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1. Fermat’s principle 

In optics, Fermat's principle or the principle of least time, named after French 

mathematician Pierre de Fermat, is the principle that the path taken between two points by 

a ray of light is the path that can be traversed in the least time. This principle is sometimes 

taken as the definition of a ray of light. Fermat's principle can be used to describe the 

properties of light rays reflected off mirrors, refracted through different media, or 

undergoing total internal reflection. It follows mathematically from Huygens' principle (at 

the limit of small wavelength).  

 
1.1 Snell’s law 

We show that the Fermat’s principle will give the Snell’s law of refraction. Our 
problem is to go from A to B in the shortest time. The shortest transit time coincides with 
the actual path. 
 

 
 
The total time for the light to propagate from the point A to B is given by 
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Not that the velocity is given by /c n  where n is the index of refraction. In order to get 
the minimum value of f(x), we take a derivative of ( )f x  with respect to x. 
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The value of x for the least time is 
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or  
 

1 1 2 2sin sinn n  .  (the Snell’s law) 

 
1.2 Parabora mirror 



 
 

Parabolic mirror is based on the geometrical property of the paraboloid that the paths 
FP1Q1, FP2Q2, FP3Q3 are all the same length. So, a spherical wave-front emitted at the 
focus F will be reflected into an outgoing plane wave L travelling parallel to the axis VF. 
 



 
 

Fig. Parabola. F: Focal point. ( ,0)OF f
����

. x f   (directrix). O: origin (vertex). The 

parabola is the shape created by the points that are the same distance from the point 
F (focus) and a given line (the directrix). For any point ( , )P x y on the parabola, two 

lines PQ  and FQ  have the same length. The tangential line at the point P on the 

parabora intersects the x axis at the point R. Parallel rays coming into a parabolic 

mirror are focused at a point F: T P F  . The line PS  is perpendicular to the 

tangential line PR . FPS TPS   . 
 
 

Path-1 x f  :   (line QP ) 

 



Path 2= 2 2( )x f y  :  (line F P ) 

 
From the definition of parabola, these two distances are equal each other. 
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or 
 

2 4y fx .  (Parabola) 

 
1.3. Ellipsoidal mirror 

We consider the elliptical mirror, where the light emitted from one of the focal point 

(S) and hit the mirror surface (Q), and subsequently goes to the other focal point (F). We 

know that the sum of the distances SQ  and QF  is the same when the point Q is on the 

ellipsoid. This means that there are many more paths that take the same (least) time between 

the same two end points (focal points). 

 



 
 
In this figure, FH  is perpendicular to the tangential line at the point Q on the ellipsoid. 
Suppose that the angle PFC  is equal to  .  
 

QPF PFQ      

 

since PQ QF , which leads to 

 
2FQS   . 

 

The line QT  is parallel to the line FH  since QT  is perpendicular to the tangential line 

at the point Q on the ellipsoid. Then we conclude that  
 

FQT SQT     . 

 

In other words, the line QT is the bisector line of FQS  

 



1.4. Spherical approximation to parabolic mirror 

A precise parabolic mirror is more difficult to fabricate compared to spherical mirror. 
A sphere mirror is not quite a parabolic mirror, but we can see that a slice from the spherical 
mirror can be approximated by the parabolic mirror in a good approximation. 
 

 
 
Fig. Comparison of a spherical and paraboloidal mirror. 
 
We start with an equation of circle with radius R 
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which is the equation of parabola with / 2f R , where f is the focal length.  Note that the 

parabola is expressed by 
 

2 4y fx . 

 
1.5 Spherical mirror 

 

 
 
Fig. Spherical mirror. The point P(x, y) is on the spherical mirror, where y is very small. 

2 4y fx  with / 2f R . 

 
We consider the two paths; (a) ( , )A P x y B   [red line], and (b) A O B   

(reflection) [purple line]. The time for the propagation of light through the path (a) should 
be the same as that through the path (b). The time taken is independent of y. The distances 
of the path (a) and path (b); 
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 with 
2 4y fx . Note that u, v, f are 

large: h1, h2, y are small. Thus, we get the approximation 
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Thus we have 
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where 2 4y fx . The above equation should be independent of y. So we get the relation 
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with / 2f R . 

 
1.6 Thin lens: Lens make’s equation 

 

 
 



 
 

Fig. Thin concave lens. 2 R l   . AO l . R is the radius of lens. 
 

Here we consider the two paths: path 1 ( A P B  ) and path 2 ( A O B  ) with 
the thickness of lens 2  (see Fig.). The distances for these two paths are 
 

1s AP PB  ,  2s AOB , 

 
where 
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The velocity of light inside the lens is /c n , where n is the index of refraction. Note that 
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From the relation 1 2s s , we have 
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2. Plane mirrors 

2.1 Principle 

Simplest possible mirror. Light rays leave the source and are reflected from the mirror. 
Point I is called the image of the object at point O. The image is virtual. 
 

 
 



One ray starts at point P, travels to Q and reflects back on itself. Another ray follows the 
path PR and reflects according to the Law of Reflection. The triangles PQR and P’QR are 
congruent 
 

 
 
Fig. Plane mirror 1 'h h . 

 
To observe the image, the observer would trace back the two reflected rays to P'. Point P' 
is the point where the rays appear to have originated. The image formed by an object placed 
in front of a flat mirror is as far behind the mirror as the object is in front of the mirror. p 
= |q| 
 
2.2 Lateral Magnification of a Flat Mirror 

Lateral magnification, M, is defined as  
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This is the general magnification for any type of mirror. It is also valid for images formed 
by lenses. Magnification does not always mean bigger, the size can either increase or 
decrease. M can be less than or greater than 1. 
 
The lateral magnification of a flat mirror is 1. This means that h' = h for all images 

 



 
 
Fig. A point object O forms a virtual image I in a plane mirror. The figure is made 

using the Graphics of the Mathematica. 
 



 
 
2.3 Reversals in a Flat Mirror 

A flat mirror produces an image that has an apparent left-right reversal. For example, 
if you raise your right hand the image you see raises its left hand. 

The reversal is not actually a left-right reversal. The reversal is actually a front-back 
reversal. It is caused by the light rays going forward toward the mirror and then reflecting 
back from it 
 
2.4 Summary 

(a) The image is as far behind the mirror as the object is in front. p = |q|  
(b) The image is unmagnified. 

The image height is the same as the object height. 
h' = h and M = 1 

(c) The image is virtual. 
(d) The image is upright. 

It has the same orientation as the object. 
(e) There is a front-back reversal in the image. 
 
3. Spherical mirrors 

A spherical mirror has the shape of a segment of a sphere. The mirror focuses incoming 
parallel rays to a point. A concave spherical mirror has the light reflected from the inner, 
or concave, side of the curve. A convex spherical mirror has the light reflected from the 
outer, or convex, side of the curve. 
 
3.1. Concave mirror 

3.1.1 Notation 

The mirror has a radius of curvature of R. Its center of curvature is the point C. Point 
V is the center of the spherical segment. A line drawn from C to V is called the principal 
axis of the mirror 

 



 
 
Fig. Concave spherical mirror with the focal length 0f  . 

 
3.1.2 Paraxial rays 

We use only rays that diverge from the object and make a small angle with the principal 
axis (A simplification model). Such rays are called paraxial rays. All paraxial rays reflect 
through the image point. 
 
3.1.3 Spherical aberration 

Rays that are far from the principal axis converge to other points on the principal axis. 
This produces a blurred image. The effect is called spherical aberration. 
 

 
3.1.4 Image formed by a concave mirror 

A geometric model can be used to determine the magnification of the image, 
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where h' is negative when the image is inverted with respect to the object 
 
 



 
 
Geometry also shows the relationship between the image and object distances 
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This is called the mirror equation. f is the focal length (f = R/2). If p is much greater than 
R, then the image point is half-way between the center of curvature and the center point of 
the mirror. p →∞, then 1/p ≈ 0 and q » R/2. 
 
3.1.5 Derivation of the formula 
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In the limit of small , , and ,  
 

kqrp    

 
Then we obtain 
 

r

k

q

k

p

k
2   or 

rqp

211
  

 
The lateral magnification m is defined by 
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3.1.6 Focal length f 

When the object is very far away, then p→∞ and the incoming rays are essentially 
parallel. In this special case, the image point is called the focal point. The distance from 



the mirror to the focal point is called the focal length. The focal length is ½ the radius of 
curvature;  
 

2

R
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The laser beams are traveling parallel to the principal axis. The mirror reflects all the beams 
to the focal point. The focal point is where all the beams intersect. The focal point is 
dependent solely on the curvature of the mirror. It does not depend on the location of the 
object. It also does not depend on the material from which the mirror is made. 
 

 
 
3.2. Convex mirrors 

A convex mirror is sometimes called a diverging mirror. The light reflects from the 
outer, convex side. The rays from any point on the object diverge after reflection as though 
they were coming from some point behind the mirror. The image is virtual because the 
reflected rays only appear to originate at the image point. p>0 and q<0. 



 
 

 
Fig. Convex spherical mirror with 0f   

 
In general, the image formed by a convex mirror is upright, virtual, and smaller than the 
object. 
 
3.3 The sign conventions 

 



 
 

The region in which the light rays move is called the front side of the mirror. The other 
side is called the back side of the mirror. The sign conventions used apply to both concave 
and convex mirrors. The equations used for the concave mirror also apply to the convex 
mirror. m is also called the lateral magnification. 
 
________________________________________________________________________ 
Object Positive when…. Negative when … 

 
Objecti location (p) in front of mirror (real) back of mirror (virtual) 
 
Image location (q) in front of mirror (real) back of mirror (virtual) 
 
Image height (h’) upright inverted 
 
Focal length (f) concave convex  
and radius (R) 
 
Magnification (m) upright inverted 
______________________________________________________________________ 
 
3.4 Ray Diagrams 

A ray diagram can be used to determine the position and size of an image. They are 
graphical constructions which reveal the nature of the image. They can also be used to 
check the parameters calculated from the mirror and magnification equations.  



To draw the ray diagram, you need to know the position of the object. The locations of 
the focal point and the center of curvature.  
 
Three rays are drawn 

(i) They all start from the same position on the object. 
(ii) The intersection of any two of the rays at a point locates the image. 
(iii) The third ray serves as a check of the construction. 

 
3.5 The Rays in a Ray Diagram – Concave Mirrors 

 
(i) Ray 1 is drawn from the top of the object O parallel to the principal axis and is 

reflected through the focal point, F. 
(ii) Ray 2 is drawn from the top of the object through the focal point F and is reflected 

parallel to the principal axis. 
(iii) Ray 3 is drawn through the center of curvature, C, and is reflected back on itself. 
 

The rays actually go in all directions from the object. The three rays were chosen for 
their ease of construction. The image point obtained by the ray diagram must agree with 
the value of q calculated from the mirror equation. 
 
3.5.1 Ray diagram for concave mirror, p > R 

 
 

 
 

(i) The center of curvature is between the object and the concave mirror 
surface (f>0) 

(ii) The image is real (q>0). 
(iii) The image is inverted (m = -q/p<0). 



(iv) The image is smaller than the object (reduced). 
 
3.5.2 Ray diagram for a concave mirror, p < f 

 

 
 

(i) The object is between the mirror surface and the focal point. 
(ii) The image is virtual (q<0). 
(iii) The image is upright (m>0). 
(iv) The image is larger than the object (enlarged). 

 
3.6 The Rays in a Ray Diagram – Convex Mirrors 

 
(i) Ray 1 is drawn from the top of the object parallel to the principal axis and is 

reflected as if coming from the focal point, F 
(ii) Ray 2 is drawn from the top of the object toward the focal point and is reflected 

parallel to the principal axis 
(iii) Ray 3 is drawn through the center of curvature, C, on the back side of the mirror 

and is reflected back on itself 
 
Ray diagram for a convex mirror 

 



 
 
The object is in front of a convex mirror (f<0). 
The image is virtual (q<0). 
The image is upright (m>0). 
The image is smaller than the object (reduced). 
 
________________________________________________________________________
_ 
4. Images formed by refraction (spherical surface refraction) 

4.1 

Consider two transparent media having indices of refraction n1 and n2. The boundary 
between the two media is a spherical surface of radius R. 
 



 
 

Fig. Figure is made by using the Graphics program of Mathematica. 1 2n n . Convex 

spherical surface refraction. 
 

We will consider the paraxial rays leaving O. All such rays are refracted at the spherical 
surface and focus at the image point, I. The relationship between object and image 
distances can be given by 
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The side of the surface in which the light rays originate is defined as the front side. The 

other side is called the back side. Real images are formed by refraction in the back of the 
surface. Because of this, the sign conventions for q and R for refracting surfaces are 
opposite those for reflecting surfaces 
 
Possible ways in which an image can be formed by refraction through a spherical surface 
of radius. We assume that the radius of the sphere is 1. 
 
(a) n1 = 1, n2 = 1.9, R = 1 

 
(i) p = 0.5 and q = -1.72727 
 



 
 
(ii)  p = 0.8 and q = -5.42857 
 

 
 
(iii) p = 2 and q = 4.75 
 

 
 
(b) n1 = 1.9, n2 = 1.0, R =-1.0 

 
(i) p = 0.8, q = -0.677966,  



 
 
(ii) p = 1.5 and q = -2.72727 
 

 
 
(iii) p = 5.0 and q = 1.92308 
 

 



 
 
(c) n1 = 1.9, n2 = 1.0, R = 1.0 

 
(i) p = 0.5 and q = -0.21277 

 
 
(ii) p = 2.0 and q = -0.54505 
 



 
 
(d) n1 = 1.0, n2 = 1.9, R = -1.0 

 
(i) p = 0.5 and q = -0.655172 
 

 
 
(ii) p = 0.8 and q = -0.883721 



 
 

 
 
4.2 Determining signs  
 

 
 
(1) The front side of the thin lens is the side of the incident light. 
(2) The back side of the lens is where the light is refracted into. 
(3) This is also valid for a thin lens. 
 



Object Positive when…. Negative when … 
 
Object location (p) front of surface (real) back of surface (virtual) 
Image location (q) back of surface (real) front of surface (virtual) 
Image height (h’) upright inverted 
Radius (R) center (back of surface) center (front of surface) 
 
4.3. Flat refracting surfaces 

If a refracting surface is flat, R is infinite. Then 
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The image formed by a flat refracting surface is on the same side of the surface as the 
object. A virtual image is formed 

 
 

 
 

Fig. n1 = 1.9 and n2 = 1. R = ∞ 
 
This problem can be solved in a different way. We assume that n1>n2. 
 

 



 
 
Snell’s law: 
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In the limit of small angles,  
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From the geometry, 
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4.4 Derivation of the formula 

 

 
 
 

 
From the geometry, we have 
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From the law of refraction, 
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The tangents of , , and  are 
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Paraxial rays, we may approximate both sine and tangent of the angles by the angles itself 
(measured in radians).  
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We use the approximation 
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Then we have the object-image relationship for spherical refracting surface. 
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4.5 Lateral magnification 

 
 

 
 
Fig. Spherical surface refraction. n2>n1 for this figure. 
 
 
In order to obtain the lateral magnification, we use the construction shown above.  
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Using the Snell’s law given by 
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we have the lateral magnification m 
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4.6 Example 

((Example-1))  Goldfish in a spherical bowl 
A goldfish in a spherical bowl 50 cm in diameter is 10 cm from the edge of the bowl. 
Where does the fish appear when viewed from outside the bowl? 
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or 
 

' 8.3s   46 cm (virtual image) 
 
((Example-2))  Cat outside the spherical bowl 



A goldfish in a spherical bowl 50 cm in diameter watches a cat outside the bowl. If 
the cat’s face is 20 cm from the edge of the bowl, how far from the edge does the fish see 
it? (in cm) 
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' 36.14s    cm (virtual image) 
 
5. Lens 

A typical thin lens consists of a piece of glass or plastic. It is ground so that the two 
surfaces are either segments of spheres or planes. The thin lens approximation assumes the 
thickness of the lens to be negligible. So the focal point can be measured to the center or 
the surface of the lens. Lenses will have one focal length and two focal points. 
 
5.1 Thin Lens Shapes 

(1) The converging lenses 

They have positive focal lengths. They are thickest in the middle 
 



 
 
(2) The diverging lenses 

They have negative focal lengths. They are thickest at the edges 
 

 
 
5.2 Focal Length of a converging lens 

 

 
 
(1) The parallel rays pass through the lens and converge at the focal point.  
(2) The parallel rays can come from the left or right of the lens. 
(3) The focal points are the same distance from the lens. 
 
5.3 Focal length of a diverging lens 

 



 
 
(1) The parallel rays pass through the lens and converge at the focal point. 
(2) The parallel rays can come from the left or right of the lens. 
(3) The focal points are the same distance from the lens. 
 
5.4 Image formed by a thin lens 

 

 
 
Fig. y1 and y2 are the y-co-ordinates of the object and the image, respectively. 
 
From this geometry, we have 
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From these equations, 
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or 
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5.5 Magnification of images through a thin Lens 

The lateral magnification of the image is 
 

p

q

y

y
m 

1

2  

 
When m is positive, the image is upright and on the same side of the lens as the object. 
When m is negative, the image is inverted and on the side of the lens opposite the object. 
 
5.6 Determining signs for thin lenses 

 

 
 
(1) The front side of the thin lens is the side of the incident light  
(2) The back side of the lens is where the light is refracted into. 
(3) This is also valid for a refracting surface 
 
5.7 Notes on focal length and focal point of a thin lens 



 
(1) A converging lens has a positive focal length. Therefore, it is sometimes called a 

positive lens 
(2) A diverging lens has a negative focal length. It is sometimes called a negative lens 
 
5.8 Lens makers’ equation 

The focal length of a thin lens is the image distance that corresponds to an infinite 
object distance. This is the same as for a mirror. The focal length is related to the radii of 
curvature of the surfaces and to the index of refraction of the material 
The lens makers’ equation is 
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where R1 is the radius of curvature of the lens surface near the object, and R2 is that of the 
other surface. R>0 when the center of curvature is on the outgoing side of the surface. R<0 
otherwise. 
 
((The proof of the lens maker’s equation)) 
 

 
 

We use the equation for the spherical surface refraction twice, for n1 (= 1) and n2 (= 
n) and for n2 (= n) and n3 (= 1). 
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Here we put 012  qp  (in the limit of thin lens) 



 
or 
 

p2 = -q1 
 
From the addition of two equations, we get 
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For n1 = n3 = 1 and n2 = n, 
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with 
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  (lens maker’s equation for a thin lens) 

 
((Example)) 
 

 
 
The lens shown has n =1.50, 1 22.4R  cm. and 2 46.2R  cm. What is the focal length of 

the lens (in cm)? 
 
 



1 2

1 1 1
( 1)( )n

f R R
    

 
(a) Object on the left of lens,. 1 0R  . 2 0R  . 

 

 
 

1 22.4R  cm,  1 46.2R   cm 

 
1 1 1

(1.50 1)( ) 0.0115
22.4 46.2f

    cm-1.  f = 86.96 cm 

 
(b) Object on the right of lens,. 1 0R  . 2 0R  . 

 



 
 

1 46.2R   cm. and 2 22.4R   cm 

 
1 1 1

(1.50 1)( ) 0.114989
46.2 22.4f

   
 

cm-1.  f = 86.965 cm 

 
So we get the same value of f, which is independent of the location of the object. 
 
5.9 Sign conventions for thin lenses 

 
Object Positive when…. Negative when … 

 
Object location (p) in front of lens (real) back of lens (virtual) 
 
Image location (q) in back of lens (real) front of lens (virtual) 
 
Image height (h’) upright inverted 
 
Focal length (f) converging lens diverging 
 
Magnification (m) upright inverted 
 
R1 and R2 center (in back) Center (front) 
 
 
5.10 Longitudinal magnification 

The longitudinal magnification is defined as 
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dq
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This is the ratio of an infinitesimal axial length in the region of the image to the 
corresponding length in the region of the object. Differentiating the equation given by 
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we have 
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5.11 Ray Diagrams for thin lenses – converging 

Ray diagrams are convenient for locating the images formed by thin lenses or systems 
of lenses 
 
For a converging lens, the following three rays are drawn. 
 
(i) Ray 1 is drawn parallel to the principal axis and then passes through the focal point 

on the back side of the lens. 
(ii) Ray 2 is drawn through the center of the lens and continues in a straight line. 
(iii) Ray 3 is drawn through the focal point on the front of the lens (or as if coming from 

the focal point if p<ƒ) and emerges from the lens parallel to the principal axis. 
 
5.11.1  Ray diagram for converging lens, p > f 

 

 
 

(1) The image is real (q>0) 
(2) The image is inverted (m<0) 
(3) The image is on the back side of the lens. 

 
5.11.2  Ray Diagram for converging lens, p < f 



 

 
 

(1) The image is virtual (q<0) 
(2) The image is upright (m>0) 
(3) The image is larger than the object. 
(4) The image is on the front side of the lens. 

 
5.12  Ray Diagrams for thin lenses – diverging  

For a diverging lens, the following three rays are drawn. 
 
(1) Ray 1 is drawn parallel to the principal axis and emerges directed away from the 

focal point on the front side of the lens. 
(2) Ray 2 is drawn through the center of the lens and continues in a straight line. 
(3) Ray 3 is drawn in the direction toward the focal point on the back side of the lens 

and emerges from the lens parallel to the principal axis. 
 
Ray diagram for diverging lens (hold for both p>f and p<f) 

 

 
 

(i) The image is virtual (q<0) 
(ii) The image is upright (m>0) 
(iii) The image is smaller. 



(iv) The image is on the front side of the lens. 
 
5.13  Drawing of the ray diagram using Mathematica 

Using the Mathematica program (Graphics), we make the ray diagram of the 
converging lens and diverging lens in various configurations.  
 
5.13.1  Converging lens (typical examples) 

The red arrow denotes a object and the blue arrow denotes a image.  
 

 
 

 
 
5.13.2  Diverging lens (typical examples) 

The red arrow denotes a object and the blue arrow denotes a image.  
 

Object Image

ObjectImage



 
 

 
 
 
6 Image Summary 

(i) For a converging lens, when the object distance is greater than the focal length (p 
>ƒ). The image is real and inverted. 

(ii) For a converging lens, when the object is between the focal point and the lens, 
(p<ƒ). The image is virtual and upright. 

(iii) For a diverging lens, the image is always virtual and upright. This is regardless of 
where the object is placed. 

 
7 Combination of thin lenses 

The image formed by the first lens is located as though the second lens were not present. 
Then rays or calculations are completed for the second lens. The image of the first lens is 
treated as the object of the second lens. The image formed by the second lens is the final 
image of the system. If the image formed by the first lens lies on the back side of the second 
lens, then the image is treated as a virtual object for the second lens. p will be negative. 
The same procedure can be extended to a system of three or more lenses. The overall 
magnification is the product of the magnification of the separate lenses 
 

Object Image

Object Image



((Example)) 
 

 
 

For the converging lens-1 
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111

fqp
 ,  with f1 = 10 cm and p1 = 30 cm. 

 
or  
 

1

1 1 1

30 10q
    with 1 15q cm   

 
The lateral magnification m1 is  
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1
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q
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For the converging lens-2 
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fqp
 ,  with f2 = 20 cm and p2 = (20-15) = 5 cm. 

 
or  
 

2

1 1 1

5 20q
    with 2 6.67q cm   

 
The lateral magnification m2 is  
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5
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2

2
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q
m  

 
The resultant magnification is 
 

667.033.1)
2

1
(21  mmm  (inverted) 

 
8. Mathematica diagrams for the construction of the ray diagram 

The ray diagram of the combination of two lenses separated by some distance can be 
derived using the Mathematica program 
 
8.1 Combination of two converging lenses 

d1 is the separation distance between the lens 1 and lens 2. 
h1 is the height of the object 

 
((Example-1)) This is similar to the above example. 

Converging lens (f1 = 1 cm) and converging lens (f2 = 2 cm) 
p1 = 3 cm, h1 = 1.5 cm, and d = 2 cm 

 
 

 
 
((Example-2)) 

Converging lens (f1 = 1 cm) and converging lens (f2 = 2 cm) 
p1 = 3 cm, h1 = 1 cm, and d1= 5 cm. 

 

Object Image



 
 

 
 
((Example-3)) 

Converging lens (f1 = 1.5 cm) and converging lens (f2 = 1.5 cm) 
p1 = 1 cm, h1 = 0.5 cm, and d1 = 0.6 cm. 

 

 
 
((Example-4)) 

Converging lens (f1 = 2.0 cm) and converging lens (f2 = 4.5 cm) 
p1 = 5.0 cm, h1 = 0.35 cm, and d1 = 6.5 cm. 

 

Object Image

Object Image



 
 
8.2 Combination of one converging lens and one diverging lens 

 
((Example-1)) 

Converging lens (f1 = 1.0 cm) and diverging lens (f2 = -2.0 cm) 
p1 = 3 cm, h1 = 1.8cm, and d1 = 5.0 cm. 

 

 
 
 
((Example-2)) 

Converging lens (f1 = 1.0 cm) and diverging lens (f2 = -2.0 cm) 
p1 = 3 cm, h1 = 1.5 cm, and d1 = 1.0 cm. 

 

Object Image

Object Image



 
 
((Example-3)) 

Converging lens (f1 = 1.0 cm) and diverging lens (f2 = -3.0 cm) 
p1 = 0.5 cm, h1 = 0.5 cm, and d1 = 2.0 cm. 

 

 
 
((Example-4)) 

Converging lens (f1 = 1.2 cm) and diverging lens (f2 = -3.2 cm) 
p1 = 1.8 cm, h1 = 0.5 cm, and d1 = 2.2 cm. 

 

Object Image

Object Image



 
 
8.3 Combination of two diverging lenses 

((Example-1)) 
diverging lens (f1 = -1.0 cm) and diverging lens (f2 = -1.0 cm) 
p1 = 0.5 cm, h1 = 1.5 cm, and d1 = 3.0 cm. 

 

 
 
((Example-2)) 

diverging lens (f1 = -1.0 cm) and diverging lens (f2 = -2.0 cm) 
p1 = 3.0 cm, h1 = 1.0 cm, and d1 = 8.5 cm. 

Object Image

Object Image



 

 
 
8.4 Combination of three lenses 

d1 is the separation distance between the lens 1 and lens 2. 
d2 is the separation distance between the lens 2 and lens 3. 
h1 is the height of the object 

 
((Example-1)) 

Three converging lenses (f1 = f2 = f3 =1.0 cm)  
p1 = 1.8 cm, h1 = 1.0 cm, d1 = 3.0 cm, d2 = 2.0 cm 

 

 
 
((Example-2)) 

Three lenses (f1 = f3 =1.0 cm, f2 = -1.0 cm)  
p1 = 1.8 cm, h1 = 1.0 cm, d1 = 3.0 cm, d2 = 2.0 cm 

 

Object Image

Object Image



 
 
9. Optical instrument 

9.1 Simple magnifier 

The normal human eye can focus a sharp image of an object on the retina (at the rear 
of the eye) if the object is located anywhere from infinity to a certain point called the near 
point Pn. If you move the object closer to the eye than the near point, the perceived retinal 
image becomes fuzzy. To find your own near point, remove your glasses or contacts if you 
wear any, close one eye, and then bring this page closer to your open eye until it becomes 
indistinct. 

In what follows, we take the near point to be 25 cm from the eye, a bit more than the 
typical value for 20-year-olds. 
 

 
 
Fig.1  

(a) An object O of height h placed at the near point of a human eye occupies angle  
in the eye's view.  

 

 
cm

h

25
tan  

 
(b) The object is moved closer to increase the angle, but now the observer cannot bring 

the object into focus. 
 

Object Image



(c) A converging lens is placed between the object and the eye, with the object just 

inside the focal point F1 of the lens. The image produced by the lens is then far 
enough away to be focused by the eye, and the image occupies a larger angle ’ 
than object O does in (a). 

 
For the converging lens, 

 

qpf

111
  

 
with p = f - →+0). So, we have 
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When →+0, we have q→(-∞) (virtual image). 
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The angular magnification m (not to be confused with lateral magnification m) of what is 
seen is 
 

f

cm

cmh

fh
m

25

25/

/'





 . 

 
9.2 Refracting telescope 

This is used for viewing very distant objects (for example, stars or ships on the horizon). 
The instrument consists of an objective (the front lens) of focal length f1 and an eyepiece 
(the lens near the eye) of focal length f2.  
 

 
 
For the objective lens (f1) 
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where p1 = ∞. Then we have q1 = f1 (>0). The separation distance between two lenses is  
 

d = f1 + f2. 
 
For the eyepiece (f2) 
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where p2 = f2. Then we have q2 =-∞. The virtual final image is then formed at infinity and 
viewed by the eye. 

If the intermediate image height is h, then we have 
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The angular magnification is obtained as 
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((Example)) 

The refracting telescope at the Yerkes Observatory in Wisconsin. 
 

f1 = 20 m and f2 = 2.5 cm. 
 

m = f1/f2 = 20m/0.025m = 800. 
 
93 Compound microscope 

This is used for looking at small objects up close 
 
 



 
 
 

The object O to be viewed is placed just outside the first focal point fo of the objective 
lens, close enough to fo that we can approximate its distance po from the lens as being fo. 
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where po = fo +  (>0). 
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In the limit of →0, the distance qo is positive and becomes infinity. 

The separation between the two lenses is then adjusted so that the enlarged, inverted, 
real image I produced by the objective lens is located just inside the focal point fe of the 
eyepiece.  
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The eyepiece is essentially a simple magnifier used to view the second image. It provides 
magnification 25/fe (fe is in the units of cm). The resultant magnification of the microscope 
is the product of the lateral magnification m produced by the objective, and the angular 
magnification m produced by the eyepiece,  
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f
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q
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  .  (microscope) 

 



Note that qo is the distance from objective lens to fist intermediate image, and is roughly 
the length of the instrument (s), 
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10. Electron microscope 

10.1 Wavelength of electron 

 

 
 
Fig. Wavelength of electron as a function of energy  (eV). 
 

The energy of an electron is related to its de Broglie wavelength  by the energy  
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where m = 9.10938 x 10-31 kg is the mass of the electron and ħ (=1.05457162853 x 10-34 J 
s) is the Dirac constant. In laboratory units, 
 

)(

2643.12

eV
   Å. 

 
Electrons are charged and interact strongly with matter. They penetrate a relatively short 
distance into a crystal. Structural studies by electron diffraction are important for surfaces, 
films, very thin crystals, and gases. 
 
10.2 Wavelength of photon 

The energy of the photon (for example x ray) is given by 
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where h is the Planck’s constant, c is the velocity of light, and  is the wavelength. Then 
the wavelength  is evaluated as 
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Fig. Wavelength of photon as a function of energy  (keV). 
 
10.3 Electron microscope 

An electron microscope is a type of microscope that uses a particle beam of electrons 
to illuminate a specimen and create a highly-magnified image. Electron microscopes have 
much greater resolving power than light microscopes that use electromagnetic radiation 
and can obtain much higher magnifications of up to 2 x 106 times, while the best light 
microscopes are limited to magnifications of 2 x 103 times. Both electron and light 
microscopes have resolution limitations, imposed by the wavelength of the radiation they 
use. The greater resolution and magnification of the electron microscope is because the the 
de Broglie wavelength of electron is much shorter than that of a photon of visible light. 

The electron microscope uses electrostatic and electromagnetic lenses in forming the 
image by controlling the electron beam to focus it at a specific plane relative to the 
specimen in a manner similar to how a light microscope uses glass lenses to focus light on 
or through a specimen to form an image. 
 

(a) TEM (transmission electron microscope) 

TEM is a microscopy technique whereby a beam of electrons is transmitted through an 
ultra thin specimen, interacting with the specimen as it passes through.  
 

(b) SEM (scanning electron microscope) 

STM is a type of electron microscope that images the sample surface by scanning it 
with a high-energy beam of electrons.  
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11. Scanning tunneling microscope (STM) 

Scanning tunneling microscopy (STM) is a powerful technique for viewing surfaces at 
the atomic level. Its development in 1981 won its inventors, Gerd Binnig and Heinrich 
Rohrer (at IBM Zürich), the Nobel Prize in Physics in 1986. STM probes the density of 
states of a material using tunneling current. For STM, good resolution is considered to be 
0.1 nm lateral resolution and 0.01 nm depth resolution. The STM is based on the concept 
of quantum tunneling. When a conducting tip is brought very near to a metallic or 
semiconducting surface, a bias between the two can allow electrons to tunnel through the 
vacuum between them.  
 

 
((Link)) Quantum corrals 
http://www.almaden.ibm.com/vis/stm/images/stm.gif 

Scientists discovered a new method for confining electrons to artificial structures at the 
nanometer length scale. Surface state electrons on Cu(111) were confined to closed 
structures (corrals) defined by barriers built from Fe adatoms. The barriers were assembled 
by individually positioning Fe adatoms using the tip of a low temperature scanning 
tunneling microscope (STM). A circular corral of radius 71.3 Angstrom was constructed 
in this way out of 48 Fe adatoms. 
 
12. Typical examples 

 
12.1 Problem 34-17 

(a) A luminous point is moving at speed v0 toward a spherical mirror with radius of 
curvature r, along the central axis of the mirror. Show that the image of this point is moving 
at speed 
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where p is the distance of the luminous point from the mirror at any given time. Now 
assume the mirror is concave, with r = 15 cm, and let v0 = 5.0 cm/s. Find vI when (b) p = 
30 cm (far outside the focal point), (c) p = 8.0 cm (just outside the focal point), and (d) p = 
10 mm (very near the mirror). 
 
((Solution)) 
(a) 
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f = 15/2 = 7.5 cm>0 
r = 15 cm. 

scm
dt
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(b) p = 30 cm 
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(c) p = 8.0 cm 
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(d) p = 1 cm 
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12.2 Problem 34-49 

A lens is made of glass having an index of refraction of 1.5. One side of the lens is flat, 
and the other is convex with a radius of curvature of 20 cm. (a) Find the focal length of the 
lens. (b) If an object is placed 40 cm in front of the lens, where will the image be located? 



 
((Solution)) 
 
Lens maker’s formula 
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where R1 is the radius of curvature of the lens surface near the object, and R2 is that of the 
other surface. R>0 when the center of curvature is on the outgoing side of the surface. R<0 
otherwise. 
 

 
 
n = 1.50 
R2 = ∞ 
R1 = 20 cm 
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(a) f = 40 cm 
 
(b) 
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When 
 

p = 40 cm, f = 40 cm, 
 
we have 
 



q = ∞. 
 

 
 
12.3 Problem 34-98 

In Fig., an object is placed in front of a converging lens at a distance equal to twice the 
focal length f1 of the lens. On the other side of the lens is a concave mirror of focal length 
f2 separated from the lens by a distance 2(f1 + f2). Light from the object passes rightward 
through the lens, reflects from the mirror, passes leftward through the lens, and forms a 
final image of the object. What are (a) the distance between the lens and that final image 
and (b) the overall lateral magnification M of the object? Is the image (c) real or virtual (if 
it is virtual, it requires someone looking through the lens toward the mirror), (d) to the left 
or right of the lens, and (e) inverted or noninverted relative to the object? 
 

 
________________________________________________________________________ 
 
((Solution)) 
 



 
Concave mirror 
(i) 
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(ii) 
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(iii) 
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(a) Lens and final image 2f1 the same position 
 



(b) m = -1 
 
(c) Image (real) 
 
(d) Left 
 
(e) inverted 
 
 
12.4 Problem 34-128 

A small cup of green tea is positioned on the central axis of a spherical mirror. The 
lateral magnification of the cup is +0.250, and the distance between the mirror and its focal 
point is 2.00 cm. (a) What is the distance between the mirror and the image it produces? 
(b) Is the focal length positive or negative? (c) Is the image real or virtual? 
 
((Solution)) 
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Then we have cm
p

f 2
3

 , or p = 6 cm and cmq 5.1
4

6
 . Since m>0, the image 

is upright. 
 
(b) f = -2cm. The spherical mirror is convex. 
(c)  Since q<0, the image is virtual. 
 



 
APPENDIX 

Combinations of four lenses 
((Example)) 
 

 
 

 
 
 
APPENDIX  Spherical refracting surface 

An important special case of a spherical refracting surface is a plane surface between 

two optical materials. This corresponds to setting R   (flat surface). In this case, 

 

1 2 0
'

n n

s s
    (plane refracting surface). 

 
From this equation, we see that the sign of s’ is opposite that of s. Therefore, the image 

formed by a flat refracting surface is on the same side of the surface as the object. When 

light travels through a plane surface between two optical materials, the image has the same 

Object Image

Object Image



lateral size (m = 1) and is always erect. The apparent depth of a pool is less than its actual 

depth. 

 

 
 
A small fish swims at depth d below the surface of a pond. What is the apparent depth of 
the fish when viewed from above. 
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where 1 1.33n   for water and 2 1.00n  . A small fish in a pond sees a person in the air. If 

the person’s nose is a distance d  above the surface, how far above the surface does the 
face appear to the fish? 
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