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This chapter is a summary of the special relativity in the electricity and magnetism.
This chapter is not taught in the class room because of the advanced topics. Nevertheless,
for example, the formula for the Lorentz transformation in electric field and magnetic field
may be helpful to the discussion of the origin of the Faraday’s law of induction in Chapter
30.

1. Charge density and current density
1.1 Charge density

We consider the frame S’ moving to the positive x direction with a velocity v relative to
the frame S. Note that = v/c. We measure the distance of the cylinder under the condition
that Ax, =0. Since

Ax'= y(Ax, +ifAx,) = yAx,

or
Ax, = lel': 1- B Ax,' (length contraction)
e
we have
1 2
L==L=1- gL
v

but with the same area 4 (since dimension transverse to the motion are unchangeable. If
we call p' (= po = the rest-charge density) the density of charges in the S” frame in which
charges momentarily at rest, the total charge Q is the same in any system,



Q=p'L'A'=p,L'A'= pLA
or
Pol'=pL

or
'

L
P= P = 00

1.2 Four-vector current density J,

The current density J, is defined as

J,=J,icp)=(pu,icp)

where u is the velocity of the particle in the S frame. It is well known that the continuity
equation is valid in both the frame S and §’.

aJ aJ,
0,7, =2u_% v yo, and  9,'J,'=—*“=0

" ”:6)@[ ot ox,'

This equation is a simple consequence of Maxwell’s equations.

aJ ! aJ,'aJ, ox aJ ' aJ
L=t e T g e P
ox,' aJ, ox, ox,' " aJ, ox,
When —*=a,,, in other words,
oJ,
Jy'= a,J,,
we have
ot oJ
b —0=a,a, o, _ 5, oJ, _oJ, _0dJ,
ox,, ox, ox, 0x, Ox,

Then it is concluded that J, is a four-vector, called the four-current density.

J)=a,J

uvyv



or

J\'=y(J,+ipJ)=y(J, - vp)

p'= V(—ng +p)

or

Jﬂ = (ail)yv‘]v': (aT),quv': av,u']v'
J, = 7(J1'_iﬂ]4') =y(J,"+vp")
p=7(§J1'+p')

Then we have

p=7(§J1'+p')
Note that
p=yp'=yp, =2 =
1-5

when J,'=0. Here py is the rest-charge density.

1.3 Invariance under the Lorentz transformation
We know that J J is invariant under the Lorentz transformation

J' J,=a,da,),=a,a,)J,=6,JJ,=J,J,

uvY v ud uv=tuld

or
J/lJ/l :Jz_czpz :J'z—czp'z

Suppose that J° = 0 (or #” = 0) in the S’ frame, where the point charge is at rest. J = pu
(the frame S” moves at the velocity u relative to the frame S). Then we have

p2u2—02p2 :0—czp'2=—czp02

or



2
_u __ P
Pyl oz =P or p= -

The current density J is defined as

u
J = pu=—2 == poy (W

v

2
C

The four-vector current density is expressed by
J, = (pyr(wu,icp,y(u))

This can be expressed by

J =p,—=
ﬂpodz_

where d7is Lorentz-invariant and is given by

dr = .
7(u)

14 Simple case

S1

Current density and charge density

J = (pu,icp) = (pyy W)u,icpyy (u))
J'=(p'u'sicp") = (py(u'u',icpyy(u'))

Here



u'+v ., u-—-v
u= u'=
v v
1+72M' 1—721/!
c c

Ji'=y O +if) ) = py(u —v) = py (V)y (u)u —v)

=1L py=y030-Lyp

We also have

Jy =y, '-ipJ,")
— V)P

p=7WX§A4pD

=y

We consider the four special cases.
(1) u=v u'=0
Jy'=pyWyw)u—-v)=0

ﬂ=ﬂﬂ&€£+m

=y<v)<1—§u>p

- pr@yi-L

- O )1-L)

2

=p [l a —%)

:po

(i1) u=-v,
., u—v —2v
u'= Y
1 u +h



(iii)

Ji'= poy )y ()(u—v)
==2p[yWI'y

p'=plyWMI1+ %)

1+ 3
:p01—2
-p
u'=v,
u'+v 2v
u= =

v v2

1+—u'" 1+

C2 * cz

Jl = 7(‘/)(‘]1 '_iﬂJ4 ')
=2vy(v)p'

p= 7(V)(€ Ji'+pY)

=y L
= y)(1+5)p"
C

=y(v>(1+§)poy(v)

_1+,[>’2p
g

<
Il
|
<
Il

1 + Tu'
C
J, =y((J,"=iBJ,")
=y(Wu'+v)p'
=0




B

=1+ p)

— )+ L
= r01-Lp

1

P
y(v)

2 Maxwell’s equation field tensor
2.1 Four vectors for the vector potential and scalar potential

0
" d(ict)

J, =(J.icp), A#:(AJ1¢L 2,=(V ).
C

The equation of continuity;

10 .
a#J# :V'J‘F(—ZZE)(ZCP)

0
=V-J+—
o’
=0
Note that
0
Ez—aA—Vgo. B=VxA

2a Gauge transformation
y 1
L, =(4,i—9).
c

Under the Gauge transformation. the new four-dimensional vector A, is related to the
original vector An through

A°=A+V A,
6_4 Ok
¢_¢ d’

AG)uzA‘u‘Fa‘ul,



where A is a arbitrary function of x.
((Note))

itgo=ilys 2

c c  O(ict)
4,° = 4, A
ox,

((Lorentz gauge))
We impose the Lorentz condition given by

o,
ox =04,

o ¢

=V-A+ i—
d(ict) ¢

:V-A+i2%:0
c” ot

In this gauge, A4, is the four-vector.

Note that the Lorentz gauge is very convenient because it is an invariant condition.

23 Electromagnetic field tensor F
We define the field tensor as

o4, o4

U

mox ox,

H v

This tensor satisfies the Jacobi identity;

oF,, N OF,, N OF,, _ 0.
ox, Ox Oox.

u v

This equation holds automatically for the antisymmetric tensor

The magnetic field;




g o4,

ooy, o,
= B3
04, 0O
F,= 8_3 _o4,
X, Ox,
= B1
04, 04
F31 = a_l -
X, OX,
= B2
The electric field;
04, 04
F,= 8_4 -
x, Ox,
_B
ic
--LE
c
oA, oh
*oax,  ox,
_E
ic
--LE
c
04, 04
F, :8_4_ 2
X, Ox,
_E
ic
--LE
c

The field tensor is an anti-symmetric tensor of second rank and hence, has 6 independent
components.

Electromagnetic field tensor;




0 B, -B -1E
¢
-B, 0 B -LlE
F;tv: ;
1
B, -B 0 -'E
) C
‘' LE, LE 0

We show that

oA o4,
oox,! ax,
:a/.toavz‘FOT
0 0
—=a, —, and A'=a A
ox,' “" ox, #A
oA o,
oox,! ox,
! o4 "
:ayoai_aw_ﬂ
Ox,, Ox,
a(avz"Az') a(a#UAO')
= (o _aVT
1 ox, Ox,
or
, 04 04
F =a a L _——¢
mene Vr(éxa 6xr)
=a a F

uo vt or

2.4  Maxwell’s equation
The Maxwell’s equation can be written as

OF

uv

Oox.

14

=IL‘0J,U

Note



OF, _OF, 0OF, 0F, o,

OB, 0B, O
Ty, ox, ic of
| OE,
=

:(VXB)I_
OFE,
(VXB)l: o:uoa_tl+/uo‘]1
OF
=u,(J, +&,—
Ho(J, + & at)

aFZu _ oF,, + oF,, + oFy, n oF,,

ox ox, Ox, Ox, Ox,
‘
_ 0B, +8B1 _ ¢ OE,

Oox, Ox, ic Ot
1 OE
=(VxB),-——2
(VxB), ¢t ot

OE
(VxB), =¢&,4, a_t2+ﬂon

OFE
=u,(J, +5,—=
ILIO( 2 0 6t)

OF, _OF, oF, oF, 0F,

ox ox, Ox, Ox, Ox,

ox, Ox, ic Ot
1 OE
=(VxB),———
( )3 2 at

oF
(VxB), =&, 8_t3+ A

OF
= 1, (J, + &, —2
ILIO( 3 0 81)



OF,, _OF, 0F, 0F, 0F,

. Oxg  Ox, Ox; Ox,
_£6E1+£8E2 i OE,

cox, coOx, coOx

==V-E=ul,
c
LV .E = yjicp, V-E:,uoczpzﬁ
c &
((Note))
B=VxA
U
o 90 90
ox, Ox, Ox,
Al AZ A3
_ oA oA Ao, o4, oA,
ox, Ox, Ox, Ox, 0ox, Ox,
E- 0A

(00 o9 oA, o o

, , —ic—2)
ox, ox, Ox, ox, Ox, ox,

or
E =ic(aA“ _% 04, _8A2 04, _8A3)
ox, oOx, ox, ox, ox, ox,
c
¢ = _.A4
i
2.5 Invariants of the field
F F

o is invariant under the Lorentz transformation



', '=a,a,a,a,F,F

uv uv vp tuoc v Ap” or

=0,0,F,F

Ao prt Apt or
=F,F,,
=F_F

uve ouv

F F,=2[B’+B’+B’ —iz (E’ +E,’ + E,”)] =invariant
C

wop

or

1 . . .
B? —— E’ = invariant under the Lorentz transformation

c

A further invariant is obtained by contraction of the field tensor with the “completely anti-
symmetric unit tensor of fourth rank” defined by

g/d,,uv =

0 if two indices are equal,
1 if (kAuv) is an even permutation of (1234), and

-1 if (kAuv) is an odd permutation of (1234).

One may be convinced easily that ¢, , is a tensor of rank 4 because

14

'
Eenur = Aoy 1@, Ay E

Now we consider

8i
Eaum v = 51234F;2F34 +51324E3Fz4 +.=——E-B

KAuv™ kAT u c

So we conclude that
E - B = invariant under the Lorentz transformation

2.6  Equation of continuity
The equation of continuity can be derived as follows.

F, =-F

uv vu

_F,uv+F;1v _F?LIV_F:/IU

”V 2 2




0 (0F,) 10 @
= ( ﬂV_E/ﬂ)
ox, | Ox, 2 ox, Ox,

_ _(ii 20,
2 0ox, Fu ox, ox, "
=0
Since
aF;tv
=u,J , (Maxwell’s equation)
ox,
we have
=0
ox,
3. Vector potential under the Lorentz transformation
1 ' ‘1 1
A4, =(A,i— ¢) 4, =(A,l;¢)
A » '=a v

4,=(@"),4'=@"),4'=a,

o A o B
ey1-p° cy1-f°

4,'= 4, 4,'= 4,

A,'= 4, A,'= 4,

A= i (cf4 - ¢) ¢—cp4

c ll—ﬂz #'= 1- B

and



4 = cA'+po 4 = cA,'+po

eyl =7 cy/1-p?

A, =4, 4, =4,
A4, =4 A4, =4,
4 LB g (PAH)

c ll—ﬂz /1_,32

E and B under the Lorentz transformation
Transformation

' —
F uv ayﬂ.avaFﬂ,d

' — — — —
a.a,F', =a.a,a,a,F, =a.a,a,a,F, = 5&5,70@0 =F,

vy vo

F/lv = aﬂyanF'/’Lo- = (aT)/t/l (aT)vo F'ﬂa = (a_l)/lﬂ (a_l)"o' F'/IO'

E1':E1 E1':E1
E,)'=y(E, —cpB;) E,"=y(E+vxB),
E;'=y(E; +cfB,) E,'=y(E+vxB),
B/'=B, B, '=B,

1 ﬂ 1 1
B, :7(Bz+?E3) B, :7(B_C_ZVXE)2

\ p \ 1
B,'= y(B, _;Ez) B, :7(B_ZVXE)3
E =E' E =E'
E, =y(E,"+cpB;") E,=y(E'-vxB"),
E, = y(E,'—cpB,") E,=y(E'-vxB'),
B =B B =B

1 ﬁ 1 \J 1 |

Bzzy(Bz_zE}) Bz:7(B+c_2vXE)2

1 1 1 1 |l
B3:7(B3+€E2) B3:7(B+C_ZVXE)3




((Mathematica-1)) See the book of Michael Trott, Springer Verlag



Clear["Global «"];

Field tensor under the Lorentz transformatrion

a={{1/Sqrt[1-5"2],0,0, IB/Sqrt[1-£"~2]}, {0, 1, @, O},
{e,0,1,0}, {-Ip/5qrt[1-5"2], 0,0, 1/5qrt[1-£"2]}};

a // MatrixForm

/ 1 i
e e
| |
3 1-52 3 1-p2
e 1 e e
%] 1 %]
if 1
- 0 ——
J1-52 J1-52

Field tensor before the Lorentz transformation

F = {{e, B3, -B2, -i %}, {—BS, @, Bl, -i ?}:

{Bz, -B1, @, -i ?}, {i %, i %, i ?, 9}};



Field tensor after the Lorentz transformation

E1’ E2'

Fnew = {{a, B3', -B2', -i T}’ {-53', @, B1', -4 T},
{Bz', _B1', 0, -1 %}, {ﬁ. %l, i Eil, i Eil, B}};

Fnew // MatrixForm

@ B3 _B2 -_ifr

C

B3 © Bl -if2

C
' £
Bz.f _Bl-‘ a _ 1 E3
C
P E1" i1E2" 1E3S
L i 1 a
C C C

Electric field and magnetic field

ElectricFieldStrength[fieldtensor ] :=
C C
{fietdtensar[ [4, 1]] —, fieldtensor[[4, 2]] —,
L L
C
fieldtensor([4, 3]] .—};
1



MagneticFieldStrength[ fieldtensor ] :=
{fieldtensor[[2, 3]] , - fieldtensor[[1, 3]],
fieldtensor([[1, 2]]};

Ea = ElectricFieldStrength[F]; Ea // MatrixForm

E2

[’ El
\ E3

Ba = MagneticFieldStrength[F]; Ba // MatrixForm

B2

[’ Bl
B3

Field tensor after the Lorentz transfomation

Ftrans =
Table[Sum[a[[ux, A]] ~a[[v, 1] “F[[2, 11, {2, 1, 4},
{o, 1, 4}]1, {p, 1,4}, {v,1,4}1// S‘implify;



Ftrans // MatrixForm
i E1l

( e B3c-E2§ -B2 c-E3 5
I ) B c
C "'.,.l' 1—52 C "'..l' 1—52
-B3 c+E2 & i (-E2+B3 c &)
| — | —
C "'..l' 1—52 [ "'..lI 1—52
B2 c+E3 B i (E3+B2 c )
| — | ——
cy 1-p2 c 1-32
iE1 i (E2-B3 c ) i (E3+B2cf) 0
c ] )
| ) 1-52 cy1-p2
Fntrans =
af[o, vl] ~Fnew[[2, o]], {A, 1,

Table[Sum[a[ [, u]]
{o, 1, 4}], {u, 1, 4}, {v, 1, 4}] // Simplify;

Fntrans // MatrixForm
[ 8 cB3'+5E2 -c B2 +B E3’ _iEl
- -
[ "'\.II 1—52 [ "'.,.l' 1—52 €
-c B3 -FE2' ‘ i (c B3 +E2)
e Bl - — '
| —— | —
ey 1-52 c1-52
cB2'-FE3 ‘ i (c BB2'-E3")
-B1 e Licpsbs B3 )
| E— | E——
cy 1 g2 c 1 g2
i E1” i(c AB3"+E2’ i(cfBB2'-E3") o
c I - |
c 1_52 c 1_52




Eelectric field and magnetic field after the Lorentz transformation

Eb = ElectricFieldStrength[Ftrans]
E2-B3cp3 E3-+ BZcr‘

e e

Bb = MagneticFieldStrength[Ftrans]

—BZC—E3,B B3C—E2.‘”
c~/1-p3? c1

Ec = ElectricFieldStrength[Fntrans]

Ip1, -

crsa—Ez ¢ BB2 -E3
£J1-p3? \J1-p2

Bc = MagneticFieldStrength[Fntrans]

J‘

-C BZ’—,BES’ cB3 -+ 3E2

1, -



Lagrangian and Hamiltonian

Sum[F[[ey, v]] ~F[[&ts v11s {ps> 1, 4}, {v, 1, 4}] // Cancel

2E1? 2E2? 2E3?

2 CZ C2

2B1%+2B2%2:2B3% -

c

Sum[Ftrans[[u, v]] ~Ftrans[[u, v]], {p, 1, 4}, {v, 1, 4}] //
Simplify // Cancel

2 (B1? c® + B2® ¢* + B3? ¢ - E1* - E2° - E3?)

C2

Dual field strength Fdual

Fdual = Table [Sum[Signature[{A, i, v, o}] “F[[v, ©]1]1/2,
{v, 1, 4}, {0, 1, 4}], {2, 1, 4}, {u, 1, 4}];

Fdual // MatrixForm

(@ _L1E3 1E2 g4
C C
1E3 p _LEl pgo
C C
_1E2 1E1 ® B3
C C

. -B1 -B2 -B3 ®
Sum[Fdual [ [, v1] ~F[[ms v11s {us 1, 4}, {v, 1, 4}] //
Cancel

41B1E1 4:iB2E2 41B3E3
c C c

Tr[Fdual.F]

4:1Bl1E1 4:1B2E2 4iB3E3
C c c

4.2 Choice of the frame S’ which has pure electric or pure magnetic fields
From the Sec.3.5, we find that



1 . . .
(1) B’ - —E ?= invariant under the Lorentz transformation
c

(2) E - B = invariant under the Lorentz transformation

Here we assume that E - B=0 and B* —LZE2 #0

c

Then one can find a frame S’ in which (E” = 0 and B’ # 0) [pure magnetic field], or (B’ =
0 and E’ # 0) [pure electric field]. The proof'is given in the following.

(a) Pure magnetic field (E° = 0)
We assume that E” = 0. From the Lorentz transformation, we have

E'=E =0 E =0
E,'=y(E,-cpB,)=0 or E, =cpB, =VvB,
E.,'=y(E;+cpB,)=0 E, =—cpB, =-VvB,

The condition E - B =0 is satisfied since

E-B=EB +E,B,+E,B,=vB,B,—vB,B, =0

The condition B* —LZE2 = B" —LZE “ %0 can be rewritten as
c c
2 1 2 12
B -—E =B">0
c

This implies that one can find the frame where B” # 0 and E* = 0.

((Note))
From the relation
E =0
E, =cpB, = VB,

E, =—cfB, =-vB,
we get
E=-vxB

(b) Pure electric field (B’ = 0)
Next we assume that B’ = 0. Then we have



B'=B =0 B =0

B=yB,+LE)-0, or  B,=-——FE,
c c
) %
B, :7(33_£E2):0 By =— E,
c c
The condition E - B =0 is satisfied since
E-B=EB +E,B,+EB,
% v
= _C_ZE2E3 +c_2E2E3
=0
.o, . 2 1 2 Vz 1 2 .
The condition B -—E =B°-—E" #0 can be rewritten as
c c
B’ —izE2 =—i2E'2 <0
c c

This implies that one can find the frame where E"” #0 and B’ = 0.

((Note))
From the relation
B =0
v
B2 = - E3
c
v
By=—E,
c
we get
1
B=—(vxE)
c
=55 Energy-momentum tensor and Maxwell’s stress

5.1 Force density
We define the four-vector of the force density as f,

Here we have



f,=pE +(JxB),
where
y oz
J, J
B3

LSl
w

<
X
S-S
Il
o] ,_akt =>

—_

B

S}

fi=pE +(J,B,-J;B,)
fo =pE, +(J;B, —J,By)
fs=pE;+(J,B,-J,B))
fl :EVJV :E1J1+E2J2+E3J3+E4J4
i .
=BJ, - B,J, _ZEl(lcp)

=(BxJ), + pE,
f,=(BxJ), + pE,

fy=(BxJ), + pE,

f4 =F,J, :iElJl +iE2J2 +LE3J3
C C C

:1(E-J)=i(E'Jj
C C

5.2  Maxwell’s equation
The Maxwell’s equation is given by

oF
VA _ J
axl IUO 14

The current density is given by
J,=(J,icp)

Then we have



oF,
f,u:F,quV:LF,uv w4
Ky ox,

OF,

VA

Iuof,u:F,uv ax
A

The left-hand side can be split into two terms,

0 0
ﬂofy :g(Fva//l)_E/i ngv
A

A

The second term:

0 1 0 1 0
Vl% ;11/25}7:%8/l /JV+EFAV : HA
1 0 1 0
:EE/A a uv +EF:/A a_Fﬂ,u
A v
or
0 1 0 0
F,—F =-F (—F, +—F
Max/1 ) M(ﬁxl " ox, )
:_lE/AiE/A
2 7 ox,
1 0
= (F,F
48_)(:”( 12 vﬂ)

Here we use the Jacobi identity;

0 0 0
—F +—F +—F, =0 Jacobi identit
axl uv ax vA ax Au ( Y)

7] v
Then we have

0 1 0
F,AFr =5 Y (FF
4”18)%( )

1Z3 uv or” or
ox,

The force density is rewritten as



1 0 1
-— " (F, F,+-0,FF
fy ILIO ax/l( uv: va 4 wA" or crz')
_ar,
ox,

with the symmetric energy-momentum tensor (Maxwell’s stress tensor)

1 1
T,uv :Iu_o(F/MF],V +Z§;M.F F )

or~ OoT

1 1
Tr(T ]ZTWZ—(FMFM+—F F _)=0
Hy 4

HV oTr~ ot

5.3 Conservation law

a—quV-S:—E-J
ot
1 AT
u=—(EE°"+—B")
2 Hy

oS -
oty =+ f = (V1)

where
1 L
S§S=—(ExB) : pointing vector
Hy
1
G=¢c,18S=—S§ : momentum of the field
c
f=pE+(JxB) : force density
1 1 , L,
T, =(&EE, +—Bl.Bj)—55l.j(50E +—B")
Hy Hy
or

T, = (izE,.Ej Jrzsl.zsj.)—%(sl,f(izE2 +B?)
’ c o c



1

Eoly

where ¢* =

(J,,) =(J,icp)

0 B, -B --E
¢
-B, 0 B -lE
— C
(Fuv)_ l
B, -B, 0 -lE
. C
‘g e, LB, 0

ua’ av uv: af” o

1
T = FuFo + 8ol

where

FpFy = (B + B 4 B~ (B + B2 + E2)]

1

Fio b :?EIEZ +B,B,

o

1
Fy s :c_2E2E3 + B,B,

a

a

1
FoFu :?ESEI + BB,

i i
EaFa4 = _Z(EzB3 - BzE3) = _%Sl

i I
FZaFa4 = _Z(EBBI _B1E3) = _%Sz

I I
F3aFa4 = _Z(Ele - BzE1) = _%Sz



1

E Fal :c_zElz _(Bzz +B32)

o

1
FZaFaZ :C_2E22 _(B32 + Blz)

F, Fa3 :%Ef _(312 +Bzz)

3a

F,F, :%(Ef +E;+E})

a

The Maxwell’s stress tensor is given by

1 1
LT, :2_02(E12 _Ez2 _E32)+E(Blz _Bz2 _B32)

1
oy = c_zElEz + BB,
1
T3 = ?E3E1 + B,B,
i i, .
Ty = _Z(EzB3 - B,E) = _TSI =—ip,cG,
1 1
HoTy, = 2_02(_E12 + E22 - E32) + E(_Blz + Bz2 - Bzz)
1
Ty = ?E2E3 + B,B,
i i .
Ty = _Z(E3Bl - BE;)= _%Sz =—iu,cG,
1 1
oLy = 2_02(_E12 - E22 + E32) + 5(_312 - Bz2 + B32)
i i1, .
oLy = _Z(Ele —-B,E))= _753 = —ip,cG,y

Ty = %(Bf +B,+B)) +2ch(15‘12 +E+E}) = pu

Explicitly, the elements of T are

T, T, T, —icG,
(T. )= T, T, T, —icG,
. T T, I,  —icG;

—icG, —icG, -—icG, u

T+ Ty + Ty =—u



6. Lorentz force
6.1 Origin of the Lorentz force
Consider a particle of charge ¢ moving with velocity v (along the x axis) with respect
to the reference frame S in a region with electric and magnetic fields E and B.
In the frame S, the Lorentz force on this charge is given by
F =q(E +vxB)=(qE,,q(E, —vB;),q(E; +vB,))
In the frame S°, the Lorentz force is given by

F'=qE'=(qE ', qE, " qE,")

where ¢ is a relativistic invariant and is at rest in the S’ frame. Note that the particle is at
rest in the S' frame.

((Note))
In general case, we have

F=q(E+uxB)
F'=qg(E'+u'xB")

where u and u’ are the velocity of the particle in the S-frame and S’-frame (moving with
the velocity v). When u = v, it follows that u'=0. Then we have

F=q(E+vxB)
F'=qE'

The fields in S and S” are related by

E'=E,
E,'=y(E,-VB;)
E'=y(E;+VB,)

Then we have

F'=qE\'=qE,
F,'=qE,'=qy(E, -VB;)
F'=qE;'= qy(E; +VvB,)



What is the relation between F and F’?

F'=gE = gE, = F
F,'=qkE,'= qy(E, —vB;) = I,
F'=qE,'= qy(E, +VvB,) = yF,

or
F=F
7w, =F'
7 =F

6.2 force density and charge density
f=pE+(JxB)

We choose the frame S’ in which the system with the charge density is at rest. We now
calculate the force density vector

f 1 — p ' E 1
since J'=0 (the system is at rest).
We note the Lorentz transformation of 4-dimensional vector, current density and
charge density
J,=J,icp)

Ji=yU\'=ipI,) =y (J +vp')
B

p=ﬂ;ﬁ4ﬂ)
Then we have

p=p

Jy=wpp'=pv

The Lorentz transformation of E and B,
E'=E,

E,)'=y(E, —VvBy)
E'=y(E; +VB,)



Then we have
vf'=(pP'VE,p'y’ (E,~vB,),p'y* (E; +VB,))
or
v f'=(pE,, py(E, = vBy), py (E; +vB,))
In the frame S, the Lorentz force is given by
[ =plE +(vxB)]=(pE,, p(E, —VB;), p(E; +VB,)

Thus we have

=1
1= 1
f'=1

7. Lienard-Wiechert potential

7.1 Lienard-Wiechert potential

What are the scalar potential and vector potential of a charge ¢ at th the velocity v
moving along the x direction. The problem is easy in a coordinate system moving with the
charge, since in this frame the charge is standing still.

vt Field point

o
Y

In the S’ frame:

p-—4_1 A'=0.
drg, r'




Using the Lorentz transformation given by

|l v 1 1
A1+T¢ T¢
A = C A = C
=B =B
A2 :Az' or A2 :0
A4, =4, 4,=0
b= vA'|+¢' 4= 9 g 11
1—/32 \/l—ﬂz 4rg, \/1—,32 7
we get
4= 9 q 1 1
\/1—/3’2 4rg, \/1—,32 \/x1'2+x2'2+x3'2
where

The scalar potential ¢ is given by

o= q 1 1
4re, \/1—,6’2 \/}/2()61 —vt) +x, +x,”
Az, \J(x, — vt + (1= B7)(x,’ +x,%)
or
1
p=———
4re, R
with

R =(x, =) +(1- B)(x,> +x,)
Similarly we have for the vector potential
A=(4,,0,0)

with



l(ﬁv
4o v a1l _aml

J1- /3 s dre, R° 4rn R

Then the electric field E and the magnetic field B are given by

Ez—gA—Vgo and B=VxA4

Using the Mathematica, we get

q 2, R
E = 1- .
472'6‘0( 'B)R3
BILZXE
c
where
R=(x—-vt,y,2)

For a slow moving charge (v<<c), we can take for E the Coulomb field. Then w have

v VXF VXF
B=—xE= - 22=ﬂ0q2
c dre,cr

(Bio-Savart law)
4T r

((Mathematica-II))
Lienard-Wiechert potential



Electric field in the frame S

El=-Grad[¢, {x, ¥, z}] -D[A, t] /. {u@ -1/ (e8c?)} //

FullSimplify
q (-c*+v?) (tv-x)
At ((~tvex)?- [yt ez2?) (-1+p%) 32 ce’

qy (-1+5?%

E

ar ((-tvex)?- (y?+2%) (-1-58%))* %0

qz (-1+5?%) |

47 ((-tvex)?- (y?+2?) (-1-p°) 32 0 JL

1
V1i={v, 0, 8}; eql = - Cross[V1, E1] // Simplify
c
o qvz (-1-p5°
Y ((-tv+x)?- (y?+2%) (-1+p5%)) 32 g
qvy (-1+4?%
dctm((-tv-x)t-(y?+2?) (-1+p%))7 " o }
1
eql-Bl/. {uE} » } // Simplify
c“ €0

{B_, a: B}



Lienard-Wiechert potential

Clear["Global +"];

q 1
¢ = —;
47e0 R
qvue 1
A.1= _,
47 R

A= {Al, 0, 0};

Bl = Curl[A, {x, v, z}] // FullSimplify

qvz (-1+p%) ne

le, , _ — —,
LA ((mtvex) o (YR 2?) (14200

qvy (-1+p%) ue

ar((-tvex)?- (y2-22) (-1-p2))3" /

7.2 Distribution of the electric field

E =

R

q 2 14
1-4°)—
472'80( )R3

where

R =(x—vt)* +(1— B)(* +2°)

R =(x—vt\1- B2 yAJ1- f2)
R,=(x-vt,y,2)

R, is the relative coordinate of the field point and the charge point. The electric field is
along the position vector R,. R, is a vector from the instantaneous location of the charge in
S to the point where E is measured in S.

((Mathematica-3))
The electric field of a charge moving with the constant speed with v (= v/c) on the unit
circle of the real space.



Lienard-Wiechert problem; field for a uniformly moving charge

Clear["Global +"];
x (1- %)

a7
v (1-47)

W)
s1[4 ] := Table[{{Cos[e], Sin[&]}, {E1X[&, 4], E1Y[&, £A1}}, {6, @, 27, 7 /32}];
Needs ["VectorFieldPlots™ "];
s2[4 ] := ListVectorFieldPlot [Evaluate[sl[4]], ColorFunction - Hue,

AspectRatio - Automatic, Frame - True, AxesOrigin » {0, 8}];
psl[/4 ] := Module[{h1l, h2, h3}, hl = Evaluate[s2[~]];

h2 = Graphics|[{

Text[Style["3=" <> ToString[~], Black, 12], {@, 1.9}1}1];
h3 = Show[h1, h2, PlotRange -» All]];

ElX[e , A ] ¢ /. {Xx>Cos[&], y>»Sin[&]} // Simplify;

/. {x>Cos[&], y>Sin[&]} // Simplify;

E1V[e , 42 ] :

gsl = Table[ps1[A], {8, @, ©.6, ©0.3}]; GraphicsGrid[Partition[gsl, 3]]
gsl = Table[ps1[2], {B, @, ©.6, ©.3}]; GraphicsGrid[Partition[gsl, 3]]
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8. Relativity of Electric field and magnetic field



e q

E=0and B£0
We consider the charge ¢ moving along the x axis in the presence of the magnetic field

B (the frame S). In the frame S, there is only an external magnetic field B. Thus the
magnetic force on the charge is given by

F, =q(vxB)

Suppose that there is no electric field (E = 0) in the frame S (B # 0). The E’ and B’ in the
frame S’ are related to those in the frame S as

E'=E =0
E,'=y(E, —cpB;) =—pB;
E'=y(E; +¢fiB,) = pvB,

Bl':Bl
B,'=v(B EE =B
) =7( 2+c ;) =18,

B,'=y(B, _éEz) = )b,

or

E'=y(vxB)=vxB' (1)
Then the force (electric force) on the charge ¢ in the frame S’ is

F' =qE'=qy(vxB)

since the charge ¢ is the same for any frame and the particle is at rest in the frame S’. There
is no force due to B’ since the particle is at rest in the frame S”. F', is the force of F’ in a

direction perpendicular to the velocity v. Thus we have



9. Derivation of the Biot Savart law

B’=0and E’#0.

We consider that the magnetic field B’=0 in the frame S’. In the frame S’, there is only
an external electric field E’ (the point charge is at rest). The E and B in the frame S are
related to those in the frame S’ as

E =E' B =0
E, = JE, B, = —c—ysz;
Ey = yE;
By :ZﬂEz':lszz'
c c
or
/4 N
B=5(vxE')=—(vxE), (2)
c c

Using the result from the Lienard-Wiechert potential (/<<1) (see Sec.8)

r

q 2 R q
E= 1- f*)— =~
47r80( d )R Y dng, v

1 1 VXF VXF
B=—(vxE)=——1 20 _ 9"
¢ 4reg, r 4r r

which is the application of the Biot-Savart law to a point charge.

10. Ampere’s law (Feynman 13-9)

We consider that the electrons located on the linear chain (the line density —4o) moves
at the velocity v. At the same time there are positive ions located on the same chain (the
line density o). We now consider the frame S’ which moves at the velocity v.



00000
® 00000

atrest

S

atrest

00000
®0 0000

Si

((Formula))

p=1p

where p for the frame where the particle moves at the velocity v along the x axis, and p'
for the frame where the particle is at rest.

We assume that
(1) The line densities of electrons and positive ions are given by — 4, and 4, in the

frame S.
(2) The line densities of electrons and positive ions are given by — A and A, in the
frame S’
1 v
-4)=y=4) or A =—4 =4|1-—4, for electrons
14 c
1
A, =1 or A, =7k = —zﬂo for ions
v
1 —
c 2

The net line charge density in the frame S’ is



((Note))
This relation can be also derived from the Lorentz transformation of the 4-dimensional
current density

J, =(J,icp) = (pu,icp)

J\'=y(J,+ipl)=y(J, —vp)

p=rLasp)

J,=a,J,

Iy =7 =i) = 7, +vp)
B
C

p=y(=J'"+p")

Here we define

A=Ap
ﬂl: Apl

A 1is the same for the S and S’, since the plane of 4 is perpendicular to v.

p=r-Lan=42

2
v

— _AOVZV_ZEO
C C C

where [, = AJ, =(-4,)v and 1=0.
So the positive line density produces an electric field E’. We use the Gauss’s law.



‘ Electric field

The electric field E’ at the distance s from the axis of the cylinder,

A
\J

E'Qsh) = - (hA")
&,

0
where s is the radius of the Gaussian surface (cylinder).

or

' 2
E'= A = 1 )/v—z/lo
2rg,s  2meys ¢

So there is an electrical force on g in S”;

2

1 1 v
FJ_ = qE = 9 }/—210 .

2rg,s ¢

But if there is a force on the test charge ¢ in §°, there must be one in S. In fact, one can
calculate it by using the transformation rules for forces. Since ¢ is at rest S” and F| is

perpendicular to the x axis, we have
: 1.,
F\'=yF| or F =—F,

Using this result we have

2
F, :lFL': q V_ZAO :MV(V%) =q Ho(vAy) v
% 2rg,s ¢ 27 27
where B = %ﬂ") is a magnetic field due to the line current density vA, (Ampere’s
7S

law). The force has a form as F' = gvB.



11. Derivation of the Ampere’s law
We analyze the fields and currents as viewed from two frames; S where the ions are at
rest. S where the electrons are, on the average, at rest.

J,=(J,icp)

-1 " '
J#=(a ), J =a,J,

uvv

Multiplying the cross-sectional area (A4) of the wires, we obtain the following
transformation for currents and linear charge densities.

1,=A4J,=(AJ,icAp)=(1,icA)

l,=a,l

U vty

Iy =y('=ipl,') = y (1, +vA")

I, =icA =yl +1,") = y(i=1,"+icA")
C

or
I, =y(I.+vA,")

A= (=14
C

where 4 = Ap, the subscript 1 (x axis) is neglected and the plus and minus subscript refer

to the ions and the electrons, respectively.
In S” we know that / '= 0 since the electrons are at rest.

A =yp(ST A )=y
C

In S the net charge per unit length must vanish.
0=A4,+4 =4, +y~4"'

or

The fields in S” due to A ' are



E '=——
2reyr!

B '=0

The fields in S due to A, are

B =0
We now consider the field transformation from

E '= A
2rg,r'

B '=0

to E+ and B.. Noting that 7 =7' (perpendicular to the x axis), we find that the fields in S
are

El :El':O B B 0
E, = y(E,'+¢fB;') = /£, B, % (cB,'-pE; )__ZVE3'
Ey = £
=L (BE,"+cB,") = WE'
C

or



e
E = —A
B 727zgor

Y :
37 :c—z(VXE7 )

Then the total fields in the frame S are

E=E +E =—% (4 +y.%=0
e
B=B.+B
=B
Y :
=—2(VXE7)
c
y _v
= (vxe
cz( r)27zeor’

Ay (e xe,)

C2metr
Since I_=y(_'+vA_") and I_'=0, we have
I =wl'

Using e _xe, =e,, we obtain

Bz—ﬂol‘e
2zr *
E=0

We see that a magnetic field due to current flow is a relativistic effect.

12.  Capacitance moving along the x axis with a uniform velocity
12.1 The capacitance moves along the x direction which is parallel to the electric
field of the capacitance.




In the frame S’ where the charges are at rest.

E=Z
80
E,'=0
E.'=0
and
B'=0
B,'=0
B,/'=0
E =E B =0
E, =0 B,=0
3= B3 =0

Thus we have
where o'=0

12.2 The capacitance moves along the x direction which is perpendicular to the
electric field of the capacitance.

In the frame S’ where the charges are at rest.



where

Eq

—I»

y1

E'=0 B'=0

E'=0 B,'=0

b B
&y

o =yo'=yo,



Lorentz transformation

E=E'=0
E, =y(E,"+cfB;")=0

1

1 1 1 O- 0
E3:7(_CIBBz+E3):7E3:7€_:_

R

k



B =B'=0

, . - BE,' v o' v o
82:7/(82_£E3):#:_7_2_:__2_:_/10"0_
c cy1-B cteg, g,

qu4§@4&3=0

13. Lagrangian and Hamiltonian in terms of the field tensor F,

F, F :xBf+Bj+@6—%ﬂEf+@2+@6
C

uveouv

This is invariant under the Lorentz transformation.

We may try the Lagrangian density

L=- !

F,F,+J,4,
0
By regarding each component of 4, as an independent field, we find that

the Lagrange equation

oL 0 [ oL ]
B 0A
04, 0ox, oy
ox

is equivalent to

oF

uv

ox

U

= IUOJy :

The Hamiltonian density H., for the free Maxwell field can be evaluated as follows.

) F,
—_ em K _ T :_i(ﬂﬂ+%)_L(32_i
ox, 2

Hem em 2 Ez)
a(%j ox, Hy Hy

or



H =150E2+ !

B’—¢ E-V
em 2 ZILIO 0 ¢

1 1
J-Hemdr :EJ-(gOE2 +2—%Bz)dr—.[80(E-V¢)dr

B*)dr

1 L
—EJ-((;‘OE +2

Hy

((Note))

j(E-w)dr =j[v-(E¢)—¢v-E]dr
= jv-(E(;ﬁ)dr
:j(E¢)-da:o

where E¢ vanishes sufficiently rapidly at infinity.
v.E=P -0 (in this case).

E is the energy of a free particle

14 Lorentz force in the relativistic mechanics

F:%:q[E+(uxB)]

holds in an arbitrary frame S, where u is the velocity of the system. This expression is the
correct relativistic form for Newton’s second law. The momentum form is more
fundamental.

The four-dimensional momentum is given by

p=m = =myy(u)u
L
c2
m002 )
Ekm = > = mOC 7(1’!)
"



or

2 2 24172
E, =c(my"c +p°)

where we use Ekin instead of E in order to avoid confusion between the kinetic energy and
the electric field.

The final form of the equation of motion is given by

where

15.

d
—p=F =4[E +(uxB)] (1)
dt

myu
D= )

o

c2

dE,,
— 2 =F-u=qu-E
7 q(u-E)

By, =1 =c\mc*+ p’ @

Cyclotron motion: a particle in a uniform magnetic field along the 7 axis.



‘( u

Y

Centripetal force

|
—
S~

We now consider the case of E = 0.

iEkin =F- u
dt
=q(uxB)-u
=0
1 E, : .
Thus we have y(u) = =—" = constant. This means that the magnitude of the

2
u> myc
==
c

velocity remains unchanged.
The momentum:

p= Ekinu
2
C

From the equation of motion

i _iEkinu
dt P dt ¢
=F

=q(uxB)



we have

2

iuzc—q(uxB)

dt Ekin
or
_ cqu
' Ekin ’
_ cqu
g Ekin '
u =0

We use the complex plane for the solution.

c’qB

kin

d ) i .
E(ux+luy):— (u, +iu)

or
ic’qBt

kin

(u, +iu,)= (uxo + iuyo)exp[— |=vexp[-i(wt +a)]

where

2 2
B B _ q¢B
oo C 4B _ 4B _ g

E,., ; m0027 - myy

—ia

0 .0
u, +iu, =ue

Then we have

X

dx
v. =— =vcos(at + )
dt

v, = & =—vsin(ot + a)
dt

X

or

2 2 2
u, +u, =u" =constant



u .
x=—sin(wt + a)+x,
@

u
y=—cos(ot+a)+y,
@

This equation describes a cyclotron motion (circular motion with radius R).

R=Y —YEwm _ P
o c’qB qB

where o is the angular frequency,

o= qB
Ekin

or
p=4BR

The radius has a maximum when Y_ L
V2

c
In summary
2 2
+ 2
Y= Vp0x pOy sin(c th+a)
qB Ekin
2 2
+ 2
y:'\,p0x Po, cos(c th+a)
qB Ekin

16. The motion of the particle under an electric field (E =—-V¢)

d d
ZE =qu-E)=—qv-Vo=—q—
g Cin qu-E)=—qv-Vo 959

or
d
—(E,, + =0
dt( kin Q¢)

or



E,,, +q¢$=constant

We now consider the capacitance consisting of two parallel planes. Suppose that the
particle with charge ¢ on the one plate moves to the other plate. The initial velocity is equal
to zero. What is the velocity of the particle arriving at the other plate?

E. +tq¢, = moc2 +q6

When¢=¢l_¢25
1
> (1+ Q¢2)2
u moc
==
C
or
1 1/2
U:CI——
[ q¢ 2]
I+—)
moc

17. Equation of motion under a constant electric field
We assume that E is along the y axis. The initial momentum py is in the (x, y) plane.
The particle is at the origin at £ = 0.

d
P qE (1)
p=p,tqEt
or
P =(py,.9Et+ p,,,0)
E,, =c(myc’ + p*)"”
=[my’c* +*(py,” + po, ) + (@ E* +2p qED)]"
or

E,, =l(E, ) +(¢°E*f +2p, gEt)]"*

where £ kmo is the kinetic energy at the beginning of the motion (¢ = 0).



2
. C

(Do, 9ET+ py,,0)
Eki

n

c2

T(E) + (@B +2p, qED)]

1/2 (pOx’th+p0y’O)

or

ﬂ _ czp0x
dt [(E,") +c*(¢°E* +2 Po,aEN]"

dy _ c*(po, +9E1)
dt  [(E, ') +(TE +2p,,gEN]"”

dz

—=0
dt

Solving these differential equations (we use the Mathematica),

0

1
y= q_E[\/ (B ) + G E*C +2p, ¢’ Eqt —Ey,,']

or



0

< 2 2 : E,
= +qEt)’ +m,"c* + — Zkin_
Y qE[\/(p o TGO+ my e+ py,” == ]

2 2
_ Pox In Poy * th+\/(pOy +qEt)’ + m, c’ + Do

o 0

QE Ein
pOy +k7

z=0

We now consider the special case when p,, =0.

C

= Pox 1 qEt + \/(th)z " m0202 4 Poxz

qE \/m()zcz + p0x2
or
(qu) gkt + \/(th)z +m, '’ + p,,’
exp =
CPo, \/m02C2 N p0x2
E Jmic + p,
exp(— 9 x) = 0 Pox

Py, th+\/(th)2 +m0202 +p0x2

22 2
\/m() ¢ +p0x

Bx, GE) +mic +p,

cosh
(C 2 2 2
Pox m,"c” + p,,

qu +\/m0202 +po, = \/(th)z +m,’c + p,,”

E
= Jmy*¢ + p,,> cosh(=%)
C

Ox

or



y =B reosn( )y
qE

CPox

qEx

'E}m —hin_Tcosh(=—=)—1]
qE

cp0x
E
== Jm;’c + p,  eosh(=2) -1
qE cp0x

Thus in a uniform electric field, a charge ¢ moves along a catenary curve.

((Mathematica-4))
Zimmerman
2D motion of a relativistic particle in a uniform
electric field
vi- {pxo qEOt,O}
m m

eg2=Solveleql,£]//Simplify
2 ZZ 12 7 TEZ 2
{{gé \/ C pXO +EO t) }, {gé \/ C pXO + EO t) }}
v - c?m? - px0? - E0Z g t2 v/ - c?m? - px0? - E0? o t2

——a
eq3=\/1—i2 /.eq2[[2]] // Simplify

\/ 2 2
c?2m? + px02 + E02 g2 t2
V={x"[t],y'[t],z"[t]}

’

(x'[t], Y'[t], 2'[t]}

egd4=eq3 Y1
22 22
px0 J TRmEl g 04t J T Bl 2 2
, , 0

eg5=Table[V[[i]]=eq4[[1]],{1i,1,3}]

2 2
%0 c
P J 2 2px02+E02 2 £2

m

2 2
EOgt o m
e \/ 2 k02 +B02 2 2

YIt] = , 28] =0}
m

eg6=DSolve[{eg5, {x[0]==0,y[0]==0,2[0]=0}}, {x[t],y[t],z[t
1},t1//Simplify



| TEw - -
-px0 \[ \/ c?m? + px0? Log[2 \/ c?m? + px02 | +
q c? m? + px02

2 m2
cém
<0 c?m? + px02 + E02 g t2
P \/c2m2+px02+EO2q2t2 \/ P 4

E0qt+\/c2m2+px02+E02q2 tz]H,
)

onl [ 2w 2 |
I\ 2 m2+px02 2 m2 +px02+E02 2 t2 }'

B0 |2 22
2 m2+px02 2 m2+px02+E02 2 t2

rulel={m->1,9-1,E0-0.1,px0-0.1,c—>1}
{m-»1,9-»1,E0-0.1,px0-50.1,c>»1}

x[t ]=x[t]/.eqg6[[1,1]]/.rulel//Simplify
-0.698122 +

Log[2

z[t] - 0}}

101. +1. 2
y[t_l=y(t]/.eq6[(1,2]]/.rulel//Simplify

1
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1
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z[t 1=z[t]/.eq6[[1,3]]/.rulel//Simplify

0
pll=Plot[{x[t],vy[t]},{t,0,30},PlotStyle>Table[Hue[0.5
i1, {4,0,1}1], Prolog—»AbsoluteThickness|[2],

PlotPoints—50,Background—-GrayLevel [0.7]]
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= 2m
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-Graphics-
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18. A particle in a uniform electric field and a magnetic field
Let the electric field E be parallel to the y axis and the magnetic field B parallel to the
z axis. At ¢t = 0 the particle is at the point (0,0,0) and has a momentum po.

Lorentz invariant:

L p=F =qE+(xB) (1)

According to the Lorentz invariance, we have

1 1
B'-—E’=B"-——
6'2 C2

E-B=E"B'

E"

Since E-B=0,wehave E"B'=0

(1)



We assume a frame that B'=0.

In this case, we have

C C
or
o1
B <—2E
C
or
1
B, <—F,
C

This is a condition for E and B. Using the Lorentz transformation, we have
E'=E =0 B'=5=90 p
E,'=y(E, —cfB;) 32':7(Bz+;E3):0
E)'=y(E;+c¢pB,)=0 B

B,'=y(B, _?Ez) =0

We choose B,'=0
B.,'=B, —EE2 =0
c

or

In this case,
B'=0
1 E .
E,'=y(E,-cpB)=—FE,=—=FE
v v

E'=0
E,'=0



The frame S” move relative to the frame S with a velocity v along the x axis. We know the
equation of motion for the particle in a uniform electric field E' along the y axis.

. chX'1 poy'+qE't'+\/(p0y'+qE't')2 + m02c2 + Dy,
T e E
pOy'+ /zﬂ

X

0y

' c ' 141\2 22 12 Ek‘
=— +qE't")" +my ¢ + -
Y qE,[\/(poy qE't") 0 Pox B ]

0 2 2 2 2\1/2
Ekin' :c(mo c +p0x' +p0y' )

with v =¢’ B <c
2
E . 0 E ' 0
The Lorentz transformation between p,’ =(p,,i—-) and p,’'=(p,',i—"—) is given
c c

by

0

Poi'=7(Po _éEkin )
Por'= Pos
DPos' = Doy
Ekmovz V(Ekmo - pepyy)

The required equations of motion for the particle in the frame S is obtained using the
Lorentz transformation.

v o x =y(x'+vt'
x =y (x'=ifx,") 3 }/f )
X, =X, Y —y'
, z=z
Xy =X, F,
x, =y(ifx'+x,") t= 7(?x'+t')

(2)
We assume a frame S’ that E'=0.

In this case, we have



C
or
2 1 2
B >—FE
C
or
1
B, >—FE,
C

This is a condition for E and B. Using the Lorentz transformation, we have
B'=B,=0
E'=E =0 B
E,'=y(E,—cpB;) By'=7(B, +7E3) =0

E'=y(E;+cpB,)=0 ' Vi
B,'= y (B, - ?Ez)

We choose E,'=0

E)'=y(E, -cpB;)=0

or
BS

In this case,
E'=0

1
By'=y(B, _EVB3) =—B,
¢ 4
B'=0
B,'=0
The frame S” move relative to the frame S with a velocity v (=E»/B3<c) along the x axis.

We know the equation of motion for the particle in a uniform electric field B' along the z’
axis.



+ 1
= NPor TP sin( g5 I'+a')
qB' Ekm'
’ 2 2
|+ 1 2 f
y'= Pox 'Poy cos(“ L2 1)
qB kin

with v =FE»/Bs<c.

0 01

) and p,"=(p, i

kin

The Lorentz transformation between p #0 =(p,,i
c

by

) is given

Poi'=7(Po _éEkmo)
Por'= Pos

DPos' = Doy

EkinO': V(Ekmo - pepyy)

The required equations of motion for the particle in the frame S is obtained using the
Lorentz transformation.

v oo x =y(x'+vt'
x, = y(x,'—ifx,") B }/f )
xz — xzv y - y
. z=2'
X=X F,
xy = y(ifx'+x,") 1= V(FX'H')

19. Examples
19.1 Problem

There are two infinitely large planes /71 and /4 separated by a distance a. In the frame
S, the plane 771 with a uniform surface charge density —o; is at rest, while the plane 7/ wth
a uniform surface charge density o, moves to the x direction at the constant velocity v. (a)
Find the electric field and magnetic field in the frame S. (b) Find the electric field and
magnetic field in the frame S’ which moves to the x axis at the velocity v together with the
Ik plane. (c) Suppose that a positive charge e is put in the outside of the two planes. The
charge is at rest in the frame S at that moment. Find the force exerted on the charge both
in the frame S and S’ frames.



dl = ovdz

((S-frame))
From the Ampere’s law, we have
dB = 2—'”0(0‘}‘12) cosf =2 #y(ovdz) b
2\ zZ2 + b7 27[\/22 +b \/z2 +b
_ Mbov  dz

T Z2+b’



Then we have

ubovs dz wbov & p,ov
Bz = J. 3 7= —_— =
T Sz +b 7T 2b 2

0

The electric field:
o
E =—
y 80

S-frame

((S” frame))

Region [
E'=E =0

off’
2¢,

\ ov
E,'= y(E, —cpB;) =~y ”02 =—y

E'=y(E;+c¢pB,)=0



B'=B =0
B,'=y(B, +€E3) =0

' oV
B,'= y(B, _gEz) :?’ﬂOT

Region II
E'=E =0
Ez = 7(E2 _C:BBs)

= (- —cp7)
& 2

0

1 Y
= yo(—-cB%)
& 2

0

1
=yo(—-p
& 2

_ 10 5 _p2
—280(2 £)

Ey'=y(E;+cfpB,)=0




B'=B =0
Bz':7(Bz+€E3):O
B3'=}/(B3—§E2)

—y L2,

= o\(\———
al (2 ¢’ 50/”0)

oV
-y Hy

Region 111
E'=E =0
Hv' _ off
E,'=y(E, —cpB;) =0y =y ——
2 2¢,
Ey'=y(E;+cfB,)=0

B'=B =0
B,'=y(B, +€E3) =0

\ ov
B,'=y(B, _gEz) = _7ﬂ07



Suppose that a charge ¢ is put at rest in the S-frame (the region I). What is the force applied

on the charge (¢>0)?

First we consider the velocity of the particle in the frame S’.

u'=-1"Y
= _
l—éul
c
uz':l uz =0
71——u1
c
1/13':l u% =0
71——u1
c
or
u'=(-,0,0) and
Region I
F =qE =(0,0,0)
F'=q(E'+u'xB")=(0,0,0)
where
2
E'=0.72 0,
2¢,
E:(07070)7
Region I1

F =qE = (0,12 0)

&y
F'=q(E'+u'xB"
= (0,272 o)

&y

with

u=(0,0,0)

B'= (0’0,7/%)

B=(0,0, ”fv)



E=0120-p0,  B=0.0-74T
0

2
E=(0.7.0). B=(0,047)
80
Region 111
F =gE =(0,0,0)

F'=q(E'+u'xB")=0

with

2
E'=02%0),  B'=0,0—%
2¢, 2

E =(0,0,0), B=(0,0,%)

19.2 Problem-2

Suppose that two parallel infinite wires 4 and B (line charge density 1) move along the
x axis with the velocity v. The separation distance between two wires is 7. What is the force
between two wires?




We now consider the electric field in the S” frame were the line wires are at rest. Using

the Gauss’s law we have an electric field at the line A (the line charge density A'= i) due

to the line charge of B.

oo 2
27
E'=E'=0

No magnetic field is generated since the two lines are at rest in the S’ frame:
B'=B,'=B,'=0
The repulsive force (per unit length) between two wires is obtained as

112
ey

F'='E,'=

We now consider that Lorentz transformation for the electric and magnetic fields,
E =E'=0

£, =y(E, "+ cfBy))
_
- 2rg,r
A
- 2rg,r

E,=y(E,'-cfB,")=0

and



B, = y(B, '+€E2 )
A
c 2meyr

yA'Y

- 27e,C’r
_ HoyA'y
2rcr

_ My
27r

The repulsive force between two wires is

F=AE,-AvB,
_ 12 ~ /JO/IZVZ
g,y 2mr
2
= A (1= &o44,v°)
2meyr
12 V2
= (I-—)
2rg,r c
BRES
2ng,r v’
2’ 12
- 2rg,r

19.3 Problem

From the magnetic dipole moment to the electric dipole moment
((Griffiths Problem 12-64))

The magnetic moment consists of a uniform charge density oo (the line charge density
Ao = Apo and A is the cross section of the wire) circulating at speed v around a square loop
of side /o, so that the magnetic moment is equal to

m= Apyl = AVl
Suppose that this magnetic moment moves in the x direction at speed v. The frame S” moves

toward the x axis with the velocity v, relative to the frame S. Show that in the frame S the
current loop carries an electric dipole moment.



Charge density of the front side in the S frame

u'=v,
u'+v
u:
v
1+7u'
c
2y
- 2
v
1+—
c

Jy=yrWUJ,'-ipJ,")
=2vy(v)p'

P =Py

— &

c

=y(m+

J '+ p)
s
C
2

=y )(1+5)p!
C

u)p'

2

— ()1 +‘C’—2>poy<v)

1+ 3°
g

Charge density of the back side in the S frame




1+ 7u'
C
Jy =y, '=ipJ,")
— YOy’
=0

P =Py

— &

c

J,'+p"

=yt L

— ) —fv)p'

1

__P

70
=Py

Here we note that the length / in the S-frame is related to the length /” by

[= A (Iength contraction)

v )

No length contraction occurs along the y direction. The total charge in the front side is

Qf :pflA
1+4° 1

=p A
P8 )

_ 1+5° 1
“1- 5 y(v)

The total charge in the back side is

0, = p,l4

= P4 h

()




The electric dipole moment is given by

/ /
p=Qb(5°ey)+Qf(—5°ey)
2 2 2
L, _,OOAH,[)’2 IR
2y(v) 1-5°2y(v)
2 2
:pOA IO (1—1+ﬁ2
2y(v)  1-p
2 2
=—p,A L P e,

Ty 1=-p
= _(2“0102 )ﬂ27(")ey

2
v
= —(/10102 ) = r(vye,

=[p,4 ]ey

e,

19.4 Problem
((Griffiths Problem 12-67))

A charge ¢ is released from rest at the origin in the presence of a uniform electric field
E = (0, 0, Eo) and a uniform magnetic field B = (Bo, 0, 0). Determine the trajectory of the
particle by transforming to a system in which E = 0, finding the path in that system and the
transforming back to the original system. Assuming E, < cB,.

We know that
(1) B’ - iz E’ = invariant under the Lorentz transformation
c
(2) E - B = invariant under the Lorentz transformation
This means that
1 1
B __2E2 = Boz __2E02
c c
_ B 12 1 E 12
- T2
c
=B">0

and
E-B=E'"B'=0

Suppose that E” = 0, satisfying the second condition. The first condition is also satisfied
since E, <cB,.



E,'=E, =0

E,'=y(E;—cfB)
=y(E,—vB)
=7(E,—vB,)
=0

E'=y(E +cpB;)
=0

The magnetic field is along the x’ direction in the S’ frame.

The trajectory in S system.

The particle started out at rest and at the origin in the S frame.



Uy —v

u,'= =—v
l—ﬁu2
c
u3':l u,‘? =0
71——u2
c
ul':l LIIBI, =0
71——u2
c

So it started out the velocity #>” = -v (in the x’-)’ plane) in the S* frame. The magnitude of
u’ remains unchanged since no work is done in the presence of the magnetic field. We now

consider the equation of motion of the particle in the S’ frame.

d
. 'ul — ulel
dar'
xB'
t' )

= (](d—

or

dr'=—9_ (r'xB"dt'

Oj/u'

u=—1 (r'xB"), or

mOyu'

X1

_\31

r

d6q
rq{+drq

1

drq

¥1

In this figure, we have



dr=r'do=—4 1 par
mOyu'

or

_d0 _ 48" _ 4B,

dt' myy, my,’

Since v = 'R, the particle moves in a circle of radius

R = l = mO}/ZV
@' gB,
with
Yw=V= 1
u 1 ~ ﬁ
2

The actual trajectory is given by

x'=0
y'=—Rsin(a't")
Z'=R(l—cosw't")

The trajectory in S:
x'=x x=x'
y'=y(y—vi) y=y(y+vt')
Z'=z z=2z
1 v 1 v
I'=y(t-—Yy) t=y(t+—=y)
c c

So the trajectory in S is given by



x=0

. \ v v
y = —)Rsin[yw'(t —?y)]+ yiv(t —?y)]

or

y=vt —%sin[ya)'(t _c_vzy)]

z=R{l—cos[yw'(t — C—V2y)]}
Finally, we have

Py-v)+E-R =R
with

_ m07/2V
9B,

R

:R072

19.5 Problem
((Griffiths Problem 12-64))

In a certain inertial fame S, the electric field E and the magnetic field B are neither
parallel nor perpendicular, at a particular space-time point. Show that in a different inertial

system S , moving relative to S with velocity v given by

v ExB

vi  B*+E*/c?
1+—

C

the fields E and B are parallel at that point. Is there a frame in which the two are
perpendicular.

We know that
1 . . .
(1) B’ - —E ?= invariant under the Lorentz transformation
c
(2) E - B = invariant under the Lorentz transformation
This means that
1 1
2 2 12 12
B Y E = B Y E
c c

E-B=E" B'=constant



We choose axes so that E points in the z direction and B in the y-z plane. The S* frame
moves at the velocity v along the x axis relative to the S frame.

The Lorentz transformation:

E,'=y(E,—cpB;)
=—cypB,

E,'=y(E,+cfB,)

B'=B =0,

32':7(Bz+'8E3)

c
B,'=y(B, _éEz)
=y B,

The vectors E” and B’ are parallel. So we have

e’ e’ e’
E'xB'=0=|0 —cyp B, y(E,+cpB,) =
0 7(Bz+§E3) VB,

From this we have
[B,’c* + (B, > + EX)v+ B,E,(c* +V*) =0
or

v _ (ExB),

2 2

v E
I+— B+~
c ¢




APPENDIX

A. Relativistic-covariant Lagrangian formalism
A.1  Lagrangian L (simple case)

Proper time

(dx# ')2 =a,,a,.dx,dx,

=0, dx,dx,
=(ax,)

We define the proper time as

(ds)” = c*(dr)? —(dx,)* —(dx,)* = (dx, )’
= (dr') —(dx, ")’ ~ (dv,")’ —(dx, )’

(ds)” =c*(dn)’*{l cz[(dt) +(dz) +(dt) I}

= A (dr) (1-% )
C

2

2
arr=§=dt,/1—l2
C C

where zis a proper time and u is the velocity of the particle in the frame S.

or

b
The integral .[ ds taken between a given pair of world points has its maximum value if it

a

is taken along the straight line joining two points.

S= —aj:ds = —acij‘dt,fl—lcl—j = j‘Ldt
L:—ochl—Z—z2

Nonrelativistic case

where



2

2
u u a
L=—ac(l-=—)"?* =—ac(l1-—)=—u* —ac
( cz) ( 202) 2c

In the classical mechanics,
—=— or o =myc
Therefore, the Lagrangian L is given by
L= —m002 a —Z—j)”2 )

The momentum p is defined by

_a
ou

myu

p

((Note))
This momentum coincides with the components of four-vector momentum p, defined by

dx

— M
py_mo

dr

A.2  Hamiltonian
The Hamiltonian H is defined by



H=p-u—L=ywmu’ +m,c’ !
y(u)
B y(u)’ myu® +m,c’

0

= 7’(”)”7002

m,c’

uZ

2
C

1—

or

_ _ _ 2.2 2
L RN . =my ¢’ +p

A.3  Lagrangian form in the presence of an electromagnetic field
The action function for a charge in an electromagnetic field

S= ji (—=mycds + g4, dx )

where the second term is invariant under the Lorentz transformation.
A4,= (A,l%¢) , and  dx, = (dx,dx,,dx,,icdr)

Then we have

b
S= I(—mcds +g4,dx,)

= _[[—mocz,/l—u—z2 +q(A-u—¢)ldt
c



The integrand in the Lagrangian function of a charge (¢) in the electromagnetic field,

2
L :—mocz1/1—Z—2+q(A-u—¢)

p=to g4
ou u?
e
where
y N
;1:(A51_¢)
c

The Hamiltonian H is given by

H=p-u-L
m 2
= +ed-u—(-my’ 1——+qA u—qge)
u’
v
or
m,c’
H = =+q¢
u
=
or

c

[H_q¢j2 moc (1— )+m0

= m0202 +(p— c]A)2

A.4  Expression for the Lagrangian in terms of 4-dimensional velocity
Here we use drinstead of df in the expression of Lagrangian.

ds =cdrt



1, 1s a four-dimensional velocity defined by

dx

7

T dr

_ dr dx,

T dr dt

= (y(wu,, y(w)u,, y (w)uy,icy (u))

n,

Aﬂny =An +An, +An,+An,
=y(u)(u-A-9)

since

_dtdy . dt
= ara Car

4,=(Ailg),
C

b
S= j(—mocds +q4,dx,)
:
= .[ (_mocz + quu ’ U;l)dr

L =-my’ +q94,m,

A.5 Lagrangian and Hamiltonian in terms of the field tensor Fy

uveouv

F, F. =2(B’+B+B) —%(Ef +E’+E)
C

This is invariant under the Lorentz transformation.
We may try the Lagrangian density

1
L= FFy 4,

uve v
0

By regarding each component of 4, as an independent field, we find that
the Lagrange equation



oL 0 [ oL
04, Ox,

IR
a(87‘)

is equivalent to

oF

uv

ox

H

= ﬂOJ/t :

The Hamiltonian density Hen for the free Maxwell field can be evaluated as follows.

em 4 X uve o uv
o oL, o4,
em a % 8x4 em
ox,
F,
A e
) ox, 24, c
or
1, 1,
H, =—¢E + B —¢E-V¢
2 24,
jH dr:lj(goEz+L32)dr—jgo(E-v¢)dr
1 2, Lo
== [(e,E* +=—B*)dr
2 24,
((Note))

j(E-wﬁ)dr :j[v-(E¢)—¢v-E]dr
= j V-(Ed)dr

= [(Eg)-da
=0

where E¢ vanishes sufficiently rapidly at infinity.



=0 (in this case).




