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1. Huygens principle 

Every point on a primary wavefront serves as the source of spherical secondary 
wavelets such that the primary wavefront at some later time is the envelope of these 
wavelets. Moreover, the wavelets advance with a speed and frequency equal to that of 
the primary wave at each point in space.  

If the medium is homogeneous the wavelets may be constructed with finite radii, 
whereas if it is inhomogeneous the wavelets will have to have infinitesimal radii. Figure 
shows a view of a wavefront  as well as a number of spherical secondary wavelets 
which, after a time t, have propagated out to a radius of vt. The envelope of all of these 
wavelets is then asserted to correspond to the advanced primary wave ’. 
 

 
 



 
 
Fig. Huygens principle 

Every point (red dot) on a primary wavefront (red circle) serves as the source of 
spherical secondary wavelets such that the primary wavefront at some later time 
is the envelope of these wavelets.  

 
2. Diffraction by a double slit 

 

 
 

 



 
 
(a) Analysis in the complex plane 

The sum of the interfering spherical wavelets yields an electric field at P, given by 
the real part of 
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and k is the wavenumber, 
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If we define R to be the distance from the center of the line of oscillators to the point 
P, that is 
 



12

1
krkR   . 

 
Then we have the form for E as 
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The flux-density distribution within the diffraction pattern due to two coherent, 
identical, distant point sources in a linear array is equal to 
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E is the electric field of a light with the wavelength . d is the separation distance 
between the centers of the slits. 
 
(b) Phasor diagram in the x-y plane 

We now consider the superposition of two waves, 
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In the phasor diagram: 
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All the vertices lie on the circle with the radius R. R is related to 0( )OS E  by 
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The intensity is obtained as 
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((Note)) Geometry 
Proof of the geometry for the phasor diagram 
 

 
 
We consider two isosceles triangles. 
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In other words, points O, S, and T lie on a circle with radius R (the value of R will be 
specified later). We assume that 
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From the geometry shown in the Fig, we have 
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Then we get 
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The radius R and the side OS  are related as 
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This means that R is uniquely determined when the angle  and OS  are given. In Fig., 

ΔOST is a isosceles triangle with STOS  . When M is the midpoint of the side OT , it 

is found that SM is perpendicular to OT . We also get 
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((Note)) 

Energy flux of photon: energy of photon passing through area ( 1A  ) and time 

( t =1) 

 

2 2
0 0

1
2

2
E c t A c E      

   
 

or 

 
2

0I c E  

 

The time average: 
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Using the formula of the Poynting vector, we get the same result 
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We now consider the Young’s double slit experiment: The intensity of the double slit 

interference is 
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The time average of the energy flux of photon for the double slits with the same area a, 
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where 
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3. Young’s Interference Experiment 

 
(1) The intensity I has maxima at  
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where n is integer. The path difference is given by n. 
 
(2) The intensity has minima at 
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The vertical distance y on the screen (the distance between the slits S1 and S2, and the 
screen is D) is given by 
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The maximum’s vertical distance yn from the center of the pattern on the screen is 
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The minimum’s vertical distance yn from the center of the pattern on the screen is 
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((Note)) 
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The phase 
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since tanDy  . Since f s proportional to y, the intensity is also a periodic function of 

y. 
 
5. Interference from thin film 

(i) The refraction at an interface never causes a phase change.  
(ii) The reflection can, depending on the indexes of refraction on the two sides of 

the interface. When light traveling in a medium of the index of refraction (n1) is 
reflected from a medium of index n2, it undergoes a  phase shift if n2>n1, and it 
undergoes no phase change.  

(iii) When light of the wavelength  travels in a medium (with the index of refraction 
n), its wavelength is n = /n. 

 

 
 
We assume that n2>n1 and n2>n3. The phase of ray 1, 1 = . The phase of ray 2, 
 

2 = 
)/(

)2(2

2n

L




 

 
where 

2/ n  is the wavelength in the medium with the index of refraction n2. 



 
Then the phase difference is 
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Maximum reflection (bright film)) 
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Minimum reflection (dark film) 
 







mLn

mn
L





2

2

2

)12(
4

 

 
6. Newton ring 

((Wikipedia)) 

The phenomenon was first described by Robert Hooke in his 1664 book 

Micrographia, although its name derives from the physicist Sir Isaac Newton, who was 

the first to analyze it.  

The pattern is created by placing a very slightly convex curved glass on an optical 

flat glass. The two pieces of glass make contact only at the center, at other points there 

is a slight air gap between the two surfaces, increasing with radial distance from the 

center to the microscope. The diagram at right shows a small section of the two pieces, 

with the gap increasing right to left. Light from a monochromatic (single color) source 

shines through the top piece and reflects from both the bottom surface of the top piece 

and the top surface of the optical flat, and the two reflected rays combine and superpose. 

However the ray reflecting off the bottom surface travels a longer path. The additional 

path length is equal to twice the gap between the surfaces. In addition the ray reflecting 

off the bottom piece of glass undergoes a  phase reversal, while the internal reflection 

of the other ray from the underside of the top glass causes no phase reversal. The 

brightness of the reflected light depends on the difference in the path length of the two 

rays. https://en.wikipedia.org/wiki/Newton%27s_rings 

 



 
 

 

 
 
Fig. Newton ring. Note that the phase changes by   at the reflection from air to 

glass. 
 
From the geometry, we have 
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or 
 

dRr 2 . 
 
The phase of the ray 1 reflecting at the lower glass 
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The phase of the ray 2 reflecting at the upper glass 
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The phase difference between two rays is 
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The condition for the bright ring: 
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where m = 0, 1, 2, …… 
 
The condition for the dark rings: 
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where m = 0, 1, 2, 3,…. 
 
((Note)) Beautiful Newton ring; see the Wekipedia 
 

http://en.wikipedia.org/wiki/Newton%27s_rings 
 
7. Lloyd’s mirror 

 
An arrangement for producing an interference pattern with a single light source. 

Waves reach point P either by a direct path or by reflection. The reflected ray can be 
treated as a ray from the source S’ behind the mirror. This arrangement can be thought 
of as a double slit source with the distance between points S and S’ comparable to length 
d. 

An interference pattern is formed. The positions of the dark and bright fringes are 
reversed relative to pattern of two real sources. This is because there is a 180° phase 
change produced by the reflection 
 
((Example)) Problem 35-87 

In Fig., a microwave transmitter at height a above the water level of a wide lake 
transmits microwaves of wavelength  toward a receiver on the opposite shore, a 
distance x above the water level. The microwaves reflecting from the water interfere 
with the microwaves arriving directly from the transmitter. Assuming that the lake width 
D is much greater than a and x, and that ≥a, find an expression that gives the values of 
x for which the signal at the receiver is maximum. 
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Then the path difference r (= r2 – r1) is obtained as 
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The phase difference between two rays is 
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where m is an integer. Here we take into account of the phase change by  on the 
reflection of the ray 2 at the point C. Then we have 
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8. Michelson’s interferometer 

8.1 Method 

The basic design of the Michelson interferometer is shown in Fig.1. The light beam 
from the arc source (Hg or Na) is separated in two parts by the partly silvered surface P. 
At this point, half the beam is reflected to M1 and the other half is transmitted to M2. 

Mirrors M1 and M2 reflect the light back to the half silvered plate, and half of each beam 

reaches the observer, the remainder being directed back to the source and lost. The 
mirror M1 can be translated toward or away from the observer by means of micrometer. 

The calibration of the micrometer reading is necessary.  
Suppose that the distance between M1 and P is d1 and the distance between M2 and 

P is d2. When the condition 

 
2(d1 - d2) = n(n: integer). 

 
 
the circular fringe can be observed. Since d2 is fixed and d1 is varied, this equation is 

rewritten as 
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Figure 1 

M1

M2

d1

d2
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light 
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8.2. Determine the difference of wavelength 1 and 2 of Na D lines. 

The wavelength difference between two close lines such as the components of the 
sodium D lines is determined from their average wavelength and the visibility of fringes. 
At certain positions of mirror M1, it is found that the fringes are clear and sharp whereas 

at intermediate positions, they are very indistinct. The reason is that there are two sets 
of fringes which are not identical, and at some positions, the two sets are in step and the 
overall fringe pattern sharp, whereas at the intermediate positions the two sets overlap 
thus washing out the overall pattern. Figure 2 shows the situation schematically. The 
separation of the positions of maximum (or minimum) visibility of the fringe pattern 
determines the wavelength difference. Let the two wavelengths be described by 1 and 

2(<1). Let da and db represent points where both set of fringes are in step (maximum 

visibility) for d1. Then we have 
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Obtain d. Using 1 = 589 nm and d, determine the difference for the Na D 

lines. 
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8.3. Physical meaning of Na D lines 

Consider a sodium atom. From standard atomic spectroscopy notation, the ground-
state configuration is (1s)2(2s)2(2p)6(3s). The inner 10 electrons can be visualized to 
form a spherically symmetrical electron cloud. We are interested in the excitation of the 
eleventh electron from 3s to a possible higher state. The nearest possibility is excitation 
to 3p. Because the central potential is no longer of the pure Coulomb form, 3s and 3p 
are now split. The fine structure brought by spin orbit coupling (VLS) refers to even a 

finer split within 3p, between 3p1/2 and 3p3/2, where the subscript refers to j. 
Experimentally, we observe two closely separated yellow lines- known as the sodium D 
lines- one at 589.6 nm, the other at 589.0 nm. 
 

0.6  nm = 6 Å. 
. 

 
 
9. Fabry-Perot Interferometer (Physics Department, Junior Laboratory 

The Fabry-Perot interferometer, devised by C. Fabry and A. Perot in 1899, employs 
multiple-beam interference. It is used to measure wavelengths with high precision and 
to study the fine structure of spectrum lines. A Fabry-Perot interferometer consists 
essentially of two optically flat, partially reflecting plates of glass or quartz with their 
reflecting surfaces held accurately parallel. If the plate spacing can be mechanically 

3P3/2

3P1/2

3S1/2

= 589.6 nm= 589.0 nm

Doublet or  
“fine” structure{



varied, the device is called an interferometer, whereas if the plates are held fixed by 
spacers, it is called an etalon. The surfaces must be extremely flat and parallel in order 
to obtain the maximum fringe sharpness. We consider the case of the Fabry-Perot etalon 
(Fig.1). In this case the interference occurs when the condition  
 

2t = n, (1) 
 
is satisfied, where t is the thickness of parallel plate,  is the wavelength of the light 
source, and n is an integer. 
 

 
 
 
Fig. Arrangements for the Fabry-Perot etalon 
 
((Note)) 

The Fabry-Perot interferometer 

 

https://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer 

 

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from 

two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the 

optical cavity only when they are in resonance with it. It is named after Charles Fabry 

and Alfred Perot, who developed the instrument in 1899. Etalon is from the French 

étalon, meaning "measuring gauge" or "standard". Etalons are widely used in 

telecommunications, lasers and spectroscopy to control and measure the wavelengths of 

light. Recent advances in fabrication technique allow the creation of very precise tunable 

Fabry–Pérot interferometers. The device is called an interferometer when the distance 

between the two surfaces (and with it the resonance length) can be changed, and an 

etalon when the distance is fixed (however, the two terms are often used 

interchangeably).  

 
((Jenkins and White)) 
 



 
 

Fig. Fabry-Perot interferometer 1 2E E  set up to show the formation of circular 

interference fringes from multiple reflections. 
 

This instrument utilizes the fringes produced in the transmitted light after multiple 
reflection in the air film between two plane plates thinly silvered on the inner surfaces. 
Since the separation d between the reflecting surfaces is usually fairly large (from 0.1 
to 10 cm) and observations are made near the normal direction, the fringes come under 
the class of fringes of equal inclination. To observe the fringes, the light from a broad 

source ( 1 2)S S  of monochromatic light is allowed to traverse the interferometer plates 

1 2E E . Since any ray incident on the first silvered surface is broken by reflection into a 

series of parallel transmitted rays, it is essential to use a lens L, which may be the lens 
of the eye, to bring these parallel rays together for interference. A ray from the point P1 
on the source is incident at the angle , producing a series of parallel rays at the same 
angle, which are brought together at the point P2 on the screen AB. It is to be noted that 
P2 is not an image of P1. The condition for the reinforcement of the transmitted rays is 
given by 
 

2 cosd m  . 
 
Here we derive this condition with the aid of the Mathematica. 



 
 

 
 
Using the above figure, the condition for the constructive and destructive interferences 
can be obtained as follows. 
 

OB r  
 
For the ray-2 (along the path BACE) 
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For the ray-1 (along the path BDF) 
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The phase difference between the ray-1 and ray-2 is 
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since cosr d  , where  is the wavelength. The constructive interference occurs 
when the condition is satisfied 
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The destructive interference occurs when 
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2
d m   . 

 
A typical circular fringe observed using the Fabry-Perot experiment, is shown below. 
 

 
 



Fig. Interference fringes, showing fine structure, from a Fabry–Pérot etalon. The 
source is a cooled deuterium lamp. (Wikipedia) 
https://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer
#/media/File:Fabry_Perot_Etalon_Rings_Fringes.png 
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10. Typical problems 

10.1 Problem 35-31 

Three electromagnetic waves travel through a certain point P along an x axis. They 
are polarized parallel to a y axis, with the following variations in their amplitudes. Find 
their resultant at P. 
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((Solution)) 
 = 2.0 x 1014 ead/s 
OA = 5 
OB = 10 
OC = 5 
 = 45° 
 
We use the phasor diagram. 



 
From the symmetry, the resultant y-component is equal to zero. 
The resultant x-component = 2 x (5cos45°) + 10 = 2510   
 

)0sin(1.17)0sin()2510(  ttEtotal   

 
10.2 Problem 35-78 

 
 

 
 

A thin film of liquid is held in a horizontal circular ring, with air on both sides of the 
film. A beam of light at wavelength 550 nm is directed perpendicularly onto the film, 
and the intensity I of its reflection is monitored. Figure gives intensity I as a function of 
time t; the horizontal scale is set by ts = 20.0 s. The intensity changes because of 
evaporation from the the two sides of the film. Assume that the film is flat and has 
parallel sides, a radius of 1.80 cm, and an index of refraction of 1.40. Also assume that 
the film’s volume decreases at a constant rate. Find the rate. 

 
 
((Solution)) 



 = 550 nm 
r = 1.80 cm 
n = 1.40 
period = 12 s. 

 
The constructive interference: 
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The rate of the volume change: 
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10.3 Problem 35-81 Michael interferometer 

In Fig., an airtight chamber of length d = 5.0 cm is placed in one of the arms of a 
Michelson interferometer. (The glass window on each end of the chamber has negligible 
thickness.) Light of wavelength source  = 500 nm is used. Evacuating the air from the 
chamber causes a shift of 60 bright fringes. From these data evaluate the six significant 
refraction of air at atmospheric pressure. 
 



 
 
((Solution)) 
d = 5.0 cm.  = 500 nm. 
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where L is the geometrical path difference between two rays, and m1 and m2 are 
positive integers. Then we have 
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Since nvacuum = 1, we have 
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10.4 Problem 35-89 

A double-slit arrangement produces bright interference fringes for sodium light ( 
= 589 nm) that are angularly separated by 0.30º near the center of the pattern. What is 



the angular fringe separation if the entire arrangement is immersed in water, which has 
an index of refraction of 1.33? 
 
((Solution)) 
 = 589 nm 
n = 1.33 
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From Eq.(1), 
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where cos ≈ 1. 
 
From Eq,(2) 
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where cos’≈ 1. 
 
Then we have 
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for m = 1. 
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for m’ = 1. 
 
APPENDIX: Josephson junction and DC SQUID 

 
A1. Introduction 

For superconducting tunnel junctions with extremely thin insulating layers (10 – 15 
Å) (weak link between the superconductors), the electron pair correlations extend 
through the insulating barrier. In this situation, it has been predicted by Josephson that 
paired electrons (Cooper pairs) can tunnel without dissipation from one superconductor 
to the other superconductor on the opposite side of the insulating layer [B.D. Josephson, 
Phys. Lett. 1, 251 (1962). The direct supercurrent of pairs, for currents less that Ic, flows 
with zero voltage drop across the junction (DC Josephson effect). The width of the 
insulating barrier of the junction limits the maximum that can flow across the junction, 
but introduce no resistance in the flow. Josephson also predicted that in the case a 
constant finite voltage V is established across the junction, an alternating supercurrent 
Ic sin(Jt+0) flows with frequency J = 2eV/ħ (AC Josephson effect 

Tunneling if Cooper pairs form a superconductor through a layer of insulator into 
another superconductor. Such a junction is called a weak link. 
(i) DC Josephson effect 

A DC current flows across the junction in the absence of any electric or magnetic 
field. 

(ii) AC Josephson effect 
A DC voltage applied across the junction causes rf (radio frequency) current 
oscillation across the junction. 

(iii) Macroscopic long range quantum interference 
A DC magnetic field applied through a superconducting circuit containing two 
junctions causes the maximum supercurrent to show interference effects as a 
function of magnetic field intensity. 

 

((Brian D. Josephson)) 

Josephson, Pippard’s graduate student at Cambridge, attending Philip  Anderson’s 

lectures there in 1961 to 1962, became fascinated by the concept of the pgase of the 

BCS-GL order parameter as a manifestation of the quantum theory on a macroscopic 

scale. Playing with the theory of Giaver tunneling, Josephson found a phase-dependent 

term in the current; he then worked out all the consequences in a series of papers, 

private letters, and a privately circulated fellowship thesis. In particular, Jpsephson 

predicted that a direct current should flow, without any applied voltage, between two 

superconductors separated by a thin insulating layer. This current would come as a 



cones quence of the tunneling of electron pairs between the superconductors, and the 

current would be proportional to the sine of the phase difference between the 

superconductors. At a finite applied voltage V, an alternating supercurrent of frequency 

2eV/h should flow between the superconductors. Josephson’s work established the 

phase as a fundamental variable in superconductivity.(Book edited by Hoddeson et 
al.12). 
 
A2. DC Josephson junction3 

 

 
Fig.1 Schematic diagram for experiment of DC Josephson effect. Two 

superconductors SI and SII (the same metals) are separated by a very thin 
insulating layer (denoted by green). A DC Josphson supercurrent (up to a 
maximum value Ic) flows without dissipation through the insulating layer. 

 
A3. SQUID (superconducting quantum interference device)3 

A.3.1 Current density and flux quantization 

In quantum mechanics, the current density is defined as 
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where q (=-2e, e>0) is a charge for electron pairs, m is a mass, A is a vector potential, 
and  is a wavefunction. When the wavefunction is given by the amplitude |(r)|and 
the phase (r) as 
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then J can be rewritten as 
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Note that this current density is invariant under the gauge transformation.  AA '  
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If we consider now a cylinder which may become superconductor in an external 
magnetic field and if we take a path from a surface at a distance which is larger than the 
penetration depth , then J = 0. When q = -2e, we have 
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where  is the magnetic flux inside the ring and )2/(20 ecℏ  (=2.06783372 x 10-7 

Gauss cm2) is a quantum fluxoid. In the last equation we apply the Stoke’s theorem.  
 
((Note)) 

The current flows along the ring. However, this current flows only on the surface 
boundary (region from the surface to the penetration depth ). Inside of the system 
(region far from the surface boundary), there is no current since 4 / c H J  and 
H = 0. 
 

 

A.3.2 DC SQUID (double junctions): quantum mechanics 

DC SQUID consists of two points contacts in parallel, forming a ring. Each contact 
forms a Josephson junctions of superconductor 1, insulating layer, and superconductor 
2 (S1-I-S2). Suppose that a magnetic flux  passes through the interior of the loop. 



 
 
Fig. Schematic diagram of DC SQUID (superconducting quantum interference 

device). 1 and 2 refer to two point-contact weak links. The rest of the circuit is 
strongly superconducting. 

 

Here we have 
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where )( 111 ab    is the phase difference between the superconductors a and b 

through the junction 1 and )( 222 ab    are is the phase difference between the 

superconductors a and b through the junction 2.  
 
When B = 0 (or  = 0), we have 021   . In general, we put the form 
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The total current is given by 
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The simple two point contact device corresponds to a two-slit interference pattern, for 
which the physically interesting quantity is the modulus of the amplitude rather than the 
square modulus, as it is for optical interference patterns. 
 
((Note)) Use of DC SQUID to measure the magnetic flux 
 

We find that the critical current periodically changes as a function of /0. The 

critical current is equal to 2Ic for n 0/ , while it equal to zero for 2/1/ 0  n . 

In the real system, the critical current is finite for 2/1/ 0  n . As shown in Fig., 

the I-V curve for n 0/  is rather different from that for n 0/ +1/2. When the 

total current I is fixed, it follows that the voltage across the DC SQUID periodically 

changes as a function of 0/ . Using this principle, the value of  can be exactly 

determined by n0 within the error of n = ±1, where n is an integer. 
 



 
 
A.3.3 Analogy of the diffraction with double slits and single slit 

 

 
Fig. Diffraction effect of Josephson junction. A magnetic field B along the z direction, 

which is penetrated into the junction (in the normal phase). 
 
We consider a junction (1) of rectangular cross section with magnetic field B applied in 
the plane of the junction, normal to an edge of width w. 
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weith q = -2e. We use the vector potential A given by 
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Here we introduce the total magnetic flux passing through the area Wt ( BWtW  ), 

LtJIc 0 , and 
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The total current is given by 
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The short period variation is produced by interference from the two Josephson junctions, 
while the long period variation is a diffraction effect and arises from the finite 
dimensions of each junction. The interference pattern of |I|2 is very similar to the 
intensity of the Young’s double slits experiment. If the slits have finite width, the 
intensity must be multiplied by the diffraction pattern of a single slit, and for large angles 
the oscillations die out. 
 
A.4 Application of SQUID 

 



 


