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Interference is the more general concept: it refers to the phenomenon of waves interacting. 
Waves will add constructively or destructively according to their phase difference. 
Diffraction usually refers to the spreading wave pattern from a finite-width aperture. 
 
1. Diffraction by a single slit 

 

 
 
Fig. Single slit diffraction. 
 
Imagine the slit divided into many narrow zones, width y (=  = a/N). Treat each as a 
secondary source of light contributing electric field amplitude E to the field at P. 
 



 
 

We consider a linear array of N coherent point oscillators, which are each identical, 
even to their polarization. For the moment, we consider the oscillators to have no intrinsic 
phase difference. The rays shown are all almost parallel, meeting at some very distant point 
P. If the spatial extent of the array is comparatively small, the separate wave amplitudes 
arriving at P will be essentially equal, having traveled nearly equal distances, that is 
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The sum of the interfering spherical wavelets yields an electric field at P, given by the 
real part of 
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((Note)) 

When the distances r1 and r2 from sources 1 and 2 to the field point P are large compared 
with the separation , then these two rays from the sources to the point P are nearly parallel. 
The path difference r2 – r1 is essentially equal to  sin. 

Here we note that the phase difference between adjacent zone is  
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where k is the wavenumber, 

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k . It follows that 
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Thus the field at the point P may be written as 
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We now calculate the complex number given by 
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If we define D to be the distance from the center of the line of oscillators to the point P, 
that is 
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Then we have the form for E as 
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The intensity distribution within the diffraction pattern due to N coherent, identical, 
distant point sources in a linear array is equal to  
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in the limit of N→∞, where 
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 is the phase difference 
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With 
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where a = N. We make a plot of the relative intensity I/Im as a function of . 
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Note that 
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The numerator undergoes rapid fluctuations, while the denominator varies relatively 
slowly. The combined expression gives rise to a series of sharp principal peaks separated 
by small subsidiary maxima. The principal minimum occurs in directions in direction m 
such that 
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2. Shape of the intensity 

 

 
 
Here we examine the function form of the relative intensity  
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in the small limit of . The function I/I0 is equal to 4/2 = 0.405 for  = , and is ½ for  = 
2.78311 = 0.8859 . The main feature of the intensity I/I0 is that the intensity is large only 
in 
 

  ,  or 
aa





2

1
sin

2

1
  

 
or 
 

a

a









 )(sin

 (diffraction limit) 

 



For the diffraction pattern of a circular aperture of the diameter d, we have the condition 
of 
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Fig. Fraunhofer diffraction pattern for a circular aperture (Mathematica). We use the 

FFT program of the Mathematica 
 
3. Phasor diagram 

In order to discuss the intensity I, we need to calculate the sum defined by 
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in the complex plane, where 


 sink
N
 . For simplicity, here we solve this problem 

geometrically using the phasor diagram (in the real x-y plane). There are N isosceles 
triangular lattices (see the Figs. below). The first one is of length E0/N and it has a phase 
equal to zero. The next one is of length E0/N and it has a phase equal to φ. The next one is 
of length E0/N and it has a phase equal to 2φ, and soon. So we get an equiangular polygon 
with N sides. 
 



 
 
Fig. The resultant amplitude of N = 6 equally spaced sources with net successive phase 

difference φ.  = N φ = 6 φ. 
 
______________________________________________________________________ 

 

 
 
Fig. The resultant amplitude of N = 36 equally spaced sources with net successive phase 

difference φ. 
 
We now consider the system with a very large N. We may imagine dividing the slit into N 
narrow strips. In the limit of large N, there is an infinite number of infinitesimally narrow 



strips. Then the curve trail of phasors become an arc of a circle, with arc length equal to 
the length E0. The center C of this arc is found by constructing perpendiculars at O and T.  
 

 
 
The radius of arc is given by  
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in the limit of large N, where R is the side of the isosceles triangular lattice with the vertex 
angle φ, and the phase difference  is given by  
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with the value  being kept constant. Note that   is the change of phase for two rays 

separated by 
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Then the amplitude Ep of the resultant electric field at P is equal to the chord OT , which 
is equal to 
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Then the intensity I for the single slits with finite width a is given by 
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where Im is the intensity in the straight-ahead direction where  

The phase difference  is given by 


 sin2sin2sin p
a

ka  . We make a 

plot of I/Im as a function of , where p = a/ is changed as a parameter. 
 

 
 
Fig. The relative intensity in single-slit diffraction for various values of the ratio p = a/. 

The wider the slit is the narrower is the central diffraction maximum. 
 
4. Diffraction patterns 

4.1 Young’s double slit experiment (two slits with finite width) 

We consider the Young’s double slits (the slits are separated by d). Each slit has a finite 
width a. 



 
Fig. Geometric construction for describing the Young’s double-slit experiment (not to 

scale). 
 
The intensity is given by 
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We note that the peak due to the double slit diffraction occurs at 
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The intensity becomes zero when 
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Fig. Diffraction pattern with the double slit with the distance d and the single slit with 

the distance a. d a . 
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Fig. Intensity ratio I/I0 vs angle  (degrees) when p = d/ = 48 and q = a/ = 4. 
 

 
Fig. Fraunhofer diffraction pattern for the Young’s double slits. See my article on the 

Fraunhofer diffraction in 
 

http://physics.binghamton.edu/Sei_Suzuki/suzuki.html 
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Fig. The intensity I as a function of y (x = 300) in the above Fraunhofer diffraction 

pattern. 
 
4.2 DC SQUID 

Analogy of the diffraction with double slits and single slit 

See my article on the Josephson junction and DC SQUID for the detail; 
 

 
Fig. Diffraction effect of Josephson junction. A magnetic field B along the z direction, 

which is penetrated into the junction (in the normal phase). 
 
We consider a junction (1) of rectangular cross section with magnetic field B applied in 
the plane of the junction, normal to an edge of width w. 
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with q = -2e. We use the vector potential A given by 
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Here we introduce the total magnetic flux passing through the area Wt ( BWtW  ), 

LtJIc 0 , and 
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Therefore, we have 
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The total current is given by 
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The short period variation is produced by interference from the two Josephson junctions, 
while the long period variation is a diffraction effect and arises from the finite dimensions 
of each junction. The interference pattern of |I|2 is very similar to the intensity of the 
Young’s double slits experiment. If the slits have finite width, the intensity must be 
multiplied by the diffraction pattern of a single slit, and for large angles the oscillations die 
out. 
 
 



 
 
 
5. Diffraction by a circular aperture 

 

5.1 Rayleigh’s criterion 

 

 
 



 
 
Fig. Diffraction patter of single-slit with a size a. The intensity becomes zero for 

a


  . 

 

 
 
We consider the angular separation of the two point-sources (centered at  = 0 and  = -
0) for the single slit with the width a. Noting that 
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the intensity is given by 
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as a result of the superposition. The intensity ( )I  has a peak at 0  , while the intensity 

( )I  has a peak at 0  . We make a plot of the intensity as a function of 
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Fig. Superposition of the intensity I/Imax centered with  = 0 and the intensity I/Imax 

centered with  = -0, as a function of / (2 )x   , where 
0 0sin

a
x 


  is 

changed as a parameter. x0 = 0.25 (red), 0.5 (blue), 0.60 (blue), 0.75 (green), and 
1.00 (purple). 

 
 
The Rayleigh’s criterion is satisfied for x0 = 0.5. 
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where 
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For the circular aperture, we have 
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where d is the diameter of circular aperture. 
 
((Mathematica)) 

ContourPlot of the double peaks in the x-y plane. 
 
(a) x0 = 0.65 
 

 
 
(b) x0 = 0.50 
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(c) x0 = 0.40 
 

 
 

 
5.2 Example 

Problem 36-84 

If you look at something 40 m from you, what is the smallest length (perpendicular to 
your line of sight) that you can resolve, according to Rayleigh’s criterion? Assume the 
pupil of your eye has a diameter of 4.00 mm, and use 500 nm as the wavelength of the light 
reaching you. 
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((Solution)) 
d = 4.0 mm for the diameter of pupil 
 = 500 nm. L = 40 m. 
 

 
 
We use the Rayleigh criterion, 
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From the above figure, we have 
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5.3 Rayleigh criterion of iris diameter 

We calculate the Rayleigh criterion of the iris diameter of human eyes a, 
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Suppose that a = 5 mm = 5x10-3 m and the wavelength 500  nm. Then we have 
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6. Diffraction gratings 

6.1 The definition 

 
 
The diffracting grating consists of a large number of equally spaced parallel slits. A 

typical grating contains several thousand lines per centimeter. The intensity of the pattern 
on the screen is the result of the combined effects of interference and diffraction. Each slit 
produces diffraction, and the diffracted beams interfere with one another to form the final 
pattern. 
 
6.2 Diffraction Grating, Types 

A transmission grating can be made by cutting parallel grooves on a glass plate. The 
spaces between the grooves are transparent to the light and so act as separate slits. A 
reflection grating can be made by cutting parallel grooves on the surface of a reflective 
material. 
 
6.3 Diffraction Grating 

 

q



 
 
The condition for maxima is 
 

d sin θ = m λ (bright) 
 
where m = 0, 1, 2, … The integer m is the order number of the diffraction pattern. If the 
incident radiation contains several wavelengths, each wavelength deviates through a 
specific angle. 
 
6.4 Diffraction Grating, Intensity 

All the wavelengths are seen at m = 0. This is called the zero-th order maximum. The 
first order maximum corresponds to m = 1. Note the sharpness of the principle maxima and 
the broad range of the dark areas 
 
6.5 Characteristics of the intensity pattern 

The sharp peaks are in contrast to the broad, bright fringes characteristic of the two-slit 
interference pattern. Because the principle maxima are so sharp, they are much brighter 
than two-slit interference patterns. 
 



 
 

Fraunhofer diffraction pattern of diffraction grating (10 slits) 
(Mathematica) 

 

6.6 Diffraction Grating Spectrometer 

 

 
 

The diffraction grating spectroscopy consists of a slit, a collimator, a rotatable table, 
and a rotatable telescope. A transmission grating, consisting of a mask with a large number 
of evenly spaced slits, is positioned on the table with the slits vertical. Parallel light from 
the collimator is diffracted by the slits and the diffracted beams are combined to form an 
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image of the collimator slit at the telescope focus. In the Sophomore laboratory we use the 
Hg (mercury) light source having the wavelengths listed below 
 
Hg lamp 

Color  Wavelength (nm) 
 
Yellow  576.959 
Yellow  579.065 
Green  546.074 (intense) 
Blue  435.835 
Violet  404.656 (intense) 

 
When the slit width of the diffraction grating is d, each spectrum of the mercury light 

is measured at the condition given by 
 

 nd sin  
 
The slit width d is typically denoted as the number of lines per inch (LPI); for eaxmaple, 
15000 LPI. The slit width d is shorter than the wavelength . 
 

1 inch = 25.40 mm = 25.40 x 106 nm 
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6.7 Intensity with N slits 

We now consider the intensity for the system with N slits. The electric field for each 
slit is given by 
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where = kdsin. In order to obtain the resultant electric field, we use the phasor 
diagram. 
 



 
 

Fig. The phasor diagram of the diffraction grating (N = 10). 
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where 
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Then the intensity I is obtained as 
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The diffraction pattern (N = 2, 4, 8, and 16) 
 

 
((Another method for the derivation of the intensity)) 

In the phasor diagram, the x and y components of the resultant electric field is given 
by 
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For N = 3, 
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For N = 4 
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6.8 Resolution 
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where 



 sin
2

d . What is of particular interest is that the pattern contains principal 

maximum when the denominator becomes zero, namely when 
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where n = 0, 1, 2, 3, 4, ….The intensity at the principal maximum can be found as 
follows. For   n2 ,  
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When 
2

N
x  , I is rewritten as 
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x

x

I

I
  

 
In the limit of x→0, I/I0 tends to unity. 



 

 
 
The width of the principal maximum is given by the first minimum of the function sinx/x, 
which occurs when x = ±. From the definition, we have 
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since   n2 . The phase difference   can be also written as 
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or 
 





cosNd

hw   (half-width of line at ). 

 
The expression for  is approximated by 
 

Nd
hw


   

 
This means that  becomes very small in the limit of large N. 
 
((Analysis of resolution)) 
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The peak appears when sin( ) 0x  ; x = 0, 1, 2,….. The peak width can be estimated 

from sin( ) 0N x  , as 

 

N x   , 
1

x
N

  

 
Leading to the line-width as 2 / N . When N increases, the line-width becomes extremely 
narrow. 
 

 
 

Fig. The diffraction pattern for the diffraction grating. The Intensity ratio 0/I I  as a 

function of 
d

x 


 . N = 15. The peak appears at x = 0,1, 2, 3, . The line-width of 

the peak is 
1d

x
N




    . The peak appears at m
d


   with m = 0, 1, 2, 3,… 

The resolution is 
Nd


  . 

 
((Example)) Diffraction grating 
2500 lines/inch. 1 inch = 2.54 cm. The separation distance d is 



 
10.16d  m. 

 
We use the wavelength   = 630 nm. We can observe the signal at  
 

1
d


  =3.55°. 

 
6.9 Dispersion D 

The dispersion D is defined by 
 


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where  is the angular separation of two lines whose wavelengths differ by . Using 
the relation 
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6.10 Resolving power R 

The resolving power R is defined by 
 





 avg
R  (resolving power defined). 

 
where avg is the mean wavelength of two emission lines that can barely be recognized as 
separate, and  is the wavelength difference between them. 
 
Here we use the relations given by 
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Then we have 
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or 
 

NmR 






  (resolving power of a grating). 

 
The greater the number of slits N, the better the resolution. Also, the higher the order m 
of the diffraction-pattern maximum that we use, the better the resolution. 
 
((Example)) 

For example, consider the case of Na D lines; 
 

 
 
R is estimated as 
 

2.982
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6.11 Example 

Problem 36-64 

A diffraction grating illuminated by monochromatic light normal to the grating 
produces a certain line at angle . (a) What is the product of that line’s half-width and the 
gratin’s resolving power?.(b) Evaluate that product for the first order of a grating of slit 
separation 900 nm in light of wavelength 600 nm. 
 
((Solution)) 

The phase  is defined as 
 





 sin
2

d  

 
for the diffraction grating with N slits. The constructive interference occurs when 
 

m 2  or  md sin  
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= 589.6 nm= 589.0 nm

Doublet or  
“fine” structure{



where m is interger. From the definition, we have 
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(b) d = 900 nm.  = 600 nm. 

For m = 1, 
3

2
sin 

d


 , or  81.41  

Then we have  
 

894.0)81.41tan(tan  hwR  

 
6.12 Compact disc 

The tracks of a compact disc act as a diffraction grating, producing a separation of the 
colors of white light. The nominal track separation on a CD is 1.6 m , coprresponding to 

about 625 tracks per mm,. This is in the range of ordinary laboratory diffraction gratings. 
For red light of wavelength 600 nm, this would give a first diffraction maximum at about 
22°. 
 

 
 
6.13 ((Example)) Diffraction grating of helical coil 



A helical coil has a centerline shape of a helix. A helix (pl: helixes or helices) is a curve 
that forms a spiral or a coil in space. I found the pattern of the diffraction grating of the 
helical coil in the web site. 

 

 
 
Experiment with Diffraction grating made from a helical coil. The diffraction pattern is 
very similar to that of DNA obtained by Rosalind Franklin. 
 
https://www.youtube.com/watch?v=I9Ab8BLW3kA 
 
((Experimental results)) 

Photo 51 was an X-ray diffraction image that gave them some crucial pieces of 

information. It was only after seeing this photo that Watson and Crick realized that DNA 

must have a double helical structure. The problem was that Photo 51 was actually made 

by Rosalind Franklin. 



 
 
7. x-ray difraction 

7.1 x-ray source 

 



 
 
Fig. Schematic diagram for the generation of x-rays. Metal target (Cu or Mo) is 

bombarded by accelerating electrons. The power of the system is given by P = 
I(mA) V(keV), where I is the current of cathode and V is the voltage between the 
anode and cathode. Typically, we have I = 30 mA and V = 50 kV: P = 1.5 kW. 

 
We use two kinds of targets to generate x-rays: Cu and Mo. 

The wavelength of CuK1, CuK2 and CuK lines are given by 
 

1K  540562.1  Å. 2K  = 1.544390 Å, K = 1.392218 Å. 

 
The intensity ratio of CuK1 and CuK2 lines is 2:1. 
 
The weighed average wavelength 

 K
is calculated as 
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
  = 1.54184 Å. 

 
((Note)) The wavelength of MoK is 

 K
 = 0.71073 Å. Figure shows the intensity versus 

wavelength distribution for x rays from a Mo target. The penetration depth of MoK line 
is much longer than that of CuK l,ine. 
 

 1K  = 0.709300 Å. 2K  = 0.713590 Å,  K = 0.632 Å 
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Fig. Intensitry vs wavelength distribution for x-rays from a Mo target bombarded by 30 

keV electrons from C. Kittel, Introduction to Solid State Physics. 
 
7.2 Principle of x-ray diffraction 

x-ray (photon) behaves like both wave and particle. In a crystal, atoms are periodically 
located on the lattice. Each atom has a nucleus and electrons surrounding the nucleus. The 
electric field of the incident photon accelerates electrons. The electrons oscillate around a 
equilibrium position with the period of the incident photon. The nucleus does not oscillate 
because of the heavy mass. 

Classical electrodynamics tells us that an accelerating charge radiates an 
electromagnetic field. 
 
 

 



 
Fig. Schematic diagram for the interaction between an electromagnetic wave (x-ray) and 

electrons surrounding nucleus. The oscillatory electric field (E = E0e
it) of x-ray 

photon gives rise to the harmonic oscillation of the electrons along the electric field. 
 
The instantaneous electromagnetic energy (radiation) flow is given by the pointing vector 
 

2 2

2
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The direction of the velocity v (the direction of the oscillation) is along the x direction. The 
direction of the photon radiation is in the (x, y) plane.  
 
7.3 Experimental configuration of x-ray scattering 

 

 
 
Fig. Example for the geometry of  (= ) – 2 scan for the (00L) x-ray diffraction. The 

Cu target is used. The direction of the incident x-ray is 2 = 0. The angle between 
the detector and the direction of the incident x-ray is 2. W is the rotation angle of 
the sample. 

 
((Example)) x-ray diffraction  
 
We show two examples of the x-ray diffraction pattern whicha are obtained in my 
laboratory 
(a) Stage- 3 MoCl5 graphite intercalation compound (GIC). MoCl5 are intercalated into 

empty graphite galleries. There are three graphene layers between adjacent MoCl5 
intercalate layers. 

 
(b) Ni vemiculte. Vermiculite is a layered silicate (a kind of clays). In the interlamellar 

space, Ni layer are sandwiched between two water layers. 
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Fig.  (00L) x-ray diffraction pattern of stage-3 MoCl5 GIC. 
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Fig. (00L) x-ray diffraction pattern of Ni-vermiculite with two water-layer hydration 

state. 
 
 
8. Bragg condition 

8.1. Bragg law 

The incident x-rays are reflected specularly from parallel planes of atoms in the crystal.  
(a) The angle of incoming x-rays is equal to the angle of outgoing x-rays. 
(b) The energy of x-rays is conserved on reflection (elastic scattering). 
 
The path difference for x-rays reflected from adjacent planes is equal to d = 2d sin. The 
corresponding phase difference is  
 

 = kd = (2/)2d sin. 
 

where k is the wave number (k = 2/) and  is the wave length. 
 
Constructive interference of the radiation from successive planes occurs when  = 2n, 
where n is an integer (Bragg’s law). 
 
 2d sin=n 
 



The Bragg reflection can occur only for ≤2d. 
 
The Bragg law is a consequence of the periodicity of the lattice. The Bragg law does not 
refer to the composition of the basis of atoms associated with every lattice point. The 
composition of the bases determines the relative intensity of the various orders of 
diffraction. 
 
 

 
 

 
 

d



Fig. Geometry of the scattering of x-rays from planar arrays. The path difference 
between two rays reflected by planar arrays is 2d sin.  

 
8.2  Concept of Ewald sphere: introduction of reciprocal lattice  

 

 
 

Fig. The geometry of the scattered x-ray beam. The incident x-ray has the wavevector 

ki (= k), while the outgoing x-ray has the wavevector kf (= k’). 
 /2 fi kk

, 
where  is the wavelength of x-ray. 

 

Bragg law: 
 

 ld sin2  
 
ki is incident wavevector. 
kf is the outgoing wavevector. 
 

2
i f



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Q is the scattering vector: 
 

i f Q k k
, or f i Q k k

 
 



 
 
Fig. The geometry (Ewald sphere) using a circle with a radius k (= 2/). The scattering 

vector Q is defined by Q = kf – ki.  
 
This is a part of the Ewald sphere. The detail of the Ewald sphere will be discussed later. 
 
In the above configuration, Q is perpendicular to the surface of the system 
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 
   Q k  (Bragg condition) 

 
which coincides with the reciprocal lattice point. In other words, the Bragg reflections 
occur, when Q is equal to the reciprocal lattice vectors. 
 

9. Typical examples 

 
9.1 Problem 36-9  Single slit 

A slit 1.00 mm wide is illustrated by light of wave length 589 nm. We see a diffraction 
pattern on a screen 3.00 m away. What is the distance between the first two diffraction 
minimum on the same side of the central diffraction maximum? 
 
((Solution)) 
 

f
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2q

O
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Q

ki ki

k f

Ewald sphere



 
a = 1.0 mm 
D = 3.00 m 
 = 589 nm 
 
The intensity from the single slit is given by 
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When  = m, the intensity becomes zero. 
 



 
 
The angle for the minimum intensity is 
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Then we have 
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m
DDDy mmm


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9.2 Problem 36-56 (SP-36) 

Derive this expression for the intensity pattern for a three-slit “grating”: 
 

)cos4cos41(
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where 
 

 /)sin2( d  and a<<. 

 
((Solution)) 

We consider the phasor diagram for the three-slit system 
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Then the intensity is obtained as 
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9.3 Problem 36-73 
 



 
 

In Fig., let a beam of x rays of wavelength 0.125 nm be incident on a NaCl crystal at 
angle  = 45.0 to the top face of the crystal and a family of reflecting planes. Let the 
reflecting planes have separation d = 0.252 nm. The crystal is turned through angle 
around an axis perpendicular to the plane of the page until these reflecting planes give 
diffraction maxima. What are the (a) smaller and (b) larger value of  if the crystal is turned 
clockwise and (c) smaller and (d) larger value of  if it is turned counterclockwise? 
 
((Solution)) 

 
d = 0.252 nm 
 = 0.125 nm 
 
Bragg condition: 



 
2d sin = m. 
 
m = 1  1 = 14.359°  45° - 1 = 30.641°
m = 2  2 = 29.735°  45° - 2 = 15.265° 
m = 3  3 = 48.075°  -45° + 3 = 3.075° 
m = 4  4 = 82.747°  -45° + 4 = 37.747° 
 
10. Rayleigh’s criterion 

Fraunhofer diffraction at a circular aperture is an effect of very great practical 

significance in the study of optical instrument. Here we derive the formula of Rayleigh 

criterion for the circular aperture. We consider the diffraction of radiation of wavelength 

  (wave number 
2

k



 ), incident normal to a circular aperture of radius a (at the point 

Q (x, y, 0)). Note that the incident wave is a plane wave with the wave vector k. 

 



 
 

Fig. Geometry of Fraunhofer diffraction, circular aperture. sinR s  . 
2s O Q
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The electric field for the outgoing spherical wave emitted from the point P (x, y, 0) on 

circular aperture is given by 
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at the detecting point B ( , , )X Y Z with 
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. Thus, we have 
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Suppose that ( , ) (cos , sin )x y     and ( , ) (cos , sin )X Y s    in the 2D plane. Then we 

get 
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From the symmetry of the system, it is reasonable to assume that 0  for the sake of 

simplicity. 
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Using the principle of superposition, the resultant electric field is obtained as 
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where da  is the element of area for the circular aperture, 

 

da d d   . 

 

Here we use the formula of the Bessel function, 
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leading to 
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Since 
1

ks
u
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
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1

ks
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R
 , this integral can be written as 
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Using the formula, 

 

,

 

 

we get 
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The intensity I is 
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We note that for sins R  , 
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Since 0  , we get 
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since 12 ( )
1

J u

u
  at u = 0. Finally, we get the intensity as 
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We make a plot of ( ) / ( 0)I I    as a function of . The intensity 

becomes zero when x = 3.83171. 
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When 2D a  (diameter), we get the Rayleigh criterion 

 
3.83171

sin 1.21967D   


   

 

 
 

2
sin sinx ka a


 


 

10 5 5 10

10 5

0.001

0.100



 
 

Fig. 
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 with 
2

sin sin
a

x ka


 


  . 1( )J x  becomes zero at 

3.83171x  , 7.0156, 10.1735.  
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11. Reflective diffraction grating 

The diffraction grating is an optical device widely used for studying the spectrum and 

measuring the wavelength of light. Diffraction gratings are made by ruling fine grooves to 

produce a transmission grating or a reflecting grating. As illustrated in Fig. below, the 

rulings are parallel, and equally spaced. The best gratings are several inches in width and 

contain 5,000 to 30,000 grooves per inch. The spacing distance d is 

 

4

2.54 cm
2540 nm

10
d   , 

 

for 10,000 lines per inch. 
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Fig. Schematic diagram of the grooves or rulings on a diffraction grating. 

 

A diffraction grating is an optical device used to disperse light into a spectrum. It is 

ruled with closely-spaced, fine, parallel grooves, typically several thousand per centimeter, 

that produce interference patterns in a way that separates all the components of the 

incoming light. A diffraction grating can be used as the main dispersing element in a 

spectrograph. The diffraction pattern produced by the grating is described by the equation 

 

sind m  , 

 

where m is the order number, λ is a selected wavelength, d is the spacing of the grooves, 

and θ is the angle of incidence of light.  

 

11.2. Example-1: reflective diffraction grating 

A reflection grating has grooves ruled onto a reflective coating on a surface that may 

be plane or concave, the latter being able to focus light. Its advantage over a transmission 

grating is that it produces a spectrum extending from ultraviolet to infrared, since the light 

doesn't pass through the grating material.  



We consider the case when the ray-1 and ray-2 are normally incident on the surface of 

diffraction grating with a periodic structure. After the reflection on the surface grating, The 

diffracted ray-1 and ray-2 have a constructive interference when the angle is given by 

 

sin md m   

 

 
 

The path difference between the ray-1 and ray-2 is 
 

O H sind   
 
where  OA d  
 
The phase difference is 
 

2
sind


 


   

 

The constructive interference occurs when 

 

sin md m   

 

11.3 Experiment with CD and laser pointer 

 



 
 

 
 



From Engineering University of Colorado Boulder 

https://www.teachengineering.org/content/uoh_/activities/uoh_diffraction/uoh_diffraction

_activity1_figure2.gif 

 
Fig. The laser beam is aligned with the normal of the CD surface (perpendicular to the 

CD). The incident and diffracted beams are clearly visible. The angles of the 
diffracted beams (the angle between the incident beam and diffracted beam) is 
measured.  

 
11.4  Explanation of the formula using the Ewald sphere (Solid State Physics) 

In order to understand the Bragg condition for the reflective diffraction grating, first 

we consider the Davisson-Germer experiment, where a two dimensional (2D) system [Ni 

<111> surface atomic separation d], plays the same role like the diffraction grating. In this 

experiment, the electron beam is incident at right angles to the Ni <111> surface. If it is 

regarded as the 2D lattice plane with the lattice constant d, it is predicted from the Bragg 

law (solid state physics) that a Bragg rod (ridge) is formed at the reciprocal lattice vector 

0G  in the reciprocal lattice space. (
0

2

d


G ). Thus, the Bragg condition occurs when 

 
2
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
  ,  or 

2 2
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m

d

 



 , or sind m  , 

 

using the Ewald sphere. In other words, the Bragg rod (ridge) with the reciprocal lattice 

vector 0G  intersects with the Ewald sphere with radius 
2

i f




 k k . 
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Fig. Ewald sphere (reciprocal lattice space) for the 2D structure system with a 

periodicity of distance d. The Bragg rod (ridge) is formed with 
0

2

d


G  in the 

reciprocal lattice space (see the textbook of Solid State Physics). According to the 

Bragg law, the Bragg reflection occurs when the condition 0sinfk G   is 

satisfied. In other words, the Bragg rod (ridge) for the 2D system intersects with 

the Ewald sphere with radius 
2

i f




 k k . Since 
2

f
k




  and 
0

2
G m

d


 , we 

get the Bragg condition, sind m  .  

 

Similar approach can be used for the reflective diffraction grating which forms a 1D 

structure. The light ray is incident at right angles to the diffraction grating. The Bragg 

condition occurs when the Bragg plane (for 1D system) denoted by the reciprocal lattice 

0G  intersects with the Ewald sphere with radius 
2

i f




 k k , where the Bragg plane is 

perpendicular to 0G . In this case, we get the same Bragg condition as 

 

0sinfk G  ,  or sind m  . 
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Fig. Ewald sphere for the reflective diffraction on the diffraction grating with the 

periodicity d.. The Bragg condition occurs when the Bragg rod (Bragg plane for the 

1D system) intersects with the Ewald sphere with the radius 
2

i f




 k k , where 

  is the wavelength of the light. 

 
11.5 Example-2: reflective diffraction grating 

We consider the case when the ray-1 and ray-2 are reflected on the surface of diffraction 

grating. The angle of the incident rays and the direction normal to the surface of grating is 

 . After an ideal reflections on the grating, the reflected ray-1 and ray-2 lead to a 

constructive interference when the angle is satisfied by the condition 

 

sin md m  . 

 

where m =1, 2, 3,… The path difference between the ray-1 and ray-2 is 
 

O H sind  , 
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where  OA d . 

For simplicity, we assume that 4d  . We make a plot the constructive interference 

as follows. 

 

 
 

Fig. sin md m   with m = 1. 4d  . OHA
2


  . O H sind   is the path 

difference between the ray 1 and ray-2. 

 

 
 

Fig. sin md m   with m = 2. 4d   
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Fig. sin md m   with m = 3. 4d   

 

 
 

Fig. sin md m   with m = 1, 2, 3. 4d  . 

 
Ewald sphere for the 1D system (diffraction grating) 
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Ewald sphere for the 1D system (diffraction grating) 
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11.6 Bragg condition 
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Here we use the Ewald sphere to understand the Bragg condition. The wave vectors of 

the incident light and the reflected light are ik  and fk . Note that r i    , where i is 

the angle of incident between ik  and the direction normal to the surface of the diffraction 

and r is the angle of reflection between fk  and the direction normal to the surface of the 

diffraction grating. Suppose that the diffraction grating has a 1D structure with periodicity 

d. Correspondingly, it forms a Bragg plane with 0

2
G m

d


  in the reciprocal latticespace, 

The Bragg refection occurs when the Bragg planes intersect with the Ewald sphere with 

the radius 
2

i f




 k k . The Bragg condition is obtained as 

 
2

sinik m
d


  , sind m   

 

 
 



Fig.  Ewald sphere for the diffraction grading with 1D periodicity. The 2D Bragg 

plane is formed with 0

2
G m

d


  in the reciprocal lattice space.  

 
 
12. Heisenberg’s principle of uncertainty with the use of diffraction with a single 

slit 

12.1 Principle 

Experimentally, the single slit in Fig. is made half as wide, the central fringe becomes 

wider. On the other hand, as the width of the single slit decreases, the central fringe 

becomes narrower.  

 

 
 

 
 
Fig.  Single slit with the width a.. 
 



 
 
Fig. Path difference between two rays in the ingle slit with y a  , sinAC a  . 

 
This result can be explained in terms of the Heisenberg’s principle of uncertainty. The 
width of the slit is given by 
 

y a  . 

 
The change of the momentum along the y axis is 
 

sin
y

h
p 


  , 

 
where the momentum is /h   using the de Broglie relation.  
 

sin
y

h h
y p a h 

 
     , 

 



where sina   . When the width y of the slit becomes smaller and smaller, the image of 

the screen becomes widely spread out. So such behavior can be explained by the 
Heisenberg’s principle of uncertainty. 
 
((Heisenberg’s discussion)) 

I found an excellent article for the Heisenberg’s principle of uncertainty, which 
Heisenberg himself discussed in his famous book [W. Heisenberg, The Physical 

Principles of the Quantum Theory (Dover, 1949)]. 
 

If electrons are made to pass through a slit of width d, then their co-ordinates in the 
direction of this width are known at the moment after having passed it with the accuracy 

x d  . If we assume the momentum in this direction to have been zero before passing 
through the slit (normal incidence), it would appear that the uncertainty relation is not 
fulfilled. But the electron may also be considered to be a plane de Broglie wave, and it is 
at once apparent that diffraction phenomena are necessarily produced by the slit. The 
emergent beam has a finite angle of divergence d, which is, by the simplest laws of optics, 
 

sin
d


  , 

 
where  is the wave-length of the de Broglie waves. Thus, the momentum of the electron 
parallel to the screen is uncertain, after passing through the slit, by an amount 
 

sin
h

p 


  , 

 
since /h   is the momentum of the electron in the direction of the beam. Then, since 

x d  , we have  
 

sin
h

x p d h


   ∼ .  (Heisenberg’s principle of uncertainty) 
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12.2 Fraunhofer diffraction power spectrum for the rectangle aperture 

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves 

when the diffraction pattern is viewed at a long distance from the diffracting object, and 

also when it is viewed at the focal plane of an imaging lens. The amplitude in the diffraction 

pattern is simply the 2D Fourier transform of the aperture, besides scaling. We calculate 

the Fraunhofer diffraction power spectrum for the rectangle aperture with the sides x  and 

y . We make a plot of power spectrum when x  is changed as a parameter while y is 

kept constant. As the width x increases, the width of the spectrum decreases.  

 



1
x

k
x

 


, 

 

supporting the validity of the Heisenberg’s principle of uncertainty, where x xp kℏ . 

 

 
 

Fig. Rectangular aperture with sides of x  and y .  



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 3x   

and 2y  . Note that y  is kept constant during this calculation here. 

 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 4x   

and 2y   

 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 8x   

and 2y   

 
 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 12x   

and 2y   

 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 16x   

and 2y  . 

 
 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 20x   

and 2y  . 

 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 24x   

and 2y  . 

 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 32x   

and 2y  . 

 



 
 
Fig. Fraunhofer diffraction power spectrum for the rectangle slit with widths 40x   

and 2y  . 
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