained. For the area and the line-integral direction 

shown in Fig, the direction of a for the shaded rectangle will be out of the plane of the 
paper. 

 



 
 
Fig. Direction of normal for the shaded rectangle when the perimeter of the surface is 

traversed as indicated. The direction of da  is out of paper, whilce the direction of 

dl is in counter clockwise. 
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APPENDIX-B Mutual inductance 

((Link)) 

In the Advanced Lab. (Senior Lab. and Graduate Lab ), we developed an experiment on 

the measurement of mutual inductance. The URL of the related site is as follows. 
 

M.J. Schauber, S.A. Newman, L.R. Goodman, I.S. Suzuki, and M. Suzuki 
Am. J.Phys. 76, 129 (2008)  

 “Measurement of mutual inductance from frequency dependence of AC coupled circuit 
using a digital lock in-amplifier.” 

 
https://arxiv.org/abs/physics/0606124 

 
APPENDIX-C Slip ring in AC generator and DC motor 

The role of slip ring in AC generator is different from that in the DC motor 
(commutator). 



 

(a) Slip ring in AC generator 

In a version of the AC induction motor referred to as a wound rotor motor, slip rings 

are used not for transferring power, but for inserting resistance into the rotor windings. 

The slip ring brushes, made of graphite, are connected to a resistive device, such as a 

rheostat. As the slip rings turn with the rotor, the brushes maintain constant contact with 

the rings and transfer the resistance to the rotor windings. 

 

 
 

(b) Slip ring (commutator) in DC motor 

Commutators are used in DC motors to reverse the polarity of current in the armature 

windings. The ends of each armature coil are connected to commutator bars located 180 

degrees apart. As the armature spins, brushes supply current to opposing segments of the 

commutator and, therefore, to opposing armature coils. 

 

 τ μ B : basis for electric DC motor 

 

Commutator: Split ring that changes the current direction to keep non-zero torque on coil. 

 

 
 



 
 

((Note)) DC motor (H.E. White, 1940) 
 

 

 
 

Fig. Illustration showing the principle of the DC electric motor (H.E. White, Classical 
and Modern Physics; A Descriptive Introduction (D. van Nostrand, 1940). 

 
APPENDIX-D Magnetic quantum flux 

https://en.wikipedia.org/wiki/Magnetic_flux_quantum 
 

The magnetic flux, represented by the symbol Φ, threading some contour or loop is 

defined as the magnetic field B multiplied by the loop area a, i.e.  

 

  B a  

 



Both B and a can be arbitrary and so is Φ. However, if one deals with the 

superconducting loop or a hole in a bulk superconductor, it turns out that the magnetic 

flux threading such a hole/loop is quantized. The magnetic flux quantum 

 

0
2

h

e
   = 2.06783348 x 10-15 Wb. 

 

is a combination of fundamental physical constants: the Planck constant h and the 

electron charge e. Its value is, therefore, the same for any superconductor. The 

phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. 

M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization 

of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by 

Fritz London in 1948 using a phenomenological model.  

The inverse of the flux quantum, 01/ , is called the Josephson constant, and is 

denoted KJ. It is the constant of proportionality of the Josephson effect, relating the 

potential difference across a Josephson junction to the frequency of the irradiation. The 

Josephson effect is very widely used to provide a standard for high-precision 

measurements of potential difference, which (since 1990) have been related to a fixed, 

conventional value of the Josephson constant, denoted KJ-90. With the 2019 redefinition 

of SI base units, the Josephson constant will have an exact value of KJ = 

483597.84841698...GHz⋅V−1, which will replace the conventional value KJ-90.  


