Chapter 31
Electromagnetic oscillations and AC circuit
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date: August 15, 2020)

The phasor diagram is very useful in discussing the AC circuit formed of series connection
of R, L, and C. The detail of this concept will be discussed below. We note that this method
is not appropriate for the AC circuits which are formed of various kind of combinations
with connections of R, L, and C elements. In this case we need to use the concept of
impedance such as R, iwL, and 1/(iwC) in the frequency domain. We also use the

transformations [ i(#) = Re(le’”) for the current and v(z) = Re(Ve) for the voltage]

between the frequency domain and time domain, The quantities / and V' are complex
numbers. In the frequency domain, the AC circuit can be simply solved by using the KCL
and KVL laws. In general physics, in spite of convenience, this method is not adopted.

1. LC oscillations
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In a resistanceless LC circuit, the total energy U is given by

U=%Uﬁ+%c%i

where g = Cvc.
From the energy conservation, U remains constant with time.

dU d dv
— =Li —i +Cv.—€=0.
dt " < dt

Since i, =% and v, =%,we have



2

dt*

+w°qg=0, (LC oscillation, simple harmonics).

with

1

0w=—.
NLC

The total energy U is rewritten as

2
U:lLﬂ +Lq2'
2 \dt 2C

We assume the initial condition as
Atr=0,
g=Q and dgq/dt=0.

The solution of the second order differential equation is given by

q = Qcos(ar),
. d .
i = %9 _ —Qwsin(wt) .
dt
q/Q, iL/(Qw)
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Fig. ¢/Q (red) and i, /(Qw) (blue) as a function of #/T.

Energy of Ug and U
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Fig. U,/(Q*/2C) (red)and U, /(Q*/2C) (blue) as a function of #/T.

2 Damped oscillations in a RLC circuit

A circuit containing resistance, inductance, and capacitance is called an RLC circuit.
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Ve = Ri,
q=Cv
s
dt

From the KVL, we have
v, +vp+v. =0,
or
the second order differential equation

d’q Rdq g

d’  Ldt LC
We assume that
g=x, 2f=R/L, and e’ = 1/(LC)
Then we have
X"(£)+28¢' (1) + @, x(t) = 0,
with the initial conditions
x'(0)=v, and x(0)=x,

The solution of this differential equation depends is classed into three types,

(1)  underdamping: B - <0

(2) critical damping B -w;=0

(3)  overdamping B —w; >0
((Note))

We assume that x(7) is expressed by a solution given by exp(pf). Then we have
X"(£)+ 20x' (1) + @, x(t) = (p* + 2 p + @, )e” =0

The solution of the quadratic equation p* +28p+a,” =0 is



P +2fp+ fr=—(w, - )
(p+B)=ti\o," - B
p=—P+ijo, -p =-f+io,

with
@, :‘\/a)o2 _ﬁz .
The solution is given by
q(t) = x(t) = e "'[C, cos(at) + C, sin(wt)] .

From the initial condition, we have

C, =x,,
C, = Vo + P, .
w0
The final form is given by

q(t) = e "'[x, cos(ayt) + (M} sin(w?)].

2
3. AC circuit theory

3.1 phasor diagram

(a)
i=1,. sin(wt)
Ve =RI_. sin(ot)
1 1 Lo T
Ve =— |idt = ——"2-cos(wt) = "=-sin(wt ——
‘ cI wC O = e N )
di . V4
v, =L—=wlLl_, cos(wt)=wLl_, sin(ot+—)
dt 2
(b)

i=1__ cos(wr)

max



Ve =RI__cos(awt)

I %Iidt = %sin(a}t) = i‘;‘—a(/fcos(wt - %)

di

v, = LE =-wLl_ sin(ot)=wll _, cos(wt+ %)

max

The phasor diagram is given by the following figure.
:
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For more general case (more complicated AC circuits), we need to use the method of
complex number. This will be discussed in the Appendix.

3.2. Impedance of single elements in AC circuit
3.2.1 Inductance L

V. =all_

max

The relation between Vmax and Imax for the inductance is described in the following phasor
diagram.



& Vmax

Inductance

Imax

We say that V' leads to 7 by 90° (or I lags V" by 90°).

3.2.2 Capacitance C

Vmax = [max
oC

The relation between Vmax and Imax for the capacitance is described in the following phasor
diagram.

Imax

Capacitance

Vmax

!

We say that V'lags I by 90° (or [ leads V" by 90°).

3.2.3 Resistance
For resistance, one can write down a relation



Vo =RI

max max

The relation between Vmax and Imax for the resistance is described in the following phasor
diagram.

Resistance

Imax Vmax

3.3. Power dissipated in single elements
3.3.1 Definition
The time average of the power P(¢) over a period time 7 (= 27/ ®) is given by

max

1t . .
P, = T .[ dil . sin(ot)V, sin(ot + @)
0

1 T
=—17_V dt[cos ¢ — cos(2wt +
2T max max '([ [ ¢ ( ¢)]

:11 V__ cos¢@

max max
2

=[_ V. _cos¢

rms " rms

where cos¢ is the power factor, Imax and Vmax are the amplitudes of current and voltage.
Note that the definition of the root-mean squares /ms and Vs Will be given later (Section
3.4), where

Ir ms I/rms

1 1
= 7= I s = 7= Vmax
\/5 max \/5

3.3.2 inductance



since ¢ = /2. No power is dissipated in an inductor.
3.3.3 Capacitance

P . =0

avg

since ¢= -7/2. No power is dissipated in a capacitor.

3.3.4 Resistance

Power is dissipated only in a resistor.

3.4. Root-mean square value of current and voltage
The root-mean square value of the current is defined as

1t 2.,
i =_[—|I_“sin“(wt)dt
rms \/T'([ max ( )

17,
= [— |1 . [1—cosQart)ldt
for]

— _ max

0

The root-mean square value of the voltage is defined as

— Vmax

Vs N
((Note))

Domestic electricity is provided at a frequency of 60 Hz in the United States, and a
residential outlet provides 120 Vac. This means the rms voltageis V= 12082=170 V.

The power dissipated in the resistor is rewritten as



3.5. The series RLC circuit

o L

A
R

Phasor diagram of the RLC circuits is given in the following way, where we use / and V'
instead of Imax and Vmax (o1 Irms and Vims)
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where



V.=21

V,=RI

V, =Ll
1

VC :El

where [/ is the amplitude of the current, V5 is the amplitude of the voltage source, Zs is the
total impedance defined by

Z =\/R2+(a)L—L)2,
‘ oC

and the angle between Vs and / is defined as
tan @ :l(a)L —L) .
R oC
The average power dissipated in the system is

cos¢ =RI, °.

rms ]rms

P=Vlcosg=(1.)

3.6. Example (RLC circuit)

Problem 31-46 (SP-31)
31-46

Figure shows a driven RLC circuit that contains two identical capacitors and two
switches. The emf amplitude is set at 12.0 V, and the driving frequency is set at 60.0 Hz.
With both switches open, the current leads the emf by 30.9°. With switches S1 closed and
switch S2 still open, the emf leads the current by 15.0°. With both switches closed, the
current amplitude is 447 mA. What are (a) R, (b) C, and (c) L?

1 21

sl\ C Ré '/82

©

((Solution))

Ey=12V



£=60Hz
@ =2nf

(1) Si and S; open

R4

(2loC-w L)1 Eg

E, = \/RZ + (é—wL)zll

2
(R —wl)

tang, = R

Eslags I by ¢1. The average power dissipated in the system is

P - %E‘vll COS¢1 = (EY )rms (Il)rms COS¢1 = R(Il) ’

rms

where E cosd = RI,

(2) Si closed and S> open



A Es

(@ L-1/aC) 12

Rl2

E, = \/RZ +(wL —L)zl2
wC

1
(COL - E)

tan g, = R

Es leads I> by ¢. The average power dissipated in the system is

P - %ESIZ Cos ¢2 = (Ev )rms (12)rms Cos ¢2 = R(Iz) ’

rms

where E cos¢, =RI,

3) Si closed and S; closed



(0 L-1/0C)13 | Eg

3.7. Example (RC circuit)

Problem 31-44 (HW-31)) Hint

An alternating emf source with a variable frequency fq is connected in series with a
50.0 Q resistor and 20.0 pF capacitor. The emf amplitude is 12.0 V. (a) Draw a phasor
diagram for phasor J'r (the potential across the resistor) and phasor V¢ (the potential across
the capacitor). (b) At what driving frequency fq do the two phasors have the same length?
At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at
which the phasors rotate, and (e) the current amplitude?



R1 X

(11aC) |

I 1
E = |R*+(—)*1
’ (a)C)

tan ¢ = (1/@C)
R
Es lags I by the angle ¢. The average power dissipated in the system is

s Jrms* rms rms

P= %Eslcos¢ =(E,) I, cos¢=RI,’
where
E _cos¢=RI

3.8. Example (RL circuit)



RI

E =R +(aL)I

oL
tang = —
¢ R
E leads I by the angle ¢. The average power dissipated in the system is

cos¢g=RI*

S /rms [V ms

P= %Eslcos¢ =(E,)
where
E cos¢=RI

3.9 Resonance of the RLC circuit



'y

(@L-1aC)I

or

where

Z = \/ R +(wL - L)2 (impedance)
oC

The amplitude of the current has a maximum when

1

O =—
NLC

We define the quality factor of the circuit by

_ Lo,
R

Q

Then the amplitude of the current can be rewritten as




We now consider the frequency dependence of /2, instead of /.

2

We note that this is a scaling function of @/ax. In the figures we show the plot of m
s

10 : )
vs —, where the quality factor Q is changes as a parameter.
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r w . .
—, where the quality factor Q is changes as a parameter.

Fig. —— s
& ER) . o

Suppose that Y1t (0<<1).
1)

0
I )
w

Then we have

12—(Esj2 1
\R)1+01+5-0-06)]

j— (E_S jz 1 —_ Imaxz
R ) 1+40%5> 1+40°65°
When
200 =1, or 0=—o

: 1. o
P is equal to —™=— Then the width is estimated as

2A0 = w,(14+9) —w,(1-9) =2w,0

or
200 _ 25 = 1
@, 0
0= ) (definition of the quality factor)
2Aw
or

200 = % (full-width at half-maximum)

4. Transformer
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e=V =-N o,
p p dt
v -y 42
dt

Then we have

v, _ N,

VP NP

(transformation of voltage)

If Ns>N,, the transformer is called a step-up transformer. If Ny>Ns, the transformer is called
a step-down transformer

From the energy conservation, we have

Lv,=1y,,
or
vV, N
L % % . (transformation of current)
L, VN,

The equivalent resistance Req is the value of the load resistance as seen by the generator.

R =Le LV, Nppp
“ Ip Vvv[p Is Nv

5. Typical examples

51  Problem 31-17 (SP-31)
In an oscillating LC circuit with C = 64.0 uF, the current is given by i = 1.60 sin(2500
t + 0.680), where ¢ is in seconds, i in amperes, and the phase constant in radians. (a) How



soon after £ = 0 will the current reach its maximum value? What are (b) the inductance L
and (c) the total energy?

((Solution))

C=064.0 uF

i =1.60sin(2500¢ + 0.680)
Imax = 1.60 A

@ = 2500 rad/s

(a)  sin(25007 + 0.680) =1, 2500¢ + 0.680 :%
or
t=356.30 us.
(b)
o=
NLC
L=—'_—0.0025H
Cow
(c)
The total energy is conserved.
1 ., 1 ., 1 . 52 1 2 1 5 3
e=—Li’+—CvV=—Li_*==Cv,_ > =—x0.0025x1.6>=3.2x10"J
2 2 2 2 2

5.2  Problem 31-61 (SP-31)

In Fig. R=15.0 Q, C=4.70 pF, and L = 25.0 mH. The generator provides an emf with
rms voltage 75.0 V and frequency 550 Hz. (a) What is the rms current? What is the rms
voltage across (b) R, (c) C, (d) L, (e) C, and L together, and (f) R, C, and L together? At
what average rate is energy dissipated by (g) R, (h) C, and (i) L?

((Solution))



A
oLllms

€rms

(oL - 1(eC)] Irms

R=15Q
C=4.70 pF
L=25.0mH
e=750V
f=550Hz

Phasor diagram

lrms/((!)

C)

Rirms



grmv = \/Rz + (a)L _L)zlr”ﬂ‘
’ oC :

(VL )rmv = a)LIrmv
(VR )rmv = ermb
1
V) =—01I
( C )rmb CUC rms

1
(VLC)rms = (a)L _E)Irms

grm? = \/Rz + (a)L _L)z II”IHY
: oC :

[VmS = 8"’”“‘
\/ R’ + (0l - L)2
wC

(a) [rms =2.58576 A

® (%), =Rl =38.7865V

(c) (VC),,,”:LI =159.202 V
© oC

rms

@ (V). =oll, =22339V
© (Vi) =(oL —i)lm =64.192 V
; oC” ™

" &, =750V

(2 P,=RI,’=100293 W

(hy P.=0
@i  B=0

5.3 Problem 31-60 (SP-31)

A typical light dinner used to dim the stage lights in a theater consists of a variable
inductor L (whose inductance is adjustable between 0 and Lmax) connected in series with a
lightbulb B as shown in Fig. The electrical supply is 120 V (rms) at 60.0 Hz; the light-bulb
is rated at 120 V, 1000 W. (a) What Lmax is required if the rate of energy dissipation in the
lightbulb is to be varied by a factor of 5 from its upper limit of 1000 W? Assume that the



resistance of the lighbulb is indepenent of its temperature. (b) Could one use a variable
resistor (adjustable between zero and Rmax) instead of an inductor? (¢) If so, what Rmax is
required? (d) Why isn’t this done?

L B

To energy
supply

iy \
((Solution))
L
0,
()
R
(DL Irms
€rms
6
.
0 RIrms

L=0- Lmax

120 V (rms) at 60 Hz

Light bulb 1000 W at 120 V

&ms = 120V

f=60Hz



(a) When L =0,
2 2
p, = Zoms =1000W:121? of  R=1440Q
P Re,’ &, 1 10000 _ 1000W
® R*+(wL)* R (wL)’ (wL)? 5
1+ 7 1+ e
or
2
1+(CZLZ) =5
or
oL _, =28 _7630mH
R w

(b) and (c) Yes.
The inductance is replaced by a variable resistance Ro.

Re * e 1

rms — rms

P = =
* (R+R)” R (HI;O)Z

R
1+=2)=+/5
( R)
%:\/5 -1=1.2361

or

R, =1.2361x14.4Q =17.799Q



(d) This is not done because we lose the energy in the variable resistance.

5.4 Phasor diagram of RLC circuit
G. Gladding, M. Selen, and T. Steltzer, SmartPhysics; Electricity and
Magnetism (II) (W.H. Freeman, 2011)

Consider the driven LCR circuit. The source voltage has a maximum voltage of 10 V
and oscillates at a frequency of 60 Hz, which converts to an angular frequency of 377 rad/s.
The values for the circuit components are 20 Q, 20 mH, and 150 uF, respectively.

Our goal is to determine /.

max

the maximum current, and ¢, the phase angle between

the current and the source voltage. Once we know these two quantities at any time. We can
determine both of these quantities by simply constructing the phasor diagram.

& sin(wt)
e
i,
=10V
w =377

150 uF

L=20mH

P
] |

R=20Q

Fig. RLCcircuit. f =60 Hz. L=20 mH. C=150 uF. @ =27 f =376.991 rad/s.
E =10V.

((Solution))
Suppose that 7 =7 __sin(et) . The voltages across the capacitance, inductance, and

resistance are drawn in the x-y plane, as well as the current.



éd-"'max

R"max

Vinax =Zlmay

=

1
(E 'M)"‘max

"[ max

Fig.  Phasor diagram for voltages of the circuit. We assume that R/__ is directed along
the x axis. The voltage source is actually expressed by ¢ sin(wt). So it is

necessary to rotate the phasor diagram by appropriate angle at the last stage.

Note that
VR = R[max = 20 Imax

1
V.=(—)I
¢ (a)C)

max

= 17.6839 Imax

VL = (C()L)[ :753982 Imax

max

The source voltage;



v, = \/R2 +(wL —L)Zlmax =2242551
wC

Since V,=E,=10.0 V=22.42551

max 2

we have the maximum current as

I = % =0.445921 [A]

max
z

RI_ =8.91843 [V]
oLl =336217 [V]

L 788562 v
C

The phase factor:

¢ = arctan[%] =26.89°.

R

Since V, = E, sin(wt) , we need to rotate the phasor diagram (in the x-y plane) around the
origin by the angle ¢ in counter clockwise. So we get the final phasor diagram

The average power dissipated in the circuit;

BJV = l RIITIE‘D(2
2
~ L Zcos Pl *
2 max
-1 ZI . cosgl
2 max max
1
=—1_V cos¢@

2 max max

where cos¢ is the power factor.



v

1
— —ah )max
(wC )

lmax

Fig.  Phasor diagram of the RLC circuit. ¢ =26.89°.

For the voltage source 10 sin(at) [V]
For the voltage across the resistance: 8.91834 sin(wt + @) [V]
For the voltage across the inductance 3.36217 sin(wt + ¢+ %) [V]
For the voltage across the capacitance 7.88562 sin(wt + ¢—%) [V]
For the current 0.445921 sin(wt + @) [A]

Appendix A AC circuit theory based on the complex plane

Here we discuss the AC circuit theory based on the complex number. This theory is
mathematically correct.

Al. Impedance of single elements in AC circuit



We represent all voltages and current (sinusoidally change with time) by complex
numbers, using the exponential notation. The time-varying current is written by

Ieia)t +I*ei—wt

i(f) = Re[le ] = :

b

where @ (= 27f) is the angular frequency, I represents a complex number that is
independent of ¢, and I is the complex conjugate. The complex number / is described by

= I,e'” where Iy is the amplitude and ¢ is the phase. For convenience, we use the phasor
diagram in the complex plane, where for / is plotted as

Im
f 3

i(t) = Re[Ie"" ] = Re[I e = I, cos(at + ) .
The voltage is also described by
v(t) = Re[Ve'™].

((Note))
The absolute values |V| and |I | are the amplitudes of the real voltage and current.

(a) Inductance L
For inductance one can write down the relation

V(t) = Re[Vei(ut] — L% = L%Re[]em”] — Re[ia)Llei{ut]

or

V =iwll = wLe™*I



The relation between V and [ for the inductance is described in the following phasor
diagram.

Inductance

We say that V' leads to 7 by 90° (or I lags V' by 90°). The impedance of the inductance is
given by

Z; =K.=ia)L
1

(b) Capacitance C
For capacitance, one can write down a relation

i(t) =Re[le"]= CM = CiRe[Ve”‘”] =Re[ioCVe'™ ]
dt dt
I=ioCV
or
V — I — Le—iﬂ'/zl
ioC  oC

The relation between V and [ for the capacitance is described in the following phasor
diagram.



Re

Capacitance

We say that V' lags I by 90° (or I lags V' by 90°). The impedance of the capacitance is given
by

14 1
Il
(¢)  Resistance
For resistance, one can write down a relation
V(l) = Re[Veia)t] - Rl(t) = RRe[[eiwt] — Re[R[eiwt]]
V =RI

The relation between J and [ for the resistance is described in the following phasor diagram.

Im
F )

Resistance

¥
¥ <
4

Re

The impedance of the resistance is given by

Z,=R



In summary

(a) (b) (c) (d)

((Note))
The analysis of the AC theory without the concept of the complex number will be given in
the Appendix B.

A2. Power dissipated in single elements
The power is given by

v(0)i(?)

Veia)t +V*eifa)t Ieia)t +I*eifa)t
2 2

= %(V]ez”‘” +V e M VI + V)

P(1)

The time average of the power P(f) over a period time 7 (= 27/ ®) is given by

17 [P [ [
P.,=—|PW)dt=—WV 1+VI )=—Re[V I]==Re[l V
e = [ POd=C )= Re[V"1]=—Re[l'V]



Im

When I =1, and ¥ =V,e" (Ip and V; are real numbers), then the power is rewritten as

rms v}" ms

P =3 o050 =i,,0,,, c080 = Ri,,

where cosé is the power factor, and the definition of the root-mean squares irms and vims
will given later.

(a) inductance
For the capacitance, we have V" = —iwLI" . Then Pay is calculated as

P = ! Re[V'I]= %Re(—ia)Ll*I) = %Re(—ia)L|I|2) =0

vg E
No power is dissipated in an inductor.

(b) Capacitance

*

. x 1 .
For the capacitance, we have ' = vt Then Payg is calculated as
i

*

R, I RS TS I G
P,, =—Re[l'I]= =Re[(-——)I]= =Re[i—1I'T] = —Re[i—|I]']= 0
e = [V 1] 2 [( ia)C) ] 2 [ oC ] 5 [ a)C| ']

No power is dissipated in a capacitor.

(¢) Resistance
For the resistance, we have ¥~ = RI". Then Pay, is calculated as

2
Fog = %RG[V*I 1= %Re[RI 1= %Re[R|I|2] = %R|I|2 - %%



Power is dissipated in a resistor.

A3. Root-mean square value of current and voltage
What is the root-mean square of the current and voltage?

i(t) = Re[Ie'" ] = Re[1,e"e ] = I, cos(at + §)

The root-mean square value of the current is defined as

i = \/% { [i(Odt = \/% _([ cos>(wt + @)dt

_ \/% l'[l—cos(2a)t+2¢)]dt _ 1

Sl

or

1 _1

max

i = =
rms ﬁ ﬁ
where Imax (=|I| = |lo]) is the maximum of the current.

Similarly, we have the root-mean value of the voltage as

W Ve

v
rms ﬁ ﬁ

The power dissipated in the resistor is rewritten as

((Note-1))

The rms value of any quantity that varies as sin(wt) or cos(ax) is always 1/ V2 times the
maximum value, so

vﬂ’l’lS = 0-707Vmax.

((Note-2)) Derivation of time averaged power



177 1 .
1
L ——)I
( )ims i .
@
- -
1 Y Irms Rlims

Irms

Power dissipated in resistor R

2

P=R[i(t)]’ = RI,’ cos’(wt) = R; O [1+cos(2mt)]

P :<P>:1R102:ermS2:(RI ), =V, I cosg

2 rms rms rms= rms

A4. The series RLC circuit



R
Circuit in the time domain

i oL

Y

. ~ 1/(ioC)

MW
R

AC circuit in the frequency domain

e,(t) = vp () + v, () +vc(2)
The relation of the expressions in the time domain and the frequency domain is given by
e,(t)=Re(E.e'™)
i(t) = Re(1e')
v, (1) = Re(V,e™)
ve () = Re(Vee'™)
v (1) = Re(V,e™)

Es, I, V1, Vc, and Vr are complex numbers. The phasor diagram of these will be given later.



E =V, +V, +V. =21

Ve=RI
V, =iwll
1
V.=——1I1
© iwC
or
JoE
ZS
ER
Ve= Z:
v - EioL
ZS
V.= E (1/ioC)
Z

s

where Z; is the total impedance defined by

Z =R+iol+ :R+i(a)L—L)
oC

ioC

= \/RZ + (oL —L)z(cost9+ isin @)
wC

= \/Rz +(wl - L)ze’ﬂ
oC

ei:9

Z

s

where @is an angle and ¢ is the phase factor,

and

or



2

olL-1/(eC)

v

AS.  Phasor diagram of the RLC circuits

|

Y

Ve ¥

((Example))

A series RLC circuit has R = 150 Q, L = 0.25 H, and C = 16.0 4F. It is driven by 60 Hz
voltage of peak value 170 V. Determine the time dependence of the voltages across each
element.
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A6. Infinite ladder network (from the book of Feynman)

What would happen if the following network we keep on adding a pair of the
impedances (z1 and z2) forever, as we indicate by the dashed lines. Can we solve such an
infinite network?

Fig. 22-19. The effective impedance of an infinite ladder.

First, we notice that such an infinite network is unchanged even if we add one more
section at the front end. If we add one more section to an infinite network it is still the same
infinite network. Suppose we call the impedance between the two terminals a and b of the
infinite network zo. Then the impedance of all the stuff to the right of the two terminals ¢



and d is also zo. Taking into account of the similarity of the infinite network, we get an
equation to determine the value of zg as

Z,Z
zy =z, +—=2
z,+2z,

We can solve for zo to get

2
Z Z
Z, :E'i' T+ZlZz

This impedance zo is called the characteristic impedance of the infinite network.

L L L
- 111K

C etc.

S A I R

Now we consider a specific example where an AC source is connected between the
terminals a and b, and z, =iwL and z, =1/(iwC). We define the complex current /, and

voltage V.

(a) Z2 E E etc,

(b) Vn 2| Va1 (2o




In the above Fig. we get the following recursion relation,

y
p— —_ n
V,=Vian=zl,=2z—"
Z
or
Vn+1: _A_ETA _,
v, 2y Zy
or
V =a"¢

We can call this ratio the propagation factor for one section of the ladder; we will call it c.
It is the same for all sections. Note that

Then we have

a=
2 L o'’ iol
\/C_ 4 2
_—ix+ 1—x?
- ix ++/1—x?

®
where x =— and o, =

, NVLC



Out[23]=

Out[21]=

. . 0]
Fig. |a| as a function of x =—.
@,

Fig. Re[a]and Im[a] as a function of x = .
2



In summary, the network propagates energy for w<ap and blocks it for w>an. We say that
the network passes low frequencies and reject or filters out the high frequencies. Any
network designed to have its characteristics vary in a prescribed way wit frequency is called
a filter. In this case, we have a low pass filter.

A7. Impedance matching

Given a circuit having a load impedance (Z, = R, +iX, ), what impedance will result in
the maximum average power P being absorbed by the load?

_ N
Zy+Z,
V:ZLI:—ZLVS
Zy+Z,

The power P (absorbed by the lad) is given by

1 o1 .
P=—Re[VI']=—Re[V']
S RelVT ]=—Re[V 1]

where
% 2
[*V — K ZLVs — ZL Vb
(Zy+Z)'\Z,+2Z, ) |Z,+Z,]
and
Z, =R, +iX,

Zy+Z, =(R,+R)+i(X,+X,)



Then P is given by

2

V.

S

RL
TRyt R, + (X, + X,)]

First, we assume that Ry is constant. Only X1 is a unknown parameter. P has a maximum
when

Then P obtained as

2

_ RL
 2[(R,+R,)

v

s

has a maximum at R = Ro.
In conclusion, in order to get maximum power to Z, we select

Z, =R, -iX, :ZO*

REFERENCES
E. Guillemin, Introductory Circuit Theory (John Wiley, 1953).

APPENDIX B. Complex number

B1. Imaginary unit
The imaginary unit is defined by i =+/—1: i* =—1.

V=5 =45i
V=20 =~/20i = 24/5i

These numbers are called a pure imaginary number.
B2.  Properties of complex number
For real numbers a, b, ¢, and d,

a+bi=c+di — a=candb=d.

a+bi=0 — a=0and b=0.



(a+bi)+(c+di)y=(a+c)+(b+d)i
(a+bi)—(c+di)y=(a—c)+(b—-d)i
(a+bi)(c+di)=ac—bd + (ad + bc)i
(a+bi)a-bi)=a’ —(bi)’ =a’* - (-1)b* =a” + b’
a+bi (a+bi)c—di) (ac+bd)+(bc—ad)i
c+di_(c+di)(c—di)_ ct+d?

B3. Simplifying powers of i
The expression of i”, where n is a positive whole number, can be reduced to either £1
or +i.

=1, i'=i 2=-1, P = ii=i
it=1, P=iti=i == =-1 iT ==
In general, we have

l-4n — 1’ l-4n+1 = l-4n+2 — _1’ l-4n+1 =

where 7 is an integer.

B4. Graphing complex number: complex plane
(a) Definition

z =Xty

A complex number in x+iy form can be graphed in the complex plane by measuring x
units along the horizontal (real axis) and y units along the vertical (imaginary axis).

Imaginary

4

We define the absolute value of the complex number as

Zd=x+iy|=x" +°
o=t iv=+

which is the distance between the ponits of z (= x+i y) and the origin.



(b) Expression of the complex number in the real-imaginary plane

We make a plot of the complex numbers in the complex plane.

a=3+2i, b=-2+i
atb=1+3i, a-b=5+i,

i\

a+b

a—b

BS.  Complex conjugate

Imaginary
F Y

-

The complex number z and z* are complex conjugate.

z=a+1ib

z =a—ib
where a and b are real.

zz" =(a+ib)(a—ib)=a* +b*.

Real

Y



B6.  Angles and polar coordinates of complex number

Imaginary

r 3

Z=X+iy

y=rsing

»
" Real
X=rcosé

We find the real (horizontal) and imaginary (vertical) components in terms of 7 (the
length of the vector) and # (the angle made with the real axis):

From Pythagoras, we have: »* = x> + * and basic trigonometry gives us:

tan0=Z
X

x=rcosf, y=rsind

Multiplying the last expression throughout by 7 gives us:
yi=irsiné

So we can write the polar form of a complex number as:
z=x+1iy =r(cosf +isinf)

where 7 is the absolute value (or modulus) of the complex number, and 6 is the argument
of the complex number.



Imagina

+¢

P> Real

Points P, Q and R on the unit circle in the complex plane, are denoted by complex numbers
z1, 22, and z1za.

z, =cos@ +isinf
zZ, =Ccos¢+ising
z,z, = (cos@ +isin @)(cos ¢ +isin @)
= (cosf@cos¢ —sinfsin @) + i(sin @ cos P + cos sin @)
=cos(d + @)+ isin(6 + @)

The complex conjugate of z; is

zl* =cos@—isinf
= cos(—0) +isin(—6)

((Example))
We make a plotof 2" (n =0, 1, 2, 3, ...), where
z=r(cos@ +isinb).

We choose » = 1.05 and 8= 5°.



B7. Euler’s formula
Euler's formula states that, for any real number 6,
€'’ =cos@+isind

where e is the base of the natural logarithm, 7 is the imaginary unit. Richard Feynman called
Euler's formula "our jewel" and "the most remarkable formula in mathematics".

BS. de Moivre’s theorem

When z =x +iy = r(cos@ +isin ) = re”’

Z" = (rei‘gy =r"e"’ = r"[cos(n@) +isin(nb)].

where
r=aqxt+ )7
tan@ = Bd
X
((Note))

(a) The expression of z™



z" = (re"g)fn
— r—ne—inﬁ
=r""[cos(—nB) +isin(—n0)]

=r"[cos(n@)—isin(nb)]
(b) The expression of z* (complex conjugate of z)

z" =r(cos@ —isind)
= r[cos(—8) + isin(—6)]
— re—i&
APPENDIX-C Summary of phasor diagrams in the AC circuit
Here, the phasor diagrams for typical AC circuits are summarized as follows. For
convenience, the phase of /__ is fixed as 0 (the positive x axis).

rms

1
I/rms = = I/max

1
I =—1 |
rms 2 max 2

((Inductance))



s

Jrl2

Irms

V. =wll

rms rms

((Capacitance))



]7-/2 Irms

v ( ﬁwc)lrms

VVWIS = L [rms
oC

((Series of R and L))



-

V=R +(wl)I ., tan ¢ = %

V., . cos¢g=RI_

rms

((Series of R and C))

77 3 -
Vrm
74
- — '
ms — Rlms



- — -
@
Irms Rl'ms
Vrms
Y 1
!rms
aC
Vs = R2+(L)21 tan ¢ =
e oC e B Rawc

V. .cosg=RI_

rms

((Series of R, L, and 0))



s

(a/L__)/rms

1 1 1
V. =R +(wL-——)1 , tang=—(wl———
rms \/ ( a)C) rms ¢ R( a)C)

V., .cos¢g=RI_

rms

APPENDIX-D
Single-phase rms voltage and frequency over the world

Europe (Great Britain, France, Germany, Belgium, Netherland, Denmark, Sweden)

230V 50 Hz
Australia 230V 50 Hz
U.S.A. 120 V 60 Hz
Equador 120V 60 Hz
China 220V 50 Hz

Malawi 220V 50 Hz



Japan: 100 V 50 (East)/60Hz (West); regions of west and east separated
by Fossa Magna.

In Japan, people (typically Osaka and Kyoto) west from Fossa Magna use 60 Hz, while
people (typically Tokyo) east from Fossa Magna use 50 Hz.

M Itoigawa-Shizuoka Tectonic Line and Fossa Magna

o Nuﬂh‘Amﬂncm
‘Plate

la

Eurasian Plate

Pacific Plate

Philippine Sea Plate



