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Maxwell's equations imply that all classical electromagnetic radiation is ultimately 
generated by accelerating electrical charges. Thomson1 demonstrated a method for 
determining the electric field of a slowly moving charged particle that is abruptly 
decelerated to rest. His expression for the electric field due to the acceleration is correct to 
zero-th order in v/c, where c is the velocity of light. The Thomson’s method of analyzing 
the kink in the electric field is discussed by Tessman and Finnell2 for the charge moving at 
any velocity v less than c. The usual method of obtaining the field of an accelerating charge 
involves the use of the Lienard-Wiechert scalar and vector potential, and is fairly elaborate. 
Such a complicated mathematics sometimes obscures the physical interpretation that 
remains clear in the Thomson's simpler derivation.  

In this note, we discuss the radiation field due to an accelerating charge and the 
radiation field due to an oscillating electrical dipole moment. There have been so many 
references on these topics, including the textbooks for the introductory physics and 
standard textbooks for the electricity and magnetism, and optics, and lectures.3-11 
Nevertheless, we think that students studying the Introductory Physics Course may have 
some difficulty in understanding the origin of the radiation fields, partly because of the lack 
in visualization of the physical phenomena. In this note, we make many figures by using 
Mathematica. We think that such figures may be helpful for students to understand the 
radiation phenomena which are in general treated by complicated mathematics. 
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1. Radiation field from a charge with accelerated motion 

We can gain some insight into the fields spreading out from an accelerated charge by 
the following argument. We consider a charge that is initially at rest, then is quickly 

accelerated for some short time interval , and then continues to move with a constant 

velocity v0 (= a) (which is small compared to the velocity of light c) for a long time. In 



Fig.1(a) and Fig.1(b) we show the graph of velocity v versus time t, describing its motion 
and the graph of position versus x vs time t, respectively. 
 

 
(a) 

 

 
(b) 

 
Fig.1 (a) Velocity-time diagram for a particle which is rest at t = 0. It then 

experiences a constant positive acceleration of magnitude a = v0/, which 

brought it to a velocity v0 at time t = , to x = x0 = v0/2. After t = , the 
charge continues to move at the constant velocity v0. We assume v0 is small 
compared to c. (b) Position-time diagram for 0≤t≤T.  

 
In Fig.2 we show the situation at some time (t = T) after the charge undergoes an 

acceleration for 0≤t≤. Prior to t = 0, the charge is always at rest at the origin O. The charge 
is then uniformly accelerated to until t = , reaching a speed v0. This velocity is kept 
constant after t = . The disturbance of the electric field lines begins at t = 0 and ends at t = 
. The wave front propagates outward from the origin (the initial position of the charge) 
and in a time T it reaches out to a distance cT. Beyond the sphere of the radius cT (called as 
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the region I), the electric field lines in that region is uniform, straight, and centered on O, as 
if the charge were still at the origin O. The inner sphere travels outward from the position A 
at t = ; and by some later time T it reaches out to a distance c (T - ). Within the inner 
sphere of radius (AQ = c(T - )) (called the region II), the electrical field is the new radial 
field centered on the position B. For observers in the region I (the outside of the outer 
sphere), the electric field must be that of a charge located at the origin O. For observers in 
the region II (inside the inner sphere), it is that of a charge (Point B) at the position x = x0 = 
(v0t)/2 + v0(T - t) = v0(T - /2). 

The disturbance produced by the accelerated charge is confined to the space between 
the outer sphere and the inner spheres. The electric field lines in this transition region must 
connect the lines of the new field of the uniformly moving charge at the point B with the 
lines of the old field of the stationary charge at the point O. The electric field in this region 
of the kink has both a radial component and a tangential or transverse component. There 
now exists a transverse component of the electric field Et, which propagates outward as a 
pulse. 
 

 
 
Fig.2 Electrical field lines of a charge that undergoes an acceleration for 0≤t≤. 

Here B is the present position of the charge (at t = T, T>), O is the initial 
position of the charge (the origin) at t = 0, and A is an intermediate position 
(AB = v0(T - ). Between O and A the charge suffered a constant 
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acceleration a (= v0). Between A and B the charge moves at the constant 
velocity v0. The outer sphere (outer edge of the kink) has radius (OP = cT) 
and is centered at O. The inner sphere (inner edge of kink) has radius (AQ = 
c(T - )) and is centered on A. H1P1 = cH1Q1 = OB sin = v0 T 
sinandOA = (v0)/2. For observers in the region I (the outside of the 
outer sphere), the electric field must be that of a charge located at the origin 
O. For observers in the region II (inside the inner sphere), it is that of a 
charge (Point B) at the position x = x0 = (v0)/2 + v0(T - ) = v0(T - /2). Note 

that 1OP  is parallel to 1BQ . This figure is made using the Graphics of the 

Mathematica. See also Fig.4(a) and Fig.4(b) for the overviews of E-lines. 
 

 
 
Fig.3 An inner-field line connects with an outer-field line. In the transition region 

of the kink, the electric field has both a radial component (Er) and a 
transverse component (Et). Et decreases in proportion to 1/r. Er decreases in 
proportion to 1/r2. When the kink reaches a large distance from the source, 
the electric field in the transition region of the kink will be entirely 
transverse. Such an electric field at right angle to the direction of 
propagation is a feature of electromagnetic wave. The transverse kink 

propagates as a spherical wave. Note that 1OP  is parallel to 1BQ . BB1=OB 

sin. H1P1 = c. OA = (v0)/2. The center of the inner sphere is at A. H1 and 

Q1 are located on this inner sphere; AH1 = AQ1 = c (T – ). The center of the 

outer sphere is at O. Note that OB = OA + AB = (v0)/2 + v0(T - ) = v0 (T – 

/2)  v0 T. This figure is made using the Graphics of the Mathematica. 
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As shown in Fig.3 the electric field in the transition region, the spherical shell of 

thickness c has a radial component (Er) and a tangential (or transverse) component (Et). 
The transverse component is the radiation field of the accelerated charge. From Fig.3, we 
have the relation 
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where  is the angle between the acceleration vector and the line from the charge to the 
observer. The Coulomb's law for the radial component of the electric field (electric force 
per unit charge) a distance from a charge is 
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Since = r/c and a = v0/, we have 
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Fig.4(a) A kink in the E-field lines (example-1). The notations in this figure are the 
same as those of Fig.2. This figure is made using the Graphics of the 
Mathematica. 

 



 
 
Fig.4(b) A kink in the E-field lines (example-2). The notations in this figure are the 

same as those of Fig.2. This figure is made using the Graphics of the 
Mathematica. 

 
 

The transverse electric field tE  instantaneously reflects the applied acceleration. We 

note that tE  is proportional to 1/r, in contrast to Er ( 1/r2). For large r, only tE  contribute 

significantly to the radiation field. The magnetic field B is perpendicular to r and tE . How 

much power is radiated in each direction? In vacuum, the poynting vector is given by 
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The total radiated power is obtained by integrating the Poynting vector over a closed 
surface, 
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where p is the electric dipole moment and va   is the acceleration. This is Larmor’s power 
formula for an accelerating charge. It states that any charged particle radiates when it is 
accelerated and that the total power is proportional to a2. Figure 4 shows the angular 
dependence of the intensity for the radiation from an accelerated point charge. The 
direction of the acceleration is the positive x axis. 
 

 
Fig.5 Angular dependence of the intensity pattern for the radiation from an 

accelerated point charge. The direction of the acceleration is the positive x 
axis. The radiation is maximum perpendicular to the acceleration vector and 
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the total power radiated is proportional to q2a2. This figure is made using the 
PolarPlot and Graphics of the mathematica. 

 
 
2. Radiation from oscillating electric dipole moment 
2.1 Formulation 

An oscillating electric dipole (an antenna) is used to generate electromagnetic radiation. 
It is a pair of electric charges that vary sinusoidally with time such that at any instant the 
two charges equal magnitude but opposite sign. One charge could be equal to 

)cos()( tQtq   and the other to –q(t), where w is the angular frequency. One technique 

that works well for radio frequencies is to connect two straight conductors to the terminal 
of an ac source (see Fig.6). 
 

((Note)) Typical values of f (frequency) and (wavelength) 
 

c =  f (2. 1) 
 

where c is the velocity of light, c = 2.99792458 x 108 m/s. When f = 10 GHz,  = 3 cm. 

When f = 75 MHz,  = 4 m. 
 

 
 
Fig.6 An oscillating electric dipole antenna. Each terminal of an ac source is 

connected to a straight conductor; the two conductors together comprise the 
antenna. As the voltage across the source oscillates, the charges on the two 
conductors also oscillate. The charges are always equal in magnitude and 



apposite in sign. This figure is made using the Graphics and Plot (sine curve 
of the ac source)) of the Mathematica  

 



 



 
Fig.7 One cycle in the production of an electromagnetic wave by an oscillating 

electric dipole antenna. T = 2/. The red curve and arrows depict the E 

field at points on the x axis (where  = /2); the magnetic field is not shown. 
At t = 0, the electric field is directed from the upper part of the dipole to the 
lower part. At t = T/2, the electric field is directed from the lower part of the 
dipole to the upper part. For 0<t<T/2 the current flows from the upper part 
of the dipole to the lower part, while for T/2<t<T, the current flows from the 
lower part of the dipole to the upper part. The time dependence of q(t) at the 
upper part of the dipole and the current flowing the wire, i(t) is shown in 
Fig.10. This figure is made using the Graphics and Plot (programs) of the 
Mathematica. 

 
The geometry of the antenna determines the geometrical properties of radiated electric 

and magnetic fields. We assume a dipole antenna, which can be considered simply as 
straight conductors. Charges surge back and forth in these two conductors at the angular 

frequency , driven by the oscillator. 
The antenna can be regarded as an oscillating electric dipole, in which one branch 

carries an instantaneous charge q(t) and the other branch carries -q(t). The charge q(t) 
varies sinusoidally with time and changes sign every half cycle. The charges certainly 
accelerated as they move back and force in antenna, and as a result the antenna is a source 
of electric dipole radiation. At any point in space there are electric and magnetic fields that 
vary sinusoidally with time. 
 
 



 
Fig.8 The electric dipole moment with a charge q(t) at the point A (0, 0, s/2) and a 

charge –q(t) at the point B (0, 0, s/2). s ( 0) is the distance between the 
points A and B 

 
Imagine that two tiny metal spheres separated by a distance s and connected by a fine 

wire. The system as a whole is electrically neutral. We assume that there are a charge q(t) 
at the point A (0, 0, s/2) and a charge -q(t) at the point B (0, 0, -s/2), where 
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and  is the angular frequency. The electric dipole is defined by 
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Suppose further that we somehow contrive to drive the charge back and forth through the 

wire, from one end to the other, at an angular frequency . 
The retarded potential at P is given by 
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Expanding V as a function of s to the first order of s (using the Mathematica, Series) we 
have 
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where k is the wave number and is given by 
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(the dispersion relation). In the static limit ( 0 , and 0k ,),  
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This is not, however, the term that concerns us now. We are interested in the fields that 

survive at large distances from the source, in the so-called radiation zone; 
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Fig.9 The current (= dq(t)/dt) flowing along the wire between A and B. The vetopr 

potential A is due to the distribution of current on the wire. The position P is 
located at (x, y, z). 

 
The vector potential A is determined by the current flowing in the wire; 
 

zz tQ
dt

tdq
t uui )sin(

)(
)( 

. (2.11) 

y

z

P

qt

-qt

A

-B

rz

r

O

qs
z



 

 
 
Fig.10 Charge q(t) at the point A (0, 0, s/2) and current flowing a wire between the 

points A and B (0, 0, -s/2). When q(t) decreases from Q to –Q for 0<t<T/2 
the current defined by i(t) = dq(t)/dt flows from A to B through the wire. 
When q(t) increases from -Q to Q for T/2<t<T, the current flows from the 
point B to the point A through the wire. See also Fig.7. 

 
We may take the current i to be the same at all points along the length. Then we have the 
vector potential 
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where  
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The integrand of the vector potential is expanded as a series of z around z = 0 
(Mathematica);  
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Noting that the second term in the parenthesis is an odd function of z, we have 
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The electric field E can be evaluated as 
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E consists of (1/r) terms and (1/r2) term. When the (1/r2) term is neglected, we have the 
approximation for E, as E1, 
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The magnetic field B can be evaluate as 
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B consists of (1/r) terms and (1/r2) term. When the (1/r2) term is neglected, we have the 
approximation for B, as B1, 
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We find that the ratio E1/B1 is evaluated as 
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which is the same as that for the plane waves. At large distances the fields look locally to 
be plane. The only difference is that the amplitudes do not remain constant in the direction 
of propagation but fall off slowly as 1/r, because the wavefornts are spherical rather than 
truly planar. The electric and magnetic field are in phase. The fields are mutually 
perpendicular. The pointing vector S (energy radiated) is obtained as 
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Fig.11 p, E, and B in the spherical co-ordinate system. p, E, and r are in the same 
plane. E and r are perpendicular to each other. 

 
(1) The vectors p, E and r are in the same plane.  
(2) E is always perpendicular to r. 
 

 
 
Fig.12 An oscillating electric dipole oriented along the z axis. The electric field E, 

the electric dipole moment p , and the position vector r lie in the same plane. 
The electric field E is perpendicular to r and the magnetic field B.  
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Fig.13 The instantaneous electric field on a sphere centered at a localized linearly 
oscillating charge. The electric field is along the z axis. The magnetic field B 
is tangential to the circle. p is the electrical dipole moment. E and B are the 
electric field and the magnetic field, respectively. This figure is made using 
the ParametricPlot3D and the Graphics3D of the Mathematica. 

 
The magnitude of the time-averaged Poynting vector is obtained by averaging (in time) 

over a complete cycle (T = 2/) 
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P is the total power radiated and is given by 
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Fig.14(a) Dipole radiation pattern P = A sin2/r2. A = 1. The distance r is changed as a 

parameter. This figure is made using the PolarPlot of the Mathematica. 
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Fig.14(b) Dipole radiation pattern sin2. This figure is made using the 
SphericalPlot3D of the Mathematica. 

 
2.2 Simulation using the Mathematica 

We now make a plot of the directions of the electric field 
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and the magnetic field 
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Here we use the relations between the unit vectors in the spherical coordinates (ur, u, u) 

and the those in the Cartesian coordinates (ux, uy, uz) 
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Then we have the x, y, and z components (Ex, Ey, and Ez) of the electric field as 
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and the x, y, and z components (Bx, By, and Bz) of the magnetic field as 
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Bz = 0. (2.28c) 

 
For simplicity, we use 
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Then, we get 
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Using the relations (spherical coordinates) 
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we get the expressions of E and B in the Cartesian coordinate. 
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(1) StreamPlot of (Ex, Ez) in the z-x plane 

The SteamPlot plots streamlines that show the local direction of the vector field at each 
point. The length of the arrow does not correspond to the magnitude of the vector. When y 
= 0, Ey = 0, we make a plot of the direction of (Ex, Ez) by using the Mathematica 

(StreamPlot). We assume that A = 1 ( = 1 as normalization factor). The value  is changed 

as a parameter. Here we use  = 3.  
 



 
 
Fig.15 Direction of the electric field lines in the (x, z) plane. The magnitude of each 

arrow is the same, although the magnitude of E strongly depends on the 
position in the (x, z) plane. Note that Ez = 0 on the z axis. The direction of 

the oscillating electric dipole (located at the origin) is the z axis. A = 1.  = 3. 

 = 1 as a normalization factor. This figure is made using the StreamPlot of 
the Mathematica.  

 

(2) ContourPlot of 22
zx EE   =  

The ContourPlot (Mathematica) can be used to make a plot of the contour lines where 

the magnitude of 22
zx EE   is kept constant (= ).  is changed as a parameter. This figure 

is made by using the ContourPlot of the Mathematica. 
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Fig.16 Contour plot of 22
zx EE  =  in the (x/, z/) plane, where y = 0 and  is 

changed as a parameter. The direction of the oscillating electric dipole 
(located at the origin) is the z axis. This figure is made usimg the 
ContourPlot of the Mathematica. During one period, the loop of E shown 
closest to the source moves out and expands to become the loop shown 
farthest from the source.  

 
(3) Propagation of the electric field lines 



 
 
Fig.17 Propagation of the electric field lines, whose time dependence is periodic 

with a period of T (= 2/). It takes time for E and B fields to spread 
outward from oscillating charges on two conductors (the antenna) connected 

to an ac source, to distant points. A = 1.  = 1. y = 0.  = 8. The parameter a 

is changed as a parameter;  = t = 0 (red), 0.4 (green), and 0.7 (purple). 
This figure is made using the ContourPlot of the Mathematica. 

 

(4) Plot of B in the (x, y) plane ( = /2) 
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We notice that B is scaling function of r/. We now make a plot of B for  = /2 in 
the (x, y) plane, where the electric dipole p is directed along the positive z direction. In this 

case, 22 yxr  . The electric field is directed along the z axis. We assume that A/c = 1 

and  = 3. 
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Fig.18 The magnitude of Bin the (x, y) plane with z = 0, forming many rings. The 

distance between adjacent rings is . This figure is made using the 

DensityPlot of the Mathematica. A/c = 1.  = 1.  = 3. Note that Bz = 0. 
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