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The phasor diagram is very useful in discussing the AC circuit formed of series connection 

of R, L, and C. The detail of this concept will be discussed below. We note that this method 

is not appropriate for the AC circuits which are formed of various kind of combinations 

with connections of R, L, and C elements. In this case we need to use the concept of 

impedance such as R, i L , and 1/ ( )i C  in the frequency domain. We also use the 

transformations [ ( ) Re( )i ti t Ie   for the current and ( ) Re( )i tv t Ve   for the voltage] 

between the frequency domain and time domain, The quantities I  and V  are complex 

numbers. In the frequency domain, the AC circuit can be simply solved by using the KCL 

and KVL laws. In general physics, in spite of convenience, this method is not adopted. 

 

1. LC oscillations 

 

 
 

In a resistanceless LC circuit, the total energy U is given by 
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where q = CvC. 

 

From the energy conservation, U remains constant with time. 
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The total energy U is rewritten as 

 

2

2

2

1

2

1
q

Cdt

dq
LU 







 . 

 

We assume the initial condition as  

 

At t = 0, 

 

q = Q and  dq/dt = 0. 

 

The solution of the second order differential equation is given by 
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Fig. Qq /  (red) and )/( QiL  (blue) as a function of t/T.  
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Fig. )2//( 2 CQUE  (red) and )2//( 2 CQU B  (blue) as a function of t/T.  

 

2. Damped oscillations in a RLC circuit 

 

A circuit containing resistance, inductance, and capacitance is called an RLC circuit. 
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From the KVL, we have 
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or 

 

the second order differential equation 
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We assume that 

 

q = x, 2 = R/L, and 0
2 = 1/(LC) 

 

Then we have 
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with the initial conditions 

 

0)0(' vx   and 0)0( xx   

 

The solution of this differential equation depends is classed into three types, 
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((Note)) 

We assume that x(t) is expressed by a solution given by exp(pt). Then we have 
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The solution of the quadratic equation 2 2
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with  
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The solution is given by 
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From the initial condition, we have 
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The final form is given by 
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3. AC circuit theory 

 

3.1 phasor diagram 
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(b) 
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The phasor diagram is given by the following figure. 

 

 
 

For more general case (more complicated AC circuits), we need to use the method of 

complex number. This will be discussed in the Appendix.  

 

3.2. Impedance of single elements in AC circuit 

 

3.2.1 Inductance L 

 

maxmax LIV   

 

The relation between Vmax and Imax for the inductance is described in the following phasor 

diagram. 

 



 
 

We say that V leads to I by 90° (or I lags V by 90°).  

 

3.2.2 Capacitance C 
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The relation between Vmax and Imax for the capacitance is described in the following phasor 

diagram. 

 

 
 

We say that V lags I by 90° (or I leads V by 90°).  

 

3.2.3 Resistance 

For resistance, one can write down a relation 



 

maxmax RIV   

 

The relation between Vmax and Imax for the resistance is described in the following phasor 

diagram. 

 

 
 

3.3. Power dissipated in single elements 

3.3.1 Definition 

The time average of the power P(t) over a period time T (= 2/) is given by 
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where cos is the power factor, Imax and Vmax are the amplitudes of current and voltage. 

Note that the definition of the root-mean squares Irms and Vrms will be given later (Section 

3.4), where 
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3.3.2 inductance 

 



0avgP  

 

since =/2. No power is dissipated in an inductor. 

 

3.3.3 Capacitance 
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since = -/2. No power is dissipated in a capacitor. 

 

3.3.4 Resistance 
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Power is dissipated only in a resistor. 

 

3.4. Root-mean square value of current and voltage 

The root-mean square value of the current is defined as 
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The root-mean square value of the voltage is defined as 

 

2
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((Note)) 

Domestic electricity is provided at a frequency of 60 Hz in the United States, and a 

residential outlet provides 120 Vac. This means the rms voltage is max 120 2V  = 170 V. 

 

The power dissipated in the resistor is rewritten as 
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3.5. The series RLC circuit 

 
 

Phasor diagram of the RLC circuits is given in the following way, where we use I and V 

instead of Imax and Vmax (or Irms and Vrms) 
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where I is the amplitude of the current, Vs is the amplitude of the voltage source, Zs is the 

total impedance defined by 
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and the angle between Vs and I is defined as 
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The average power dissipated in the system is 
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3.6. Example (RLC circuit) 

 

Problem 31-46 (SP-31) 

31-46 

Figure shows a driven RLC circuit that contains two identical capacitors and two 

switches. The emf amplitude is set at 12.0 V, and the driving frequency is set at 60.0 Hz. 

With both switches open, the current leads the emf by 30.9°. With switches S1 closed and 

switch S2 still open, the emf leads the current by 15.0°. With both switches closed, the 

current amplitude is 447 mA. What are (a) R, (b) C, and (c) L? 

 

 
 

 

((Solution)) 

 

E0 = 12 V 



f = 60 Hz 

 = 2f 

 

(1) S1 and S2 open 

 

 
 

 

R

L
C

IL
C

REs

)
2

(

tan

)
2

(

1

1

22












 

 

Es lags I1 by 1. The average power dissipated in the system is 
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(2) S1 closed and S2 open 
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Es leads I2 by 2. The average power dissipated in the system is 
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(3) S1 closed and S2 closed 
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3.7. Example (RC circuit) 

 

Problem 31-44 (HW-31)) Hint 

An alternating emf source with a variable frequency fd is connected in series with a 

50.0  resistor and 20.0 F capacitor. The emf amplitude is 12.0 V. (a) Draw a phasor 

diagram for phasor VR (the potential across the resistor) and phasor VC (the potential across 

the capacitor). (b) At what driving frequency fd do the two phasors have the same length? 

At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at 

which the phasors rotate, and (e) the current amplitude? 
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Es lags I by the angle . The average power dissipated in the system is 
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3.8. Example (RL circuit) 
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Es leads I by the angle . The average power dissipated in the system is 
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3.9 Resonance of the RLC circuit 
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The amplitude of the current has a maximum when 
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We define the quality factor of the circuit by 
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Then the amplitude of the current can be rewritten as 
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We now consider the frequency dependence of I2, instead of I. 
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We note that this is a scaling function of /0. In the figures we show the plot of 
)/( 22
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4. Transformer 
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Then we have 
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If Ns>Np, the transformer is called a step-up transformer. If Np>Ns, the transformer is called 

a step-down transformer 

 

From the energy conservation, we have 
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The equivalent resistance Req is the value of the load resistance as seen by the generator. 
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5. Typical examples 

 

5.1 Problem 31-17 (SP-31) 

In an oscillating LC circuit with C = 64.0 F, the current is given by i = 1.60 sin(2500 

t + 0.680), where t is in seconds, i in amperes, and the phase constant in radians. (a) How 



soon after t = 0 will the current reach its maximum value? What are (b) the inductance L 

and (c) the total energy? 

 

((Solution)) 
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)680.02500sin(60.1  ti  

Imax = 1.60 A 

 = 2500 rad/s 
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(c) 

 

The total energy is conserved. 
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5.2 Problem 31-61 (SP-31) 

In Fig. R = 15.0 , C = 4.70 F, and L = 25.0 mH. The generator provides an emf with 

rms voltage 75.0 V and frequency 550 Hz. (a) What is the rms current? What is the rms 

voltage across (b) R, (c) C, (d) L, (e) C, and L together, and (f) R, C, and L together? At 

what average rate is energy dissipated by (g) R, (h) C, and (i) L? 

 

((Solution)) 



 
 

 
R = 15  

C = 4.70 F 

L = 25.0 mH 

 = 75.0 V 

f = 550 Hz 

 

Phasor diagram 
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(a) Irms = 2.58576 A 

 

(b)   rmsrmsR RIV   = 38.7865 V 

 

(c)   rmsrmsC I
C

V
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(d)   rmsrmsL LIV  = 223.394 V 
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(f) rms  = 75.0 V 
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5.3 Problem 31-60 (SP-31) 

A typical light dinner used to dim the stage lights in a theater consists of a variable 

inductor L (whose inductance is adjustable between 0 and Lmax) connected in series with a 

lightbulb B as shown in Fig. The electrical supply is 120 V (rms) at 60.0 Hz; the light-bulb 

is rated at 120 V, 1000 W. (a) What Lmax is required if the rate of energy dissipation in the 

lightbulb is to be varied by a factor of 5 from its upper limit of 1000 W? Assume that the 



resistance of the lighbulb is indepenent of its temperature. (b) Could one use a variable 

resistor (adjustable between zero and Rmax) instead of an inductor? (c) If so, what Rmax is 

required? (d) Why isn’t this done? 

 

\ 

 

((Solution)) 

 
 

 
L = 0 – Lmax 

120 V (rms) at 60 Hz 

Light bulb 1000 W at 120 V 

rms = 120 V 

f = 60 Hz 
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(a) When L = 0,  
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(b) and (c) Yes. 

 

The inductance is replaced by a variable resistance R0. 
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 799.174.142361.10R  



 

(d) This is not done because we lose the energy in the variable resistance. 

 

5.4 Phasor diagram of RLC circuit 

G. Gladding, M. Selen, and T. Steltzer, SmartPhysics; Electricity and 

Magnetism (II) (W.H. Freeman, 2011) 

Consider the driven LCR circuit. The source voltage has a maximum voltage of 10 V 

and oscillates at a frequency of 60 Hz, which converts to an angular frequency of 377 rad/s. 

The values for the circuit components are 20  , 20 mH, and 150 F, respectively. 

Our goal is to determine maxI , the maximum current, and  , the phase angle between 

the current and the source voltage. Once we know these two quantities at any time. We can 

determine both of these quantities by simply constructing the phasor diagram. 

 

 
 

Fig. RLC circuit. f  60 Hz. L = 20 mH. C = 150 F. 2 f  376.991 rad/s. 

10mE  V. 

 

((Solution)) 

Suppose that max sin( )I I t . The voltages across the capacitance, inductance, and 

resistance are drawn in the x-y plane, as well as the current. 

 



 
 

Fig. Phasor diagram for voltages of the circuit. We assume that maxRI  is directed along 

the x axis. The voltage source is actually expressed by m sin( )t  . So it is 

necessary to rotate the phasor diagram by appropriate angle at the last stage. 

 

Note that 

 

max max20 RV RI I   

 

max

1
( )CV I

C
  17.6839 Imax 

 

max( )LV L I  7.53982 Imax 

 

The source voltage; 
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max max

1
( ) 22.4255 ZV R L I I

C



      

 

Since  0 max10.0 V 22.4255 ZV E I   , we have the maximum current as 

 

0
max 0.445921

z

E
I

V
   [A] 

 

max 8.91843RI   [V] 

 

max 3.36217LI   [V] 

 

max

1
7.88562I

C
  V 

 

The phase factor: 

 

arctan[ ] 26.89C L

R

V V

V



   . 

 

Since 0 sin( )sV E t , we need to rotate the phasor diagram (in the x-y plane) around the 

origin by the angle   in counter clockwise. So we get the final phasor diagram 

The average power dissipated in the circuit; 

 

2

max

2

max

max max

max max

1

2

1
cos

2

1
cos

2

1
cos

2

avP RI

Z I

ZI I

I V















 

 

where cos  is the power factor. 



 
 

Fig. Phasor diagram of the RLC circuit. 26.89   . 

 

For the voltage source    10 sin( )t    [V] 

For the voltage across the resistance:  8.91834 sin( )t    [V] 

For the voltage across the inductance  3.36217 sin( )
2

t


    [V] 

For the voltage across the capacitance 7.88562 sin( )
2

t


    [V] 

For the current     0.445921 sin( )t    [A] 
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Appendix A AC circuit theory based on the complex plane 

 

Here we discuss the AC circuit theory based on the complex number. This theory is 

mathematically correct. 

 

A1. Impedance of single elements in AC circuit 

RImaxLImax

1

C
Imax

1

C
L Imax

Vmax ZImax



We represent all voltages and current (sinusoidally change with time) by complex 

numbers, using the exponential notation. The time-varying current is written by 

 

2
]Re[)(

* titi
ti eIIe

Ieti





 , 

 

where  (= 2f) is the angular frequency, I represents a complex number that is 

independent of t, and I* is the complex conjugate. The complex number I is described by 
ieI0  where I0 is the amplitude and  is the phase. For convenience, we use the phasor 

diagram in the complex plane, where for I is plotted as  

 

 
 

)cos(]Re[]Re[)( 00   tIeeIIeti tititi . 

 

The voltage is also described by 

 

]Re[)( tiVetv  . 

 

((Note)) 

The absolute values V  and I  are the amplitudes of the real voltage and current. 

 

(a) Inductance L 

For inductance one can write down the relation 

 

]Re[]Re[]Re[)( tititi LIeiIe
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d
L

dt

di
LVetv    

 

or 

 

ILeLIiV i 2/   

 



The relation between V and I for the inductance is described in the following phasor 

diagram. 

 

 
 

We say that V leads to I by 90° (or I lags V by 90°). The impedance of the inductance is 

given by 

 

Li
I

V
ZL 

ɺ

ɺ

 

 

(b) Capacitance C 

For capacitance, one can write down a relation 
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d
C
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tdv
CIeti    

 

CViI   

 

or 

 

Ie
CCi

I
V i 2/1 


  

 

The relation between V and I for the capacitance is described in the following phasor 

diagram. 

 



 
 

We say that V lags I by 90° (or I lags V by 90°). The impedance of the capacitance is given 

by 

 

CiI

V
ZC 

1
  

 

(c) Resistance 

For resistance, one can write down a relation 

 

]]Re[]Re[)(]Re[)( tititi RIeIeRtRiVetv    

 

RIV   

 

The relation between V and I for the resistance is described in the following phasor diagram. 

 

 
 

The impedance of the resistance is given by 

 

RZR   



 

In summary 

 
 

 

((Note)) 

The analysis of the AC theory without the concept of the complex number will be given in 

the Appendix B. 

 

 

A2. Power dissipated in single elements 

The power is given by 
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The time average of the power P(t) over a period time T (= 2/) is given by 
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When 0II   and ieVV 0  (I0 and V0 are real numbers), then the power is rewritten as 
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00 coscos
2

1
rmsrmsrmsavg RiviVIP    

 

where cos is the power factor, and the definition of the root-mean squares irms and vrms 

will given later. 

 

(a) inductance 

For the capacitance, we have ** LIiV  . Then Pavg is calculated as 
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No power is dissipated in an inductor. 

 

(b) Capacitance 

For the capacitance, we have 
Ci

I
V



*
*  . Then Pavg is calculated as 
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No power is dissipated in a capacitor. 

 

(c) Resistance 

For the resistance, we have ** RIV  . Then Pavg is calculated as 
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V
IRIRIRIIVPavg

2

22**

2

1

2

1
]Re[

2

1
]Re[

2

1
]Re[

2

1
  



 

Power is dissipated in a resistor. 

 

A3. Root-mean square value of current and voltage 

What is the root-mean square of the current and voltage? 

 

)cos(]Re[]Re[)( 00   tIeeIIeti tititi  

 

The root-mean square value of the current is defined as 
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or 
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maxII
irms   

 

where Imax (=|I| = |I0|) is the maximum of the current. 

 

Similarly, we have the root-mean value of the voltage as 
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maxVV
vrms   

 

The power dissipated in the resistor is rewritten as 

 

   
R

v
iRP rms
rmsavg
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((Note-1)) 

The rms value of any quantity that varies as sin(t) or cos(t) is always 1/ 2  times the 

maximum value, so  

 

vrms = 0.707vmax. 

 

((Note-2)) Derivation of time averaged power 

                                                                                                                                                                                                                                                          



 
 

Power dissipated in resistor R 
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A4. The series RLC circuit 



 
Circuit in the time domain 

 

 

 
 

AC circuit in the frequency domain 

 

 

)()()()( tvtvtvte CLRs   

 

The relation of the expressions in the time domain and the frequency domain is given by 
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Es, I, VL, VC, and VR are complex numbers. The phasor diagram of these will be given later. 
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where Zs is the total impedance defined by 
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where  is an angle and ie  is the phase factor,  
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and 
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A5. Phasor diagram of the RLC circuits 

 

 
 

((Example)) 

A series RLC circuit has R = 150 , L = 0.25 H, and C = 16.0 F. It is driven by 60 Hz 

voltage of peak value 170 V. Determine the time dependence of the voltages across each 

element. 

 



 
 

 
 

 

A6. Infinite ladder network (from the book of Feynman) 

 

What would happen if the following network we keep on adding a pair of the 

impedances (z1 and z2) forever, as we indicate by the dashed lines. Can we solve such an 

infinite network? 

 
 

First, we notice that such an infinite network is unchanged even if we add one more 

section at the front end. If we add one more section to an infinite network it is still the same 

infinite network. Suppose we call the impedance between the two terminals a and b of the 

infinite network z0. Then the impedance of all the stuff to the right of the two terminals c 
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and d is also z0. Taking into account of the similarity of the infinite network, we get an 

equation to determine the value of z0 as 
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We can solve for z0 to get 
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This impedance z0 is called the characteristic impedance of the infinite network. 

 

 
 

Now we consider a specific example where an AC source is connected between the 

terminals a and b, and Liz 1  and )/(12 Ciz  . We define the complex current In and 

voltage Vn. 

 

 
 

 
 



In the above Fig. we get the following recursion relation, 
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We can call this ratio the propagation factor for one section of the ladder; we will call it . 

It is the same for all sections. Note that 
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Then we have 
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Fig.   as a function of 
0


x . 

 

 

 
 

Fig. Re[] and Im[] as a function of 
0


x . 
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In summary, the network propagates energy for <0 and blocks it for >0. We say that 

the network passes low frequencies and reject or filters out the high frequencies. Any 

network designed to have its characteristics vary in a prescribed way wit frequency is called 

a filter. In this case, we have a low pass filter. 

 

A7. Impedance matching 

 

 
 

 

Given a circuit having a load impedance ( LLL iXRZ  ), what impedance will result in 

the maximum average power P being absorbed by the load? 

 

L

sL
L

L

s

ZZ

VZ
IZV

ZZ

V
I







0

0
 

 

The power P (absorbed by the lad) is given by 
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Then P is given by 
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First, we assume that RL is constant. Only XL is a unknown parameter. P has a maximum 

when  

 

0XX L   

 

Then P obtained as 
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has a maximum at RL = R0.  

In conclusion, in order to get maximum power to ZL, we select 
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APPENDIX B. Complex number 

 

B1. Imaginary unit 

The imaginary unit is defined by 1i : 12 i . 

 

ii

i

522020

55




 

 

These numbers are called a pure imaginary number. 

 

 

B2. Properties of complex number 

For real numbers a, b, c, and d,  

 

dicbia    → a = c and b = d. 

 

0 bia   → a = 0 and b = 0. 

 



22

222222

)()(

))((

))((

)1()())((

)())((

)()()()(

)()()()(

dc

iadbcbdac

dicdic

dicbia

dic

bia

bababiabiabia

ibcadbdacdicbia

idbcadicbia

idbcadicbia




















 

 

B3. Simplifying powers of i 

The expression of ni , where n is a positive whole number, can be reduced to either ±1 

or ±i. 

 

i0 = 1, i1 = i i2 = -1,  i3 = i2i=-i 

i4 = 1, i5 = i4 i =i i6 = i4 i2=i2 = -1 i7 = i4i3=-i 

 

In general, we have 

 

i4n = 1, i4n+1 = i i4n+2 = -1, i4n+1 = -i 

 

where n is an integer. 

 

B4. Graphing complex number: complex plane 

(a) Definition 

 

z = x+iy 

 

A complex number in x+iy form can be graphed in the complex plane by measuring x 

units along the horizontal (real axis) and y units along the vertical (imaginary axis). 

 
We define the absolute value of the complex number as 

 
22 yxiyxz   

 

which is the distance between the ponits of z (= x+i y) and the origin. 

 



(b) Expression of the complex number in the real-imaginary plane 

 

We make a plot of the complex numbers in the complex plane. 

 

a = 3+2i, b = -2+i 

a+b = 1+3i, a - b=5+i, 

 

 

 

B5. Complex conjugate 

 

 
 

The complex number z and z* are complex conjugate. 
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where a and b are real. 
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B6. Angles and polar coordinates of complex number 

 

 
 

We find the real (horizontal) and imaginary (vertical) components in terms of r (the 

length of the vector) and θ (the angle made with the real axis): 

 

From Pythagoras, we have: r2 = x2 + y2 and basic trigonometry gives us: 

 

x

y
tan  

 

x = r cosθ, y = r sinθ 

 

Multiplying the last expression throughout by i gives us: 

 

siniryi   

 

So we can write the polar form of a complex number as: 

 

)sin(cos  iriyxz   

 

where r is the absolute value (or modulus) of the complex number, and θ is the argument 

of the complex number. 

 



 
 

 

Points P, Q and R on the unit circle in the complex plane, are denoted by complex numbers 

z1, z2, and z1z2. 
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The complex conjugate of z1 is 
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((Example)) 

 

We make a plot of zn (n = 0, 1, 2, 3, …), where 

 

).sin(cos  irz   

 

We choose r = 1.05 and  = 5º. 
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B7. Euler’s formula 

 

Euler's formula states that, for any real number , 

 

 sincos iei   

 

where e is the base of the natural logarithm, i is the imaginary unit. Richard Feynman called 

Euler's formula "our jewel" and "the most remarkable formula in mathematics". 

 

B8. de Moivre’s theorem 

 

When  ireiriyxz  )sin(cos  
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((Note)) 

(a) The expression of z-n 
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(b) The expression of z* (complex conjugate of z) 
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APPENDIX-C Summary of phasor diagrams in the AC circuit 

Here, the phasor diagrams for typical AC circuits are summarized as follows. For 

convenience, the phase of rmsI  is fixed as 0 (the positive x axis). 
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APPENDIX-D 

Single-phase rms voltage and frequency over the world 

 

Europe (Great Britain, France, Germany, Belgium, Netherland, Denmark, Sweden) 

230 V  50 Hz 

Australia 230 V  50 Hz 

U.S.A.  120 V  60 Hz 

Equador 120 V  60 Hz 

China  220 V  50 Hz 

Malawi 220 V  50 Hz 
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RIrms

1

C
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L
1

C
Irms
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Japan:  100 V  50 (East)/60Hz (West); regions of west and east separated 

by Fossa Magna. 

In Japan, people (typically Osaka and Kyoto) west from Fossa Magna use 60 Hz, while 

people (typically Tokyo) east from Fossa Magna use 50 Hz.   

 
 


