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1. Introduction 

In 1865, James Clerk Maxwell (1831 – 1879) provided a mathematical theory that 

showed a close relationship between all electric and magnetic phenomena. Maxwell’s 

equations also predicted the existence of electromagnetic waves that propagate through 

space. Einstein showed these equations are in agreement with the special theory of 

relativity. 
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James Clerk Maxwell 

Born 13 June 1831 

Edinburgh, Scotland, United Kingdom 

Died 5 November 1879 

Cambridge, England, United Kingdom 

 

Nationality Scottish 

Fields Mathematics, Science 

Alma mater University of Edinburgh, University of Cambridge 

Doctoral advisor William Hopkins 

Known for Maxwell's Equations 

The Maxwell Distribution 

Maxwell's Demon 

Notable awards Rumford Medal 

Adams Prize 

 

 

2 Maxwell’s equations in vacuum (exact description) 

Maxwell predicted the existence of electromagnetic waves. The electromagnetic waves 

consist of oscillating electric and magnetic fields. The changing fields induce each other, 

which maintain the propagation of the wave. A changing electric field induces a magnetic 

field. A changing magnetic field induces an electric field. We start with the Maxwell’s 

equation (J = 0,  = 0). 
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where c is the velocity of light, 
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Similarly,  
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We consider the special case when E or B depends only on x. In this case the equation for 

the field becomes 
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where f is understood any component of the vector E or B. 
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We introduce new variables 
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So that the equation for f becomes 



 

0
2





f

 

 

The solution obviously has the form 
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where f1 and f2 are arbitrary function. 
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The function f1 represents a plane wave moving in the positive direction along the x axis. 

The function f2 represents a plane wave moving in the negative direction along the x axis. 

 

3. Plane-wave 

3.1 Solutions for E and B 

We are going to construct a rather simple electromagnetic field that will satisfy 

Maxwell’s equation for empty space. We will assume that the vectors for the electric and 

magnetic fields in an EM wave have a specific space-time behavior that is consistent with 

Maxwell’s equations. The components of the electric and magnetic fields of plane 

electromagnetic waves are perpendicular to each other and perpendicular to the direction 

of propagation. This can be summarized by saying that electromagnetic waves are 

transverse waves. 

 

Suppose that E and B are described by a plane waves  
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0 cos( )t  B B k r , 

 

where k is the wave number and  is the angular frequency. The direction of k is the same 

as that of the propagation of the wave. 

 

(i) Step-1 

From the wave equation 
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The angular frequency  satisfies the dispersion relation given by 
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(ii)  Step-2 

From 

 

0 E , and 0 B  

 

we have 

 

0 0 k E , and 
0 0 k B . 

 

The wave vector k is perpendicular to E and B. 

 

(iii) Step-3 
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Fig. A linearly polarized, sinusoidally varying plane wave propagating in the positive x 

direction. The figure represents a snapshot at a particular time. This figure is made 

by using the ParametricPlot3D of the Mathematica. 

 

((Conclusion)) 

The solutions of Maxwell’s equation are wave-like, with both E and B satisfying a 

wave equation. Electromagnetic waves travel at the speed of light. This comes from the 

solution of Maxwell’s equations. Waves in which the electric and magnetic fields are 

restricted to being parallel to a pair of perpendicular axes are said to be linearly polarized 

transverse waves. The direction of the wave’s polarization coincides with that of the 

electric field. 

 

3.2 Energy density and Poynting vector in electromagnetic wave (exact 

description) 

Electromagnetic waves carry energy. As they propagate through space, they can 

transfer that energy to objects in their path. The rate of flow of energy in an electromagnetic 

(EM) wave is described by a vector called the Poynting vector. 

The energy density u is given by 
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The Poynting vector S is given by 
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(a) The time-averaged energy density <u> 

First we calculate the time average of 2E  
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The time average of 2E  
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The root-mean square value of the electric field is given by 
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Similarly, we have 
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The root-mean square value of the magnetic field is  
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Then the time-average of the energy density is given by 
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Here we note 
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Then we have 
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(b) The time-averaged Poynting vector <S> 

Next we calculate the Poynting vector S 
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The time-averaged Poynting vector <S> is obtained as 
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where k̂  is the unit vector of the wave vector k, ˆ
k
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(c) The intensity I (= <S>) 

Here we define the intensity I of the light. The intensity I is the energy flux (energy per 

unit area per unit time);  

 

I = <S>. 

 

 
 

We now consider the photon flows (photon is the quantization of light with the velocity c) 

flows. During the time t , the total energy passing through the area A is  
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where the volume V is tAc  and the energy density is u . From the definition of <S>, 

the total energy passing through the area A during the time t, is given by 
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Then we have 
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where the unit of the intensity I is J/m2 s = W/s. 

 

((Note)) 

Poynting, John Henry (1852-1914)  

English physicist, mathematician, and inventor. He devised an equation by which the 

rate of flow of electromagnetic energy (now called the Poynting vector) can be determined. 

In 1891 he made an accurate measurement of Isaac Newton's gravitational constant. 

Poynting was born near Manchester and studied there at Owens College, and at Cambridge. 

From 1880 he was professor of physics at Mason College, Birmingham (which became 

Birmingham University in 1900). In On the Transfer of Energy in the Electromagnetic 

Field 1884, Poynting published the equation by which the magnitude and direction of the 

flow of electromagnetic energy can be determined. This equation is usually expressed as S 

= (1/0)ExB where S is the Poynting vector, is the permeability of the medium, E is the 

electric field strength, B is the magnetic field strength, and is the angle between the vectors 

representing the electric and magnetic fields. In 1903, he suggested the existence of an 

effect of the Sun's radiation that causes small particles orbiting the Sun to gradually 

approach it and eventually plunge in. This idea was later developed by US physicist 

Howard Percy Robertson (1903-1961) and is now known as the Poynting-Robertson effect. 

Poynting also devised a method for measuring the radiation pressure from a body; his 

method can be used to determine the absolute temperature of celestial objects. Poynting's 

other work included a statistical analysis of changes in commodity prices on the stock 

exchange 1884. 

 

4. Physical meaning of Maxwell’s equation 
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Fig. A time-varying B-field. Surrounding each point where the magnetic flux B is 

changing the E-field forms closed loops. 

 

(b) 
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Fig. A time-varying E-field. Surrounding each point where E is changing the B-field 

forms closed loops. 

 

A time-varying E-field generates a B-field which is everywhere perpendicular to the 

direction in which E-field changes. In the same way, a time-varying B-field generates an 

E-field which is everywhere perpendicular to the direction in which B-field changes. One 

can anticipate the general transverse nature of the E- and B-fields in an electromagnetic 

disturbance. 

 



 

 
 

 

7. Energy conservation: Poynting theorem 

We consider a general case where J and  are not zero. The system consists of charged 

particles and the fields E and B. 

 

 
 

Fig. Combined system (particle and fields) inside volume V. 

 



The work energy theorem: 
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where K is the kinetic energy and F is the Lorentz force and is given by 
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More generally 
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((Poynting theorem)) 

The work done on the changes by the electromagnetic force is equal to the decrease in 

energy stored in the field, less the energy that flows out through the surface. 
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The first term: the rate of change of the total energy of the electromagnetic field in 

volume V. 

 

The second term the rate at which the electromagnetic field energy flows out through 

surface. 

 



The third term the rate at which the field is doing work on the charges. 

 

The above equation can be rewritten as 
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using the Gauss’ law. 

 

8. Example of the Poynting theorem 

 

8.1 Energy flow in conduction 

Here we show that the energy that ends up as joule heating is carried by the 

electromagnetic field outside the wire. 

 

 
 

For simplicity we consider a DC current I flowing along a long straight wire of radius a 

and length L. The electric field E is given by 
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The magnetic field on the surface of the wire is 
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The Poyinting vector is  
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The rate of transport energy through the lateral surface is 
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Then we have 
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Note that E and B are independent of t. It means that the energy density u is independent 

of t, 
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Hence the Poyting’s theorem is satisfied. The electromagnetic energy flow into the wire 

from its sides is converted into kinetic (heat) energy within the wire. 

 

8.2 Energy flow in capacitance 

 

We consider the second case where E and B are dependent on time. 
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There is a displacement current in the space between two plates. 
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The Poynting vector S on the cylinder surface is  
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The total amount of flow through the whole surface between the edges of the plate. 
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Since the current i is related to the charge Q by 
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The potential difference between two plates is 
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where the capacitance C is given by 
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The energy density u is  
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Energy conservation (Poynting theorem) 
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The right-hand side of this equation is defined by K1. K1 is evaluated as follows. 
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The time-averaged of dW/dt is 
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over a period T. 

 

9. Summary From Lecture Notes from Walter Lewin 8.02 Electricity and 

Magnetism 
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c

 
  

 

The total energy density is 

 
2

0 0E Bu u u E cEB     . 

 

The energy passing through unit area (1 m2) per second is 

 

2 2
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1 1
cu c EB EB E
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 
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The time average: 
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    

 

where 

 



2 2 2

0

1

2
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E E E   (time average) 

 

The Poynting vector: 

 

0

1


 S E B   (W/m2) 

 

where W=J/s. The time average is 

 

2 2
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2 2
rmsS E B E E

c c  
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or 

 

S c u  

 

where  0

1

2
rmsE E  

 

The average power per unit area transported by an electromagnetic wave is called the 

intensity, 

 

I S  

 

((Example)) 

 

(a) E0 = 100 V/m 

 

2

0

0

1
13.2721

2
I S E

c
   W/m2 

 

(b) E0 = 1000 V/m 
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2
I S E
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(c) Solar constant 

 

2
1361.17

4 u

I
L

S
A

  �
 W/m2  (Solar constant) 

 



where 

 
111.4959787 10uA    m, (distance between the sun and the earth) 

L☉ = 3.828 x 1026 W  (Solar luminosity) 

 

Note that 

 

0 02 1012.71E c S   V/m 

 

Poynting vector 

 

S c u  

 

where p is the momentum of photon and momP is the momentum of the system 

 
cp  ,    (energy dispersion of photon) 

 

The momentum density is 

 

u
G

c
 . 

 

The total energy is given by 

 

( )( ) momU u A c t cP     

 

where momP  is the total momentum of the system. Thus we get the relation between the 

radiation pressure  and S   as 

 

mom
rad

cP
S c u cP

A t
  

 
 

 

or 

 

rad

S
P u

c
    (radiation pressure) 

 

((Note-1)) Definition of pressure and force 

 
( / )mom

rad

P t
P

A





,  (Pressure) 

radP



 

/momP t    (Force) 

 

((Note-2)) 

The momentum density is 

 

2

u S
G

c c
  . 

 

The radiation pressure is 

 

rad

S
P cG

c
   

 

Using the solar constant 1361.17SCG  W/m2, SCS G  and the radiation pressure on 

the surface of Earth is 4.5 Pa. For the radiation pressure of the Sun surface 

 
4

sunS T  6.32944 x 107 W/m2. 

 

and 

 

0.211radP  Pa. 

____________________________________________________________________ 

 

In general 

 

rad

S
P

c
  

 

where  = 1 for full absorption, 0 for the transparency, and 2 for the reflection (metal). 

Radiation pressure is the pressure exerted upon any surface due to the exchange of 

momentum between the object and the electromagnetic field. This includes the momentum 

of light or electromagnetic radiation of any wavelength which is absorbed, reflected, or 

otherwise emitted (e.g. black body radiation) by matter on any scale (from macroscopic 

objects to dust particles to gas molecules). 

 

((Note-3)) 0

0

376.73 


   

(E.M. Purcell and D.J. Morin, Electricity and Magnetism, 3rd edition, 

Cambridge,2013) 

 



The power density (energy per unit per area unit time) of a sinusoidal electromagnetic 

wave can be written in the various forms: 
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We note that the unit of S is 
2 2

W J

m sm
 . The unit of 0

1

2
rmsE E  is V/m. Thus, the unit 
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0


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Using the value 

 

0

0
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

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0
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59.9584 

2 2


  
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we get the  

 
2 2 (V/m)

376.73 

rmsE
S 


. 

 

10. Derivation of the relation 0 0 0 0B cE   

A part of this topics was discussed in the lecture of Prof. Walter Lewin (MIT 8.02 

Electricity and Magnetism 2004). 

 

(a) Method-I (from the Ampere-Maxwell law) 
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Ampere’s law: 

 

0 0 0 0B l lcE   

 

leading to 

 

0 0 0 0 0

1
B cE E

c
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(b) Method II (from the Faraday’s law) 

 

________________________________________________________________________

______ 
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Faraday’s law: 

 

0 0E l lcB  ,  or 0 0E cB  

 

leading to 
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11. Momentum conservation 

We start with the expression of the pointing vector, 
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Here we only use the Maxwell’s equation.  
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Then we have 
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leading to the momentum conservation, 
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  (momentum conservation) 
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where Tij is called the Maxwell stress tensor, 
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12. Momentum of the field, momentum density 

12.1 Definition 

The pointing vector S gives not only the energy flow but, if it is divided by c2, also the 

momentum density. 

For particles, we have 

 

mech t V t    P F f  

 

( mechP : the total momentum of all the particles in a volume V) 

 

or 
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V t
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
   



P
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or 

 

mecd
d
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 

P
f   (in general) 



 

Here we define the momentum of the field (per unit volume), the momentum density as 

 

0 0 2

1

c
  G S S   (momentum density) 

 

em d P G  

 

where emP is the total electromagnetic momentum stored in the electromagnetic field. 

 

We now consider the physical meaning. 
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The impulse Iem is defined by 

 

em em emt  I F P  

 

((Note)) Definition of mass density  
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c
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The mass density  is defined as 



 

2c

u
 , or 

2cu   

 

which is the main result of relativistic theory (Einstein). 

 

12.2 Correspondence 

 

The following table shows the correspondence between the particles and fields. 

 

Particles E-B fields 
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G S  (momentum density) 

Pmech em d P G  (momentum) 
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 (force density) 
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mech mech mech t  I P F  em em em t  I P F  (impulse) 

 

 

13. Radiation pressure 

Radiation pressure is the pressure exerted upon any surface exposed to electromagnetic 

radiation. For example, the radiation of the Sun at the Earth has an energy flux density of 

1370 W/m2, so the radiation pressure is 4.6 µPa (absorbed). 

Here we consider the two cases: the absorption and reflection of light waves at a surface 

of the object. 

 

 



 

(1) Total absorption 

The momentum Pem is delivered to the object. I is the impulse. 
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where 
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where A is the area.  

 

((Note)) G[(J s/m)/ m3], A[m2], tGAc [(J s/m)/ m3][m2][m/s][s]=[J.s/m] 

 

Then we have the impulse and the force given by 
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since 0I c u S  (the intensity) and I0 is the intensity of the light wave. 

 

The radiation pressure is given by 

 

c

I

A
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(2) Total reflection 
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since 0I c u S  (the intensity) 

 

The radiation pressure is  

 

c

I

A

Fem 02
  

 

((Radiation pressure on the tails of comets)) 

 

 
 

The minute pressure exerted on a surface at right-angles to the direction of travel of the 

incident electromagnetic radiation. Its existence was first predicted by James Maxwell in 

1899 and demonstrated experimentally by Peter Lebedev. In quantum mechanics, radiation 

pressure can be interpreted as the transfer of momentum from photons as they strike a 

surface. Radiation pressure on dust grains in space can dominate over gravity and explains 

why the tail of a comet always points away from the Sun. 

 



 

(3) Partial reflection and absorption 

Problem 33-23; partial absorption and partial reflection 

 

Prove, for a plane electromagnetic wave that is normally incident on a flat surface, that 

the radiation pressure on the surface is equal to the energy density in the incident beam. 

(This relation between pressure and energy density holds no matter what fraction of the 

incident energy is reflected. 

 

Let f be the fraction of the incident beam intensity that is reflected. The fraction 

absorbed is 1 – f. The reflected portion exerts a radiation pressure of 

 

c

fI
p r

02
  

 

and the absorbed portion exerts a radiation pressure of 

 

c

If
pa

0)1( 
  

 

where I0 is the incident intensity. The factor 2 enters the first expression because the 

momentum of the reflected portion is reversed. The total radiation pressure is the sum of 

the two contributions: 

 

c

If
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IffI
ppp artotal

000 )1()1(2 



  

 

To relate the intensity and energy density, we consider a tube with length ℓ and cross-

sectional area A, lying with its axis along the propagation direction of an electromagnetic 

wave. The electromagnetic energy inside is U uA ℓ,  where u is the energy density. All 

this energy passes through the end in time t c ℓ / ,  so the intensity is 

 

cu
Al

Alcu

At

U
I   

 

Thus u = I/c. The intensity and energy density are positive, regardless of the propagation 

direction. For the partially reflected and partially absorbed wave, the intensity just outside 

the surface is 

 

000 )1( IffIII   

 

where the first term is associated with the incident beam and the second is associated with 

the reflected beam. Consequently, the energy density is 

 



c

If

c

I
u 0)1( 

  

 

the same as radiation pressure. 

 

 
 

14. Electromagnetic waves 

 

Table shows the frequency and wavelength of the light ranging from the gamma ray to 

the AM wave. 



 
 

15. Polarization 

The electric and magnetic vectors associated with an electromagnetic wave are 

perpendicular to each other and to the direction of wave propagation. Polarization is a 

property that specifies the directions of the electric and magnetic fields associated with an 

EM wave. The direction of polarization is defined to be the direction in which the electric 

field is vibrating. 



 
 

 

The plane containing the E-vector is called the plane of oscillation of the wave. Hence the 

wave is said to be plane polarized in the y direction. We can represent the wave’s 

polarization by showing the direction of electric field oscillations in a head-on view of the 

plane of oscillation. 

 
 

 

16 Unpolarized light 

All directions of vibration from a wave source are possible. The resultant EM wave is 

a superposition of waves vibrating in many different directions. This is an unpolarized 

wave. The arrows show a few possible directions of the waves in the beam. The 

representing unpolarized light is the superposition of two polarized waves (Ex and Ey) 

whose planes of oscillation are perpendicular to each other. 

 



 
 

 

17. Intensity of transmitted polarized light 

 

(1) Malus’ law 

An electric field component parallel to the polarization direction is passed (transmitted) 

by a polarizing sheet. A component perpendicular to it is absorbed. 

 

 



 

The electric field along the direction of the polarizing sheet is given by 

 

cosEEy  . 

 

Then the intensity I of the polarized light with the polarization vector parallel to the y axis 

is given by 
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0 cosII    (Malus’ law) 

 

where 
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((Note)) Etienne Louis Malus (1775 – 1812). 

 

(2) One-half rule for unpolarized light 

When the light reaching a polarization sheet is unpolarized, we get a polarized light 

with the intensity  
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((Example)) Problem 33-74 

In Fig., unpolarized light with an intensity I0 (25 W/m2) is sent into a system of four 

polarising sheet with polarizing directions at angles 1 = 40°, 2 = 20°, 3 = 20°, and 4 = 

30°. What is the intensity of the light emerges from the system? 

 

 
((Solution)) 

1 = 40° 

2 = 20° 

3 = 20° 



4 = 30° 

I0 = 25 W/m2 

 

The intensity is given by 
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18. Index of refraction 

The velocity of the light in the material with  and  
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c
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
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. 

 

Here n is the index of refraction; 
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For most materials, 0   

 

19. Reflection and transmission 

 

 

 
 



 

((First law)) 

The incident, reflected, and transmitted wave vectors form a plane (plane of incidence), 

which also includes the normal to the surface. 

 

((Second law)) 
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((Third law)) 
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  (Snell’s law) 

 

 

Willebrod Snell (1591 – 1626) 

 

20. Dispersion 

For a given material, the index of refraction varies with the wavelength of the light 

passing through the material. This dependence of n on  is called dispersion. Snell’s Law 

indicates light of different wavelengths is bent at different angles when incident on a 

refracting material 

 
 

21. Prism 



The ray emerges refracted from its original direction of travel by an angle , called the 

angle of deviation.  depends on the apex angle  of the prism and the index of refraction 

n of the material. Since all the colors have different angles of deviation, white light will 

spread out into a spectrum.  

(a) Violet deviates the most. 

(b) Red deviates the least. 

(c) The remaining colors are in between. 

 

 
 

AB and AD are the surface of the prism.  is the vertex angle of the prism and  is the 

deviation angle. From the geometrical consideration, the points A, B, C, and D are on the 

same circle. Then we have the following relations, 
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Snell's law: 

 

11 sinsin ti n   , 22 sinsin ti n    

 

where n is the index of refraction of the prism. 

 

((Angle of minimum deviation)) 

Here we discuss the angle  as a function of the incident angle i1. From the Snell’s 

law, 
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The angle of deviation is obtained as 
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Here we assume that  = 60º. We make a plot of the angle  as a function of i1, where the 

index of refraction n is changed as a parameter. It is found from the figure that  takes 

minimum at a characteristic angle (the angle of minimum deviation), 
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Fig. Deviation vs incident angle, where n is changed as a parameter. 

 

 

What is the condition for the angle of minimum deviation? The condition is derived as 
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In other words, the ray BD should be parallel to the base of the prism (the isosceles triangle 

with the apex angle ) in the case of the angle of minimum deviation. 

 

((Proof)) 

The angle  has a minimum at the angle of minimum deviation, 
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From Eqs.(1), (2), and (3), we have 
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which leads to the condition given by 
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Using this condition, the incident angle can be calculated as 
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When  = 60º, we have 

 

 59.481i for n = 1.50 

 

 13.531i for n = 1.60 

 

 21.581i for n = 1.70 

 

((Example)) Problem 33-55 

Index of refraction n, the angle of minimum deviation 

 

In Fig., a ray is incident on one surface of a triangular glass prism in air. The angle of 

incidence  is chosen so that the emerging ray also makes the same angle  with the normal 

to the other face. Show that the index of refraction n of the glass prism is given by 
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where  is the vertex angle of the prism and  is the deviation angle, the total angle through 

which the beam is turned in passing through the prism. (Under these conditions, the 

deviation angle  has the smallest possible value, which is called the angle of minimum 

deviation). 

 



 
 

((Solution)) 

From the symmetry, the points A, B, C and D are on the same circle. The line CD is 

the diameter of the circle. Note that an angle inscribed in a semicircle is a right angle. 

 

Snell’s law:  
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We also have the relations 

 
)(2 1   

 

and 

 
 12  

 

 

which leads to the expression given by 
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Then the  index of refraction n is derived as 
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22. Brewster’s angle: Polarization without polarizer 
 



Figure shows a ray of unpolarized light incident on a glass surface. Let us resolve the 

electric field vectors of the light into two components. The perpendicular components are 

perpendicular to the plane of incidence and thus also to the page in Fig.; these components 

are represented with dots (as if we see the tips of the vectors). The parallel components are 

parallel to the plane of incidence and the page; they are represented with double-headed 

arrows. Because the light is unpolarized, these two components are of equal magnitude. 

A ray of unpolarized light in air is incident on a glass surface at the Brewster angle θB. 

The electric fields along that ray have been resolved into components perpendicular to the 

page (the plane of incidence, reflection, and refraction) and components parallel to the page. 

The reflected light consists only of components perpendicular to the page and is thus 

polarized in that direction.  

The refracted light consists of the original components parallel to the page and weaker 

components perpendicular to the page; this light is partially polarized 

 

 
 

Scottish physicist, Sir David Brewster (1781-1868) 

 

(A) Reflection and transmission for the polarization vector in the plane of 

incidence (application of the Fresnel’s equations) 

 

The polarization of the incident wave is parallel to the plane of incidence. The reflected 

and transmitted waves are also polarized in this plane. 

 



 
 

Then we have two independent equations. Here we define 
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where // means that the polarization vector is in the plane of incidence. 

 

(B) Reflection and transmission for the polarization vector perpendicular to the 

plane of incidence (application of the Fresnel’s equations) 
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where   means that the polarization vector perpendicular to the plane of incidence. 

 

We now consider the case when 
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Then we have 
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Note that 0// R  for )2sin()2sin( IT   . This means that 

 

IT  22   or  
IT  22   

 

or  

 

2


  IT

  (Brewster angle). 

 

 
 

Using the Snell’s law, we have  
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then we have a Brewster’s angle (I), which is defined by 
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R// (red), T//(orange), R (yellow), T(green) 

R+T =1 

 

((Experiment)) Brewster angle 

You need only a polarizer for this experiment. Suppose that sun light enters from 

outside through a window and is reflected on the floor of your class room. When you look 

at the reflected light using the polarizer and slowly rotates the polarizer in one direction, 

you may easily find that the unpolarized light is polarized at some angle (that is a Brewster 

angle).  

 

((Feynman)) From “Surely you are joking, Mr. Feynman” 

Surely you are joking Mr. Feynman 

Brewster angle for the polarization of light 

 

In regard to education in Brazil, I had a very interesting experience. I was teaching a 

group of students who would ultimately become teachers, since at that time there were not 

many opportunities in Brazil for a highly trained person in science. These students had 

already had many courses, and this was to be their most advanced course in electricity and 

magnetism - Maxwell's equations, and so on.  

The university was located in various office buildings throughout the city, and the 

course I taught met in a building which overlooked the bay. I discovered a very strange 

phenomenon: I could ask a question, which the students would answer immediately. But 

the next time I would ask the question - the same subject, and the same question, as far as 

I could tell - they couldn't answer it at all! 

For instance, one time I was talking about polarized light, and I gave them all some 

strips of polaroid. Polaroid passes only light whose electric vector is in a certain direction, 

so I explained how you could tell which way the light is polarized from whether the 

polaroid is dark or light. We first took two strips of polaroid and rotated them until they let 

the most light through. From doing that we could tell that the two strips were now admitting 

light polarized in the same direction - what passed through one piece of polaroid could also 

pass through the other. But then I asked them how one could tell the absolute direction of 

polarization, for a single piece of polaroid. They hadn't any idea. I knew this took a certain 

amount of ingenuity, so I gave them a hint: "Look at the light reflected from the bay 

outside." Nobody said anything. Then I said, "Have you ever heard of Brewster's Angle?". 
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"Yes, sir! Brewster's Angle is the angle at which light reflected from a medium with an 

index of refraction is completely polarized." "And which way is the light polarized when 

it's reflected?" "The light is polarized perpendicular to the plane of reflection, sir." Even 

now, I have to think about it; they knew it cold! They even knew the tangent of the angle 

equals the index! I said, "Well?" Still nothing. They had just told me that light reflected 

from a medium with an index, such as the bay outside, was polarized; they had even told 

me which way it was polarized. I said, "Look at the bay outside, through the polaroid. Now 

turn the polaroid." "Ooh, it's polarized!" they said.  

After a lot of investigation, I finally figured out that the students had memorized 

everything, but they didn't know what anything meant. When they heard "light that is 

reflected from a medium with an index," they didn't know that it meant a material such as 

water. They didn't know that the "direction of the light" is the direction in which you see 

something when you're looking at it, and so on. Everything was entirely memorized, yet 

nothing had been translated into meaningful words. So if I asked, "What is Brewster's 

Angle?" I'm going into the computer with the right keywords. But if I say, "Look at the 

water," nothing happens  they don't have anything under "Look at the water"!  

 

23. Total internal reflection 

A phenomenon called total internal reflection can occur when light is directed from a 

medium having a given index of refraction toward one having a lower index of refraction 

 

 

 
 

Fig. The total internal reflection of light from a point S, occurs for all angles of incidence 

greater than c. In this case c = arcsin(1/n) = 41.8° for n = 1.50. At c, the refracted 

ray points along the air-glass interface. 

 

 

Possible directions of the beam are indicated by rays numbered 1 through 5. The refracted 

rays are bent away from the normal since n1 > n2. 

 



 
 

Critical angle, c 

 

 
 

There is a particular angle of incidence that will result in an angle of refraction of 90°.  

This angle of incidence is called the critical angle, c. 
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24. Birefringence 

We observe a birefringence in calcite.  



 
 

 
 



 
 

 
 

25. Typical problems 

Formula 
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c = 2.99792458 x 108 m/s 

0 = 12.566370614 x 10-7 (H/m) 

0 = 8.854187817 x 10-12 (F/m) 
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cIu /  energy density 

 

Pr = I/c  radiation pressure for the total absorption 

 

Pr = 2I/c radiation pressure for the totale reflection 

 

25.1 Problem 33-15 

Sunlight just outside Earth’s atmosphere has an intensity of 1.40 kW/m2. Calculate (a) 

Em and (b) Bm for sunlight there, assuming it to be a plane wave. 

 

((Solution)) 

I = 1.40 kW/m2 
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or 

 

 cIEm 02 1.03 x 103 V/m 
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E
B m

m  = 3.43 x 10-6 T 

 

25.2 Problem 33-31(Sp-33) radiation pressure 

 

As a comet swings around the Sun, ice on the comet’s surface vaporized, releasing 

trapped dust particles and ions. The ions, because they are electrically charged, are forced 

by the electrically charged solar wind into a straight ion tail that points radially away from 

the Sun (Fig). The (electrically neutral) dust particles are pushed radially outward from the 

Sun by the radiation force on them from sunlight. Assume that the dust particles are 

spherical, have density 3.5 x 103 kg/m3, and are totally absorbing. (a) What radius must a 

particle have in order to follow a straight path, like path 2 in the figure? (b) If its radius is 

larger, does its path curve away from the Sun (like path 1) or toward the Sun (like path 3)? 

 

((Solution)) 
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 = 3.5 x 103 kg/m3 

Totally absorbing 
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The radiation pressure: 
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Then the force due to the radiation pressure, 
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The central force due to the gravitation, 
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From the condition that Fg = Fem 
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(path-2) 

 

(b) 
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For R>Rc, Fg>Fem. (path-3) 

 

For R<Rc, Fg<Fem. (path-1) 

 

 

25.3 Problem 33-75 Snell’s law 

(a) Prove that a ray of light incident on the surface of a sheet of plate glass of thickness 

t emerges from the opposite face parallel to its initial direction but displaced sideway, as 

in Fig. (b) Show that, for small angles of incidence , this displacement is given by 
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where n is the index of refraction of the glass and q is measured in radians. 



 
 

((Solution)) 

Snell’s law 
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From the geometry, 
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25.4 Problem 33-89 Plane wave 

 

The magnetic component of a polarized wave of light is 
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(a) Parallel to which axis is the light polarized? What are the (b) frequency and (c) intensity 

of the light? 

 

((Solution)) 
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Maxwell’s equation 
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Then we have 
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The electric field Ez has the form  
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From this relation, we get 
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with 

 

E0 = -cB0 



 

The polarization axis is the z axis. 

 

(b) ckf   2  = (2.99792458 x 108) (1.57 x 107) 

 

or 

 

f = 7.491 x 1014 Hz 

 

where 

 

c = 2.99792458 x 108 m/s 
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0 = 12.566370614 x 10-7 (H/m), B0 = 4.0 x 10-6 T 

 

26. The red sunset and the blue sky 

I found a very interesting article of the physics on the red sunset and blue sky in daytime. 

Such phenomena can be explained by the Rayleigh scattering. Here is the copy of the article 

from the book, [H.E. White, Introduction to Atomic and Nuclear Physics (D. van 

Nostrand, 1964)]. 

 

 
 

Fig.1 Blue sky at the daytime (Nature Preserve at Binghamton University, Summer , 

2020). 

 



(a) Scattering and the blue sky 

The blue of the sky and the red of the sunset are due to a phenomenon called scattering. 

When sunlight passes through the earth’s atmosphere much of the light is picked up by the 

air molecules and given out again in some other direction. The effect is quite similar to the 

action of water waves on floating objects. If, for example, the ripple from a stone dropped 

in a still pond of water encounters a small cork floating on the surface, the cork is set 

bobbing up and down with the frequency of the passing waves. 

Light is pictured as acting in the same way on air molecules and fine dust particles. 

Once set into vibration by a light wave a molecule or particle can send out the absorbed 

light again, sometimes in the same direction but generally in almost any other direction. 

This is illustrated schematically in Fig.2. In diagram (a), waves of light are shown being 

scattered at random in all directions. 

Experiments show, in agreement with the theory of scattering, that the shortest waves 

are scattered more readily than longer waves. To be more specific, the scattering intensity 

I is inversely proportional to the fourth power of the wavelength  , 
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Fig. 2 Schematic diagrams showing the scattering of light by the air molecules or 

the earth’s atmosphere. 

 

According to this law, the short waves of violet are scattered 10 times as readily as the 

longer waves of red light. The other colors are scattered by intermediate amounts, as 

follows: 

 

Red (1), orange (1.5), yellow (2), green (4), blue (7), and violet (10). 

 



 
 

Fig. 3 The scattering of light by a layer of dust near the earth’s surface causes the 

sun to turn yellow, then orange, and finally red at sunset. 

 

Thus, when sunlight enters the earth’s atmosphere, violet and blue light are scattered the 

most, followed by green, yellow, orange, and red, in the order named. For every ten violet 

waves scattered from a beam there are four green waves and only one red wave, etc. 

At noon on a clear day when the sun is directly overhead, as illustrated by an observer 

at A in Fig.3, the whole sky appears as light blue. This is the composite color of the mixture 

of colors scattered most effectively by the air molecules. The light blue of the color triangle 

is obtained by the added mixture of violet, blue, green, and yellow. 

 

(b) Red sunset 

The occasional observation of an orange-red sunset is attributed to the scattering of 

light by fine dust and smoke particles near the earth’s surface. This is illustrated in Fig.3. 

To an observer at A, it is noon day and the direct sunlight from overhead, seen only by 

looking directly at the sun itself, travels through a relatively short dust path. As a result, 

very little violet and blue are scattered away and the sun appears white. 

As sunset approaches, however, the direct sunlight has to travel through an ever-

increasing dust path. The result is that an hour or so before sundown, when the observer is 

at B in Fig.3, practically all of the blue and violet have been scattered out, and owing to 

the remaining colors red, orange, yellow, and a little green, the sun appears yellow. At 

sunset, when the observer is at C in Fig.3, the direct rays must travel through so many miles 

of dust particles that all but red are completely scattered out and the sun appears red. At 

this same time the sky overhead is still blue. If the dust blanket is too dense, even the red 

will be scattered appreciably from the direct sunlight and the depending red sun will 

become lost from view before it reaches the horizon.  

 

(c) Sunset experiment 

 



 
 

Fig.4 The sunset experiment. Demonstration of the scattering and polarization of 

light by small particles. (H.E. White, Introduction to Atomic and 

Nuclear Physics (D. van Nostrand, 1964). 

 

An excellent demonstration of scattering by fine particles is illustrated in Fig.4 parallel 

beam of white light from a carbon arc and lens L1 is sent through a water trough with glass 

sides. After passing through an iris diaphragm at the other end, a second lens L2 forms an 

image of the circular opening on the screen. To produce the fine particles for scattering, 

about 40 gram of photographic fixing powder (hyposulfite of soda) are first dissolved in 

about 2 gallons of water. Next, about 1 to 2 cm3 of concentrated sulphuric acid are added 

and the two thoroughly mixed on the trough. 

As the microscopic sulphur particles begin to form, scattered blue light will outline the 

parallel beam through the trough. A little later, when more particles have formed the entire 

body of water will appear light blue, due principally to multiple scattering. Light scattered 

out of the central beam of light is scattered again and again before emerging from the trough. 

At first the transmitted light which falls on the screen appears white. Later, as more 

scattering takes out the shorter wavelengths, this image representing the sun turns yellow, 

then orange, and finally red. 

 

(d) Polarization by scattering 

If the blue of the sky is observed through a Nicol prism or any analyzing device the 

light is found to be partially plane-polarized. The explanation of this follows directly from 

the fact that light is transverse wave motion. Suppose that an observer at B, in Fig.3, 

observes the blue light from the region of the sky marked P. Assume next that a light wave 

from the sun is scattered from a particle at P (Fig.3) by first setting the particle vibrating 

up and down in the plane of the page as shown by the arrows. The scattered light from this 



particle cannot be propagated toward the observer since in this direction the particle is 

vibrating longitudinally. The light can be scattered in any direction except along a line 

through PB. 

Assume, on the other hand, that the particle P is first set vibrating perpendicular to the 

plane of the page. In this case the scattered light can be given off toward B as a transverse 

wave. This plane perpendicular to the incident sunlight is the plane of vibration of the 

polarized light of the blue sky and is in complete agreement with the observations. The 

reason that the scattered light is observed as only partially plane-polarized is that multiple 

scattering is a frequent occurrence. 

The polarization of light by scattering can be demonstrated by the experiment 

illustrated in Fig.4. The individual may look at the scattered light through an analyzing 

Nicol, or without one if the incident beam is plane-polarized by a polarizer P before it 

enters the tank to be scattered. When the entering bean is vibrating in a horizontal plane no 

light is scattered through the sides of the trough but is scattered out the top or bottom. When 

the entering beam is vibrating in a vertical plane no light is scattered out the top or bottom 

but is scattered out the sides. A larger mirror placed directly above the tank will enable the 

scattered light to be seen from above. When the beam is observed at its strongest in the 

mirror it is not seen from the side of the tank, and vice versa. 

 

APPENDIX-I 

 

A. Solar luminosity and surface temperature of the sun 

 

The solar luminosity is a unit of luminosity (power emitted in the form of photons) 

conventionally used by astronomers to give the luminosities of stars. It is equal to the 

current luminosity of the Sun, which is 3.827 × 1026 W, or 3.827 × 1033 erg/s. (Wikipedia) 

 

 
 

Imagine a huge sphere with a radius 1 AU with the Sun at its center. Each square meter of 

that sphere receives 1370 W of power from the Sun. So we can calculate the total energy 

output of the Sun (the Sun’s Luminosity Lsun) from 
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sun
SC

L
G

AU
   W/m2 

 

where AU is an astronomical unit = average distance between the Earth and the Sun;  

 

AU = 1.49597870 x 1011 m. 

 

((Definition))  Solar constant: SCG  

The solar constant (GSC) is a flux density measuring mean solar electromagnetic 

radiation (solar irradiance) per unit area. It is measured on a surface perpendicular to the 

rays, one astronomical unit (AU) from the Sun (roughly the distance from the Sun to the 

Earth). 

 

Then the solar luminosity is obtained as 

 

sunL 3.85284 x 1026 W. 

 

The radius of the Sun is 

 

Rsun = 6.9599 x 108 m. 

 

The surface temperature of the Sun is evaluated as follows, 

 

Fsun = 
4

24

sun
SB sun

sun

L
T

R



  = 6.32944 x 107 W/m2. 

 

where SB is the Stefan-Boltzmann constant, SB  = 5.670400 x 10-8 W/m2 K4. The Sun’s 

surface temperature is 

 

Tsun = 5780 K. 

 

APPENDIX-II Temperature of the Earth 

A. Temperature of the Earth 

 



 
 

Fig. Solar luminosity sunL  =3.828x1026 W. Solar constant on the Earth is SCG =1.3608 

kW/m2. a =AU = 1.49597870 x 1011 m.  is the Stefan-Boltzmann constant. 

 

We can use the Stefan-Boltzmann law to estimate the temperature of the Earth from 

first principles. The Sun is a ball of glowing gas of radius 
5109599.6 SunR km and 

surface temperature 5780SunT   K. Its luminosity is 

 

42
4 SunSunSun TRL  ,  (W) 

 

according to the Stefan-Boltzmann law. The Earth is a globe of radius 6372ER  km 

located an average distance a = 1.49597870 x 108 km (= 1 AU) from the Sun. The Earth 

intercepts an amount of energy 
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per second from the Sun's radiative output; 
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The Earth absorbs this energy, and then re-radiates it at longer wavelengths (the 

Kirchhoff’s law). The luminosity of the Earth is 

 
2 2 44E E SC E EL R G R T    ,  (W) 

 

or 

 
44SC EG T , 

 

according to the Stefan-Boltzmann law, where TE is the average temperature of the Earth's 

surface. Here, we are ignoring any surface temperature variations between polar and 

equatorial regions, or between day and night. In steady-state, the luminosity of the Earth 

must balance the radiative power input from the Sun, we arrive at  
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Remarkably, the ratio of the Earth's surface temperature to that of the Sun depends only on 

the Earth-Sun distance and the radius of the Sun. The above expression yields TE = 278.78 

K. This is slightly on the cold side, by a few degrees, because of the greenhouse action of 

the Earth's atmosphere, which was neglected in our calculation. Nevertheless, it is quite 

encouraging that such a crude calculation comes so close to the correct answer. 

 

B. Evaluation of the average surface temperature of our solar system 

 

The average surface temperature of the planet may be expressed by 
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where d is the mean distance from the Sun and d(AU) is the same distance in units of AU. 

The values of d, the calculated surface temperature Tav, and the reported surface 

temperature Tobs for each planet are listed in Table. 

 

___________________________________________________________________ 

Planet d (AU) Tav [K] Tobs [K] 

 

Mercury 0.24 569.0 700 

 

Venus 0.61 356.9 740 

 

Earth 1 278.8 287.2 

 

Mars 1.52 226.1 227 

 

Jupitor 5.20 122.3 165 (1 bar level) 

   112 (0.1 bar level) 

 

Saturn 9.53 90.3 134 (1 bar level) 

   84 (0.1 bar level) 

 



Uranus 19.19 63.6 76 (1 bar level) 

   53 (0.1 bar level) 

 

Neptune 30.06 50.8 72 (1 bar level) 

   55 (0.1 bar level) 

 

Pluto 39.53 44.3 K 44 

 

APPENDIX-III Sun luminosity and solar constant 

 

(a) Sun luminosity 

The solar luminosity, L☉, is a unit of radiant flux (power emitted in the form of photons) 

from the Sun. The solar luminosity is defined by the International Astronomical Union to 

be 

 

L☉
263.828 10   W.  

 

(b) Solar constant: 

The solar constant (GSC) is a flux density measuring mean solar electromagnetic 

radiation (solar irradiance) per unit area. It is measured on a surface perpendicular to the 

rays, one astronomical unit (AU) from the Sun (roughly the distance from the Sun to the 

Earth). 

The solar constant includes all types of solar radiation other than neutrinos, not just the 

visible light. It is measured by satellite as being 1.361 kilowatts per square meter (kW/m²) 

at solar minimum (the time in the 11-year solar cycle when the number of sunspots is 

minimal) and approximately 0.1% greater (roughly 1.362 kW/m²) at solar maximum.  

 
21.361 kW/mSCG  . 

 

(c) Solutions for typical problems 

 

1. If the radiant energy from the sun comes in as a plane EM wave of intensity 1340 

W/m2, what are the peak values of E and B. 
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((Solution)) 
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________________________________________________________________________ 

2. The Earth is AU = 1.49 × 1011 meters from the sun. If the solar radiation at the 

top of the Earth's atmosphere is 1340 W/m2, what is the total power output of 

the sun (luminosity)? 

 

((Solution)) 

The solar luminosity: 

 
2 264 ( ) 3.82753 10  WSCL AU G  

⊙  

 

________________________________________________________________________ 

3. What is the average value of the magnitude of the Poynting vector S  at 1 meter 

from a 100-W lightbulb radiating in all directions? 

 

((Solution)) 

 

100 WP   and 1 mr  , 
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________________________________________________________________________ 

4. How much electromagnetic energy is contained in each cubic meter near the Earth's 

surface if the intensity of sunlight under clear skies is 1000 W/m
2
? 

 

((Solution)) 
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This leads to the well-known relation 

 

avI S cu    

 

When 1000avS  W/m2, we have 
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________________________________________________________________________ 

5. At a distance of 10 km from a radio transmitter, the amplitude of the E-field is 

0.20 volts/meter. What is the total power emitted by the radio transmitter? 

 

((Solution)) 
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When max 0.2 V/mE   and 10 kmr  , 
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________________________________________________________________________ 

6. What is the maximum radiation pressure exerted by sunlight in space (S = 1350 

W/m2) on a flat black surface? 
 

((Solution)) 

 

Radiation pressure 

 
cp   

 

mU cP  

 

where mP  is the total linear momentum. 

 

Radiation pressure 
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______________________________________________________________________________ 

7. What is the maximum radiation pressure exerted by sunlight in space (S = 1350 W/m
2
) 

on a highly polished silver surface? 
 

((Solution)) 

 

For the reflection 
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______________________________________________________________________________ 

8. The intensity of radiation reaching the earth from the sun is 1 350 W/m
2
. The earth's 

radius is 6.4 × 10
6
 m. How big a force does this radiation exert on the earth? (Assume it 

is all absorbed.) 
 

((Solution)) 
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______________________________________________________________________________ 

9. Two identical silver spheres of mass m and radius r are placed a distance R (sphere 1) 

and 2R (sphere 2) from the sun respectively. What is the ratio of the pressure of solar 

radiation on sphere 2 to that on sphere 1? 

 

((Solution)) 
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The ratio is 1/4  = 0.25 

 

______________________________________________________________________________ 

10. A possible means of spaceflight is to place a perfectly reflecting aluminized sheet into 

Earth orbit and use the light from the sun to push this solar sail. If a huge sail of area 6.00 

× 10
5
 m

2
 and mass 6000 kg were placed into orbit and turned toward the sun, what would 

be the force exerted on the sail? (Assume a solar intensity of 1380 W/m
2
.) 

 

((Solution)) 
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APPENDIX-IV. Polarizers (some interesting experiment) 

 

1. Simulation using Mathematica 

 



 
 

Fig. Demonstration for the role of two polarizers. The light passes when the directions 

of the two polarizers are the same. The light does not pass when the directions of 

two polarizers are perpendicular to each other. 

 

 

2. Polarized light coming from the computer monitor 

(i) 

For convenience, I type a word “Computer monitor” in the computer monitor of the lap 

top computer. One can see clearly the word through the polarizer. 

 
 

Fig. Polarizes in front of the computer monitor, where the direction of the polarization 

for rays from the computer monitor is the same as that of the polarizer. 

 

(ii) The rotation of the polarizer by 90 degrees from the case (i). 

q q



When the polarizer is rotated 90° from the case (i), we find that the word has 

disappeared. This means that the light does not pass the polarizer. 

 

 
 

Fig.3 Polarizes in front of the computer monitor, where the direction of the polarization 

for rays from the computer monitor is perpendicular to that of the polarizer. 

 


