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This chapter is a summary of the special relativity in the electricity and magnetism. 

This chapter is not taught in the class room because of the advanced topics. Nevertheless, 

for example, the formula for the Lorentz transformation in electric field and magnetic field 

may be helpful to the discussion of the origin of the Faraday’s law of induction in Chapter 

30.  

 

1. Charge density and current density 

1.1 Charge density 

 
 

We consider the frame S’ moving to the positive x direction with a velocity v relative to 

the frame S. Note that  = v/c. We measure the distance of the cylinder under the condition 

that 04 x . Since  
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but with the same area A (since dimension transverse to the motion are unchangeable. If 

we call '  (= 0 = the rest-charge density) the density of charges in the S’ frame in which 

charges momentarily at rest, the total charge Q is the same in any system, 
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1.2 Four-vector current density J  

The current density J  is defined as 
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where u is the velocity of the particle in the S frame. It is well known that the continuity 

equation is valid in both the frame S and S’. 
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This equation is a simple consequence of Maxwell’s equations.  

 


























x

J

J

J
a

x

x

x

J

J

J

x

J






















 '

'

'
0

'

'
 

 

When 



a

J

J




 '
, in other words,  

 

 JaJ ' , 

 

we have 

 





















 
x

J

x

J

x

J

x

J
aa

x

J





















0

'

'
 

 

Then it is concluded that J  is a four-vector, called the four-current density. 
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when 0'1 J . Here 0 is the rest-charge density. 

 

1.3 Invariance under the Lorentz transformation 

We know that  JJ  is invariant under the Lorentz transformation 
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Suppose that J’ = 0 (or u’ = 0) in the S’ frame, where the point charge is at rest. J  u  

(the frame S’ moves at the velocity u relative to the frame S). Then we have 
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The current density J is defined as 
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The four-vector current density is expressed by 
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This can be expressed by 
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where d is Lorentz-invariant and is given by 
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1.4 Simple case 
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We also have  
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______________________________________________________________________ 

We consider the four special cases. 

 

(i) u = v 0'u  
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2 Maxwell’s equation field tensor 

2.1 Four vectors for the vector potential and scalar potential 
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The equation of continuity; 
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2.2 Gauge transformation 
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Under the Gauge transformation. the new four-dimensional vector A
G is related to the 

original vector A through  
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where  is a arbitrary function of xu. 
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((Lorentz gauge)) 

We impose the Lorentz condition given by 
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In this gauge, A  is the four-vector. 
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Note that the Lorentz gauge is very convenient because it is an invariant condition. 

 

2.3 Electromagnetic field tensor F 

We define the field tensor as 
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This tensor satisfies the Jacobi identity; 
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This equation holds automatically for the antisymmetric tensor  

 

The magnetic field; 
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The electric field; 
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The field tensor is an anti-symmetric tensor of second rank and hence, has 6 independent 

components. 

 

Electromagnetic field tensor; 
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We show that 
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2.4 Maxwell’s equation 

The Maxwell’s equation can be written as 
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2.5 Invariants of the field 

 FF  is invariant under the Lorentz transformation 
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A further invariant is obtained by contraction of the field tensor with the “completely anti-

symmetric unit tensor of fourth rank” defined by 
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E B  = invariant under the Lorentz transformation 

 

2.6 Equation of continuity 

The equation of continuity can be derived as follows. 
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3. Vector potential under the Lorentz transformation 
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4. E and B under the Lorentz transformation 

4.1 Transformation 
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((Mathematica-1)) See the book of Michael Trott, Springer Verlag 













 
 

4.2 Choice of the frame S’ which has pure electric or pure magnetic fields 

From the Sec.3.5, we find that 



(1) 2 2

2

1

c
B E = invariant under the Lorentz transformation 

(2) E B  = invariant under the Lorentz transformation 

 

Here we assume that E B =0 and 2 2

2

1
0

c
 B E   

 

Then one can find a frame S’ in which (E’ = 0 and B’ ≠ 0) [pure magnetic field], or (B’ = 

0 and E’ ≠ 0) [pure electric field]. The proof is given in the following. 

 

(a) Pure magnetic field (E’ = 0) 

We assume that E’ = 0. From the Lorentz transformation, we have 
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This implies that one can find the frame where 0'2 B  and E’ = 0. 

 

((Note)) 

From the relation 

 

223

332

1 0

vBBcE

vBBcE

E









  

 

we get 

 

  E v B  

 

(b) Pure electric field (B’ = 0) 

Next we assume that B’ = 0. Then we have 
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This implies that one can find the frame where 2' 0E  and B’ = 0. 
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5. Energy-momentum tensor and Maxwell’s stress 

5.1 Force density 

We define the four-vector of the force density as f  
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5.2 Maxwell’s equation 

The Maxwell’s equation is given by 
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The current density is given by 
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The left-hand side can be split into two terms, 
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The second term: 
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Here we use the Jacobi identity; 
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The force density is rewritten as 
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with the symmetric energy-momentum tensor (Maxwell’s stress tensor) 
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5.3 Conservation law 
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The Maxwell’s stress tensor is given by 
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Explicitly, the elements of T are 
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6. Lorentz force 

6.1 Origin of the Lorentz force 

Consider a particle of charge q moving with velocity v (along the x axis) with respect 

to the reference frame S in a region with electric and magnetic fields E and B. 

 

In the frame S, the Lorentz force on this charge is given by 
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In general case, we have 
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The fields in S and S’ are related by 
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What is the relation between F and F’? 
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6.2 force density and charge density 
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We choose the frame S’ in which the system with the charge density is at rest. We now 

calculate the force density vector  
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since ' 0J  (the system is at rest). 

We note the Lorentz transformation of 4-dimensional vector, current density and 
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7. Lienard-Wiechert potential 

 

7.1 Lienard-Wiechert potential 

What are the scalar potential and vector potential of a charge q at th the velocity v 

moving along the x direction. The problem is easy in a coordinate system moving with the 

charge, since in this frame the charge is standing still. 
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The scalar potential  is given by 
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Similarly we have for the vector potential 
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Then the electric field E and the magnetic field B are given by 
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E A  and  B A  

 

Using the Mathematica, we get 
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For a slow moving charge (v<<c), we can take for E the Coulomb field. Then w have 
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B E  (Bio-Savart law) 

 

((Mathematica-II)) 

Lienard-Wiechert potential 

 





 
 

 

7.2 Distribution of the electric field 
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Rp is the relative coordinate of the field point and the charge point. The electric field is 

along the position vector Rp. Rp is a vector from the instantaneous location of the charge in 

S to the point where E is measured in S. 

 

((Mathematica-3)) 

The electric field of a charge moving with the constant speed with v ( = v/c) on the unit 

circle of the real space. 



 

 

 



 
 



 
 

 

8. Relativity of Electric field and magnetic field  

 



 
 

E = 0 and B ≠ 0 

We consider the charge q moving along the x axis in the presence of the magnetic field 

B (the frame S). In the frame S, there is only an external magnetic field B. Thus the 

magnetic force on the charge is given by 
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Suppose that there is no electric field (E = 0) in the frame S ( )0B . The E’ and B’ in the 

frame S’ are related to those in the frame S as 
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Then the force (electric force) on the charge q in the frame S’ is  
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since the charge q is the same for any frame and the particle is at rest in the frame S’. There 

is no force due to B’ since the particle is at rest in the frame S’. 'F  is the force of F’ in a 

direction perpendicular to the velocity v. Thus we have  
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9. Derivation of the Biot Savart law 

 

B’= 0 and E’≠ 0. 

We consider that the magnetic field B’=0 in the frame S’. In the frame S’, there is only 

an external electric field E’ (the point charge is at rest). The E and B in the frame S are 

related to those in the frame S’ as 
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Using the result from the Lienard-Wiechert potential (<<1) (see Sec.8) 
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which is the application of the Biot-Savart law to a point charge. 

 

10. Ampere’s law (Feynman 13-9) 

We consider that the electrons located on the linear chain (the line density –0) moves 

at the velocity v. At the same time there are positive ions located on the same chain (the 

line density 0). We now consider the frame S’ which moves at the velocity v. 

 



 
 

 

((Formula)) 
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where   for the frame where the particle moves at the velocity v along the x axis, and '  

for the frame where the particle is at rest. 

 

We assume that 

(1) The line densities of electrons and positive ions are given by 0  and 0  in the 

frame S. 

(2) The line densities of electrons and positive ions are given by    and   in the 

frame S’ 
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The net line charge density in the frame S’ is 
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______________________________________________________________________ 

((Note)) 

This relation can be also derived from the Lorentz transformation of the 4-dimensional 

current density 
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Here we define 
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A is the same for the S and S’, since the plane of A is perpendicular to v. 
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where vAJI )( 011   and  = 0. 

So the positive line density produces an electric field E’. We use the Gauss’s law. 

 



 
 

The electric field E’ at the distance s from the axis of the cylinder, 
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where s is the radius of the Gaussian surface (cylinder). 
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So there is an electrical force on q in S’; 
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But if there is a force on the test charge q in S’, there must be one in S. In fact, one can 

calculate it by using the transformation rules for forces. Since q is at rest S’ and F  is 

perpendicular to the x axis, we have 

 

  FF '  or '
1

  FF


 

 

Using this result we have 
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)( 00  is a magnetic field due to the line current density 0v  (Ampere’s 

law). The force has a form as qvBF  . 

 



11. Derivation of the Ampere’s law 

We analyze the fields and currents as viewed from two frames; S where the ions are at 

rest. S’ where the electrons are, on the average, at rest. 
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Multiplying the cross-sectional area (A) of the wires, we obtain the following 

transformation for currents and linear charge densities. 
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where  A , the subscript 1 (x axis) is neglected and the plus and minus subscript refer 

to the ions and the electrons, respectively.  

In S’ we know that 0'I  since the electrons are at rest. 
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In S the net charge per unit length must vanish. 
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The fields in S due to   are 
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to E+ and B-. Noting that 'ˆˆ rr   (perpendicular to the x axis), we find that the fields in S 
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Then the total fields in the frame S are 
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Since )''(    vII  and 0'I , we have 
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We see that a magnetic field due to current flow is a relativistic effect. 

 

12. Capacitance moving along the x axis with a uniform velocity 

12.1 The capacitance moves along the x direction which is parallel to the electric 

field of the capacitance. 

 

 
 



In the frame S’ where the charges are at rest. 
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Thus we have 
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12.2 The capacitance moves along the x direction which is perpendicular to the 

electric field of the capacitance. 

 

 
 

 

 

In the frame S’ where the charges are at rest. 
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13. Lagrangian and Hamiltonian in terms of the field tensor F 
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This is invariant under the Lorentz transformation. 

 

We may try the Lagrangian density 
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By regarding each component of A  as an independent field, we find that 

the Lagrange equation 
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is equivalent to  
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The Hamiltonian density Hem for the free Maxwell field can be evaluated as follows. 
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where E  vanishes sufficiently rapidly at infinity. 
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  E  (in this case). 

 

E is the energy of a free particle 

 

14 Lorentz force in the relativistic mechanics 
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holds in an arbitrary frame S, where u is the velocity of the system. This expression is the 

correct relativistic form for Newton’s second law. The momentum form is more 

fundamental. 

The four-dimensional momentum is given by 
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where we use Ekin instead of E in order to avoid confusion between the kinetic energy and 

the electric field. 

 

The final form of the equation of motion is given by 
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15. Cyclotron motion: a particle in a uniform magnetic field along the z axis. 
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We use the complex plane for the solution. 
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This equation describes a cyclotron motion (circular motion with radius R). 
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16. The motion of the particle under an electric field (  E ) 
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We now consider the capacitance consisting of two parallel planes. Suppose that the 

particle with charge q on the one plate moves to the other plate. The initial velocity is equal 

to zero. What is the velocity of the particle arriving at the other plate? 
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17. Equation of motion under a constant electric field 

We assume that E is along the y axis. The initial momentum p0 is in the (x, y) plane. 

The particle is at the origin at t = 0. 
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Solving these differential equations (we use the Mathematica), 
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We now consider the special case when 00 yp . 
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Thus in a uniform electric field, a charge q moves along a catenary curve. 
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Zimmerman  
2D motion of a relativistic particle in a uniform 
electric field 
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18. A particle in a uniform electric field and a magnetic field 

Let the electric field E be parallel to the y axis and the magnetic field B parallel to the 

z axis. At t = 0 the particle is at the point (0,0,0) and has a momentum p0. 
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[ ( )]
d

q
dt

   p F E v B  (1) 

 

According to the Lorentz invariance, we have 

 

2 2 2 2

2 2

1 1
' '

' '

c c
  

  

B E B E

E B E B

 

 

Since 0 E B , we have ' ' 0 E B  

 

(1) 

 

5 10 15 20 25 30

10

20

30

40

5 10 15 20 25 30

5

10

15

20

25

30



We assume a frame that ' 0B . 
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The frame S’ move relative to the frame S with a velocity v along the x axis. We know the 

equation of motion for the particle in a uniform electric field 'E  along the y axis. 
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The required equations of motion for the particle in the frame S is obtained using the 

Lorentz transformation. 

 

)''(

'

'

)''(

414

33

22

411

xxix

xx

xx

xixx













  

)''(

'

'

)''(

tx
c

t

zz

yy

vtxx














 

 

(2) 
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The frame S’ move relative to the frame S with a velocity v (=E2/B3<c) along the x axis. 

We know the equation of motion for the particle in a uniform electric field 'B  along the z’ 

axis. 

 



)''
'

'
cos(

'

''
'

)''
'

'
sin(

'

''
'

22

0

2

0

22

0

2

0















t
E

qBc

qB

pp
y

t
E

qBc

qB

pp
x

kin

yx

kin

yx

 

 

with v =E2/B3<c. 

 

The Lorentz transformation between 
0

0

0( , )kinE
p i

c
  p  and 

0
0

0

'
' ( ', )kinE

p i
c

  p  is given 

by 

 

)('

'

'

)('

01

00

3003

0202

0

0101

cpEE

pp

pp

E
c

pp

kinkin

kin














 

 

The required equations of motion for the particle in the frame S is obtained using the 

Lorentz transformation. 
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19. Examples 

19.1 Problem 

There are two infinitely large planes 1 and 2 separated by a distance a. In the frame 

S, the plane 1 with a uniform surface charge density –, is at rest, while the plane 2 wth 

a uniform surface charge density , moves to the x direction at the constant velocity v. (a) 

Find the electric field and magnetic field in the frame S. (b) Find the electric field and 

magnetic field in the frame S’ which moves to the x axis at the velocity v together with the 

2 plane. (c) Suppose that a positive charge e is put in the outside of the two planes. The 

charge is at rest in the frame S at that moment. Find the force exerted on the charge both 

in the frame S and S’ frames. 
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Suppose that a charge q is put at rest in the S-frame (the region I). What is the force applied 

on the charge (q>0)? 

 

First we consider the velocity of the particle in the frame S’. 
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19.2 Problem-2 

Suppose that two parallel infinite wires A and B (line charge density ) move along the 

x axis with the velocity v. The separation distance between two wires is r. What is the force 

between two wires? 

 
 



We now consider the electric field in the S’ frame were the line wires are at rest. Using 

the Gauss’s law we have an electric field at the line A (the line charge density
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No magnetic field is generated since the two lines are at rest in the S’frame: 
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The repulsive force (per unit length) between two wires is obtained as 
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We now consider that Lorentz transformation for the electric and magnetic fields, 
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The repulsive force between two wires is 
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19.3 Problem 

From the magnetic dipole moment to the electric dipole moment 

((Griffiths Problem 12-64)) 

The magnetic moment consists of a uniform charge density 0 (the line charge density 

0 = A0 and A is the cross section of the wire) circulating at speed v around a square loop 

of side l0, so that the magnetic moment is equal to 
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Suppose that this magnetic moment moves in the x direction at speed v. The frame S’ moves 

toward the x axis with the velocity v, relative to the frame S. Show that in the frame S the 

current loop carries an electric dipole moment. 
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Charge density of the back side in the S frame 
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Here we note that the length l in the S-frame is related to the length l’ by 
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No length contraction occurs along the y direction. The total charge in the front side is 
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The total charge in the back side is 
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The electric dipole moment is given by 
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19.4 Problem 

((Griffiths Problem 12-67)) 

A charge q is released from rest at the origin in the presence of a uniform electric field 

E = (0, 0, E0) and a uniform magnetic field B = (B0, 0, 0). Determine the trajectory of the 

particle by transforming to a system in which E = 0, finding the path in that system and the 

transforming back to the original system. Assuming 0 0E cB . 

 

We know that 
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Suppose that E’ = 0, satisfying the second condition. The first condition is also satisfied 

since 0 0E cB .  
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The magnetic field is along the x’ direction in the S’ frame. 

 

The trajectory in S’ system. 

 

The particle started out at rest and at the origin in the S frame. 
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So it started out the velocity u2’ = -v (in the x’-y’ plane) in the S’ frame. The magnitude of 

u’ remains unchanged since no work is done in the presence of the magnetic field. We now 

consider the equation of motion of the particle in the S’ frame. 
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Since Rv ' , the particle moves in a circle of radius 
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The actual trajectory is given by 
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So the trajectory in S is given by 
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Finally, we have 
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19.5 Problem 

((Griffiths Problem 12-64)) 

In a certain inertial fame S, the electric field E and the magnetic field B are neither 

parallel nor perpendicular, at a particular space-time point. Show that in a different inertial 

system S , moving relative to S with velocity v given by 
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the fields E and B are parallel at that point. Is there a frame in which the two are 

perpendicular. 
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We choose axes so that E points in the z direction and B in the y-z plane. The S’ frame 

moves at the velocity v along the x axis relative to the S frame. 

 

The Lorentz transformation: 
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The vectors E’ and B’ are parallel. So we have 
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From this we have 
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APPENDIX 

 

A. Relativistic-covariant Lagrangian formalism 

A.1 Lagrangian L (simple case) 
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where  is a proper time and u is the velocity of the particle in the frame S. 

 

The integral 
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Nonrelativistic case 
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In the classical mechanics, 
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Therefore, the Lagrangian L is given by 
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((Note)) 

This momentum coincides with the components of four-vector momentum p  defined by 
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A.2 Hamiltonian 

The Hamiltonian H is defined by 
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We have 
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A.3 Lagrangian form in the presence of an electromagnetic field 

The action function for a charge in an electromagnetic field 
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where the second term is invariant under the Lorentz transformation. 

 

1
( , )A i

c
  A , and ),,,( 321 icdtdxdxdxdx   

 

Then we have 

 

2
2

0 2

( )

[ 1 ( )]

b

a

b

a

S mcds qA dx

m c q dt
c

 



  

     




u

A u

 



 

The integrand in the Lagrangian function of a charge (q) in the electromagnetic field, 
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The Hamiltonian H is given by 
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A.4 Expression for the Lagrangian in terms of 4-dimensional velocity 

Here we use d instead of dt in the expression of Lagrangian. 
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A.5 Lagrangian and Hamiltonian in terms of the field tensor F 
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This is invariant under the Lorentz transformation. 

 

We may try the Lagrangian density 
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By regarding each component of A  as an independent field, we find that 

the Lagrange equation 
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is equivalent to  
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The Hamiltonian density Hem for the free Maxwell field can be evaluated as follows. 

 


FFLem

04

1
  

 

4

4

4 2 24
4 2

0 0

1 1
( ) ( )

2

em
em em

AL
H L

A x

x

F A
F

x c








 


 

  
   


    


B E

 

 

or 

 

2 2

0 0

0

1 1

2 2
emH   


   E B E  

 

2 2

0 0

0

2 2

0

0

1 1
( ) ( )

2 2

1 1
( )

2 2

emH d d d

dr

  





   

 

  



r E B r E r

E B

 

 

((Note)) 

 

( ) [ ( ) ]

( )

( )

0

d d

d

d

  





     

  

 



 



E r E E r

E r

E a

 

 

 

where E  vanishes sufficiently rapidly at infinity. 
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