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Abstract 

This note is presented to the undergraduate students who are interested in the oscillations and 

waves. One of the simplest models in the classical mechanics is a simple harmonics. A more 

general oscillation is described by a superposition of the so-called modes. This mode is 

quantized into elementary excitation in quantum mechanics. In this sense, the concept of the 

oscillations and waves is fundamental but is essential to understanding the physics from the 

classical mechanics to the quantum mechanics. The duality of waves and particles plays a central 

role in quantum mechanics. 

This note is written on the basis of a book (Oscillations and waves) [in Japanese]1 written by 

Prof. M. Ogata of the University of Tokyo. This summer (July, 2009), we visited Japan. We 

stopped by Kanda Book Stores near the University of Tokyo, in order to buy used books on 

physics (mainly written in Japanese), which are usually much cheaper than the new books. 

Fortunately we found a very interesting book on oscillations and waves, which was written by 

Prof. Masao Ogata. According to the preface of the book, this book was written for 

undergraduate students in Japan who major in physics, as one of the text-book series published 

from Syokabo. We read some part of this book, standing at the book store. We were very 

impressed by the contents of the book; the physics of the oscillation and wave for both the 

longitudinal waves and the transverse waves. After we came back from Japan, we have written 

this lecture notes using the Mathematica (variational method) along the content of the book 

(written by Prof. Ogata). It took several weeks for us to finish writing this note. We think that 

this note will be useful for the undergraduate students in U.S.A. who are interested in the physics 

of oscillations. This lecture note will be helpful for understanding the fundamental concept of the 
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oscillations and waves. We note that the lecture notes of Phys.131 and 132 (general physics 

course), which is given in the Chapters 16 and 17 of our home page 

http://bingweb.binghamton.edu/~suzuki/ 

will be also useful in understanding the fundamental concept of the longitudinal and transverse 

waves. Note that we use the Lagrangian and the Lagrange’s equation, which simplify the 

derivation of the equations of motion for the N (= 2, 3, 4, and 5) systems. The spread of the wave 

packet will be discussed with the concept of duality principle (wave and particle). We strongly 

suggest the undergraduate students to use Mathematica since there are some complicated 

calculations including integrals. Through the use of the Mathematica , students may understand 

the concept of physics with minimum effort in mathematics. 

There are many excellent textbooks on the waves and oscillations (see References). We refer 

to 6 references for the writing this note.1-6. There is an excellent description on the wave packet 

in the Quantum Theory written by D. Bohm.7 
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1. Longitudinal waves in chains 

Longitudinal waves are waves that have same direction of oscillations or vibrations along or 

parallel to their direction of travel, which means that the oscillations of the medium (particle) is 

in the same direction or opposite direction as the motion of the wave. 

 

1.1. N = 1 longitudinal wave 
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Fig.1 A system with a mass m (located at x = x1) and two springs with a spring constant k. a is 

the length of un-stretched spring. x1 is the position of the mass along the chain. The total distance 

is 2 L0. Both sides are fixed. 

 

For simplicity, we use the Lagrange’s method for the motion of the spring systems with one 

point mass (mass m). The spring constant is k. We assume that both sides of the chain are fixed. 

The Lagrangian is defined as the difference of the kinetic energy and the potential energy and is 

given by 

2
10

2
1

2
1 ])(2[

2

1
])([

2

1
)]([

2

1
atxLkatxktxmL  

, (1.1) 

where a is the length of un-stretched spring and 2L0 is the total length of the system. The 

Lagrange’s equations are obtained as 

)()(2)( 1101 tkxtkxkLtxm 
. (1.2) 

In equilibrium ( )01 x , we have 

0
0
1 220 kLkx  , 

or 

0
0
1 Lx  . 

Here a new variables as the deviation of the displacement from the position in thermal 

equilibrium, is introduced, 

0xxy  . (1.3) 

Note that y is a just variable and the displacement along the chain. This notation (y) has nothing 

to do with the displacement along the direction perpendicular to the chain. Then we have 

kyym 2 . (1.4) 

We assume that 

]Re[ tiYey  , (1.5) 
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where Y is the complex amplitude and  is the angular frequency. Y satisfies the equation given 

by 

YY
k

m
2

2




. 

Then we have 

m

k
2

. Y = 1, (1.6) 

or 

u1=1 for n = 1. 

We make a plot of u1 as a function of the position n. (n = 0, 1, 2). Here we assume that the 0-th 

and 2–th components of u1 is equal to zero. 

 

 

Fig.2 Plot of u1 as a function of n (n = 0, 1, and 2). 

 

1.2 N = 2 longitudinal wave 

 

   

Fig.3 A system with two masses (m) (located at x = x1 and x2) and three springs with a spring 

constant k. a is the length of un-stretched spring. The total distance is 3L0. Both sides are fixed. 

 

For simplicity, we use the Lagrange’s method for the motion of the spring systems with two 

point masses with mass m. The spring constant is k. The Lagrangian is given by 
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2
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

 

, (1.7) 

where a is the length of un-stretched spring and 3L0 is the total length of the system. The 

Lagrange’s equations are 

)(2)(3)(

)()(2)(

2102

211

tkxtkxkLtxm

tkxtkxtxm








. (1.8) 

In equilibrium ( 021  xx  ), we have 

0
0
2

0
1

0
2

0
1

320

20

kLkxkx

kxkx





, 

or 

0
0
2

0
0
1

2Lx

Lx





. 

For convenience, new variables are introduced as the deviation of the displacements from the 

positions in thermal equilibrium, 

0
222

0
111

xxy

xxy





. (1.9) 

Then we have 

212

211

2

2

kykyym

kykyym








, (1.10) 

]Re[

]Re[

22

11

ti

ti

eYy

eYy








, (1.11) 

where Y1 and Y2 are the complex amplitudes, and  is the angular frequency. Y1 and Y2 satisfy 

the equations defined by 

212
2

211
2

2

2

kYkYYm

kYkYYm









, (1.12) 

or 
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
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
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

 (1.13). 

This is the eigenvalue problem with the eigenvalue 2 (
k

m

k

m  
2

). We use the 

Mathematica to solve this problem for simplicity. 

(a) The out-of-phase (mode-1) 






























2

1
2

1

2

1

Y

Y

, (1.14) 

for 1 = m1
2 = 3k; 

m

k

m

k
3

3
1  . Since Y1 = -Y2 = 2/1 , the movement of the mass m1 

(= m) is opposite to that of mass m2 (= m) (the out-of-phase). The angular frequency of the mode 

2 is the simple oscillation where the middle spring contributes to the restoring force. 

 

(b) In-phase mode (mode 2) 




























2

1
2

1

2

1

Y

Y

, (1.15) 

for 2 = m2
2 = k; 

m

k
2 . Since Y1 = Y2 = 2/1 , the masses m1 (= m) and m2 (= m) 

undergoes the same displacement in the same direction (in-phase). This means that the spring 

between m1 and m2 remains un-stretched and un-shrunk. The mode 2 is the simple oscillation 

where the middle spring remains unchanged. The angular frequency 2 is smaller than 1. 
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(i) 1 = 1.73205 












707107.0

707107.0
1u

, (1.16) 

where u1 is the eigenvector and is normalized so that 

1|||| 1 u . 

 

(ii) 2 = 1.0 











707107.0

707107.0
2u

, (1.17) 

where u2 is the eigenvector and is normalized so that 

1|||| 2 u . 

We make a plot of u1 and u2 as a function of the position n. (n = 0, 1, 2, 3). Here we assume that 

the 0-th and 3–th components of u1 and u2 are equal to zero. 

 

   

Fig.4 Plot of u1 (1 = 1.73205) and u2 (2 = 1.0) as a function of n (n = 0, 1, 2, 3). 

 

Here we make a plot of the sine function define by 





3

0

2 )
3

(sin

)
3

sin(
)2,(

m

k
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Nna





, (1.18) 
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as a function of n, where k is the mode number (k = 1, 2). We also make the plot of uk, (k = 1, 2) 

at integer n. We find that these points well fall on the curve of ak(n ,N = 2) vs n for each mode k.  

 

   

Fig.5 Plot of ak(n, N = 2) as a function of n (n = 0, 1, 2, 3). The solid circles are denoted by the 

two modes u1 (1 = 1.73205) and u2 (2 = 1.0).  

 

1.3. N = 3 longitudinal wave 

 

   

Fig.6 A system with three masses (m) (located at the positions x = x1, x2, and x3) and four 

springs with a spring constant k. a is the length of un-stretched spring. The total distance is 4L0. 

Both sides are fixed. 

 

For simplicity, we use the Lagrange’s method for the motion of the spring systems with three 

point masses with mass m. The spring constant is k. Both sides are fixed. The Lagrangian of this 

system is given by 

2
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 (1.19), 
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where a is the length of un-stretched spring and 4L0 is the total length of the system. The 

Lagrange’s equations: 

0323

3212

211

4)(2)()(

)()(2)()(

)()(2)(

kLtkxtkxtxm

tkxtkxtkxtxm

tkxtkxtxm












. (1.20) 

In equilibrium ( 0321  xxx  ), we have 

0
0
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0
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0
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0
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0
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
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or 

0
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0
0
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0
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
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Here new variables are introduced as the deviation of the displacements from the positions in 

thermal equilibrium, 

0
333

0
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0
111

xxy

xxy

xxy







. (1.21) 

Then we have 

323

3212

211
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kykyym
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We assume that 

]Re[

]Re[

]Re[
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eYy

eYy













, (1.23) 

where Y1, Y2, and Y3 are the complex amplitudes, and  is the angular frequency, Y1, Y2, and Y3 

satisfy the equations defined by 
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
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
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
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. (1.25) 

This is the eigenvalue problem with the eigenvalue 2 (
k

m

k

m  
2

). We use the 

Mathematica to solve the problem. There are three eigenvalues 

 

(1) 1 = 1.84776 


















5.0

707107.0

5.0

1u

, (1.26) 

where u1 is the eigenvector and is normalized so that 

1|||| 1 u . 

 

(ii) 2 = 1.41421 




















707107.0

0

707107.0

2u

, (1.27) 

where u2 is the eigenvector and is normalized so that 

1|||| 2 u . 

 

(iii) 3 = 0.765367 
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
















5.0

707107.0

5.0

3u

, (1.28) 

where u3 is the eigenvector and is normalized so that 

1|||| 3 u . 

We make a plot of u1, u2, and u3 as a function of the position n. (n = 0, 1, 2, 3, 4). Here we 

assume that the 0-th and 4–th components of u1, u2, and u3 are equal to zero. 

 

   

Fig.7 Plot of u1 (1 = 1.8478), u2 (2 = 1.4142), and u3 (3 = 0.76537), as a function of n (n = 0, 

1, 2, 3, 4). 

 

Here we make a plot of the sine function defined by 





4

0

2 )
4

(sin

)
4

sin(
)3,(

m

k

km

kn
Nna





, (1.29) 

as a function of n, where k is the mode number (k = 1, 2, 3). We also make the plot of uk, (k = 1, 

2, 3) at integer n. We find that these points well fall on the curve of ak(n, N = 3) vs n for each 

mode k.  
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Fig.8 Plot of ak(n, N = 3) as a function of n (n = 0, 1, 2, 3, 4). The solid circles are denoted by 

the three modes, u1 (1 = 1.8478), u2 (2 = 1.4142), and u3 (2 = 0.76537). 

 

1.4. N = 4 longitudinal wave 

 

  

Fig.9A system with four masses (m) (located at the positions x = x1, x2, x3, and x4) and five 

springs with a spring constant k. a is the length of un-stretched spring. The total distance is 5L0. 

Both sides are fixed. 

 

For the system with 4 masses, the eigenvalue problem to be solved is as follows. 
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k

m
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









, (1.30) 

or 
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((Mathematica)) We use the Mathematica to solve the eigenvalue problem. 

 

 

(1) 1 = 1.90211 
























371748.0

601501.0

601501.0

371748.0

1u

, (1.32) 

where u1 is the eigenvector and is normalized so that 

1|||| 1 u . 

 

(ii) 2 = 1.61803 
























601501.0

371748.0

371748.0

601501.0

2u

 (1.33), 

where u2 is the eigenvector and is normalized so that 

A1  2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2
2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2

A1  MatrixForm

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

s1  EigensystemA1  N

3.61803, 2.61803, 1.38197, 0.381966,

1., 1.61803, 1.61803, 1., 1., 0.618034, 0.618034, 1.,

1., 0.618034, 0.618034, 1., 1., 1.61803, 1.61803, 1.
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1|||| 2 u . 

 

(iii) 3 = 1.17557 
























601501.0

371748.0

371748.0

601501.0

3u

, (1.34) 

where u3 is the eigenvector and is normalized so that 

1|||| 3 u . 

 

(iv) 4 = 0.618043 





















371748.0

601501.0

601501.0

371748.0

4u

, (1.35) 

where u4 is the eigenvector and is normalized so that 

1|||| 4 u . 

We make a plot of u1, u2, u3, and u4 as a function of the position n. (n = 0, 1, 2, 3, 4, 5). Here we 

assume that the 0-th and 5–th components of u1, u2, u3 and u4 are equal to zero. 
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Fig.10 Plot of u1 (1 = 1.9021), u2 (2 = 1.6180), u3 (3 = 1.1756), and u4 (4 = 0.6180), as a 

function of n (n = 0, 1, 2, 3, 4, 5). 

 

Here we make a plot of the sine function define by 





5

0

2 )
5

(sin

)
5

sin(
)4,(

m

k

km

kn
Nna





, (1.36) 

as a function of n, where k is the mode number (k = 1, 2, …, 4). We also make the plot of uk, (k = 

1, 2, …, 4) at integer n. We find that these points well fall on the curve of ak(n, N = 4) vs n for 

each mode k.  

 

   

Fig.11 Plot of ak(n, N = 4) as a function of n (n = 0, 1, 2, 3, 4, 5). The solid circles are denoted 

by the four modes, u1 (1 = 1.9021), u2 (2 = 1.6180), u3 (3 = 1.1756), and u4 (4 = 0.6180). 
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1.5. N = 5 longitudinal wave 

 

 

Fig.12 A system with five masses (m) (located at the positions x = x1, x2, x3, x4, and x5) and six 

springs with a spring constant k. a is the length of un-stretched spring. The total distance is 6L0. 

Both sides are fixed. 

 

For the system with 5 masses, the eigenvalue problem to be solve is as follows. 

545

2

5434

2
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2
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2
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m
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
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
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



, (1.37) 

or 
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
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
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. (1.38) 

 

((Mathematica)) We use the Mathematica to solve the eigenvalue-problem. 
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For the system with 5 masses 

(1) 1 = 1.93185 




























288675.0

5.0

57735.0

50.0

288675.0

1u

, (1.39) 

where u1 is the eigenvector and is normalized so that 

1|||| 1 u  

 

(ii) 2 = 1.73205 




























5.0

5.0

0

5.0

5.0

2u

, (1.40) 

where u2 is the eigenvector and is normalized so that 

1|||| 2 u . 

A1  2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0,

0, 0, 1, 2, 1, 0, 0, 0, 1, 2
2, 1, 0, 0, 0, 1, 2, 1, 0, 0,

0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2

A1  MatrixForm

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

s1  EigensystemA1  N

3.73205, 3., 2., 1., 0.267949, 1., 1.73205, 2., 1.73205, 1.,

1., 1., 0., 1., 1., 1., 0., 1., 0., 1.,
1., 1., 0., 1., 1., 1., 1.73205, 2., 1.73205, 1.
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(iii) 3 = 1.41421 


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

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
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

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

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57735.0

0

57735.0

0

57735.0

3u

, (1.41) 

where u3 is the eigenvector and is normalized so that 

1|||| 3 u . 

 

(iv) 4 = 1 

















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








5.0

5.0

0

5.0

5.0

4u

, (1.42) 

where u4 is the eigenvector and is normalized so that 

1|||| 4 u . 

 

(iv) 5 = 0.517638 

























288675.0

5.0

57735.0

5.0

288675.0

5u

, (1.43) 

where u5 is the eigenvector and is normalized such that 

1|||| 5 u . 

We make a plot of u1, u2, u3, u4, and u5 as a function of the position n. (n = 0, 1, 2, 3, 4, 5, 6). 

Here we assume that the 0-th and 6–th components of u1, u2, u3 u4, u5, and u6 are equal to zero. 
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Fig.13 Plot of u1 (1 = 1.9319), u2 (2 = 1.7310), u3 (3 = 1.4142), u4 (4 = 1.0), and u5 (5 = 

0.5176), as a function of n (n = 0, 1, 2, 3, 4, 5,6). 

 

Here we make a plot of the sine function define by 





6

0

2 )
6

(sin

)
6

sin(
)5,(

m

k

km

kn
Nna





, (1.44) 

as a function of n, where k is the mode number (k = 1, 2, …, 5). We also make the plot of uk, (k = 

1, 2, …, 5) at integer n. We find that these points well fall on the curve of ak(n, N = 5) vs n for 

each mode k.  

   

Fig.14 Plot of ak(n, N = 5) as a function of n (n = 0, 1, 2, 3, 4, 5, 6). The solid circles are denoted 

by the five modes, u1 (1 = 1.9319), u2 (2 = 1.7310), u3 (3 = 1.4142), u4 (4 = 1.0), and u5 (5 

= 0.5176). 
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This means that  

)5,(  Nnkk au , 

where 




















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

)5(

)4(

)3(

)2(

)1(

k

k

k
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k

k

a

a

a

a

a

a

 

 

1.6. Longitudinal wave for N masses 

We now consider the modes for the N masses on the chain. In equilibrium, the masses are 

located at 

x = L0/(N+1), 2L0/(N+1), 3 L0/(N+1), 

where L0 is the length of the system and x = L0/(N+1) is the separation distance between the 

nearest masses in thermal equilibrium. The mass is the same (= m) and the spring constant is the 

same (= k). yi, (i = 1, 2, …, N) is the displacement of the i-th mass from the equilibrium position 

(xi= i L0/(N+1). Using the Lagrange’s method, we have the equation s of motion  

)()(

.................................................

)()(

.................................................

)()(

)()(

)()(

)()(

11

11

45344

34233
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12011
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

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















, (1.45) 

where y0(t) = yN+1(t) = 0. 

]Re[ ti
ii eYy  , (1.46) 

)()( 11
2

nnnnn YYkYYkYm     (1.47) 

where  is the angular frequency, or 
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2

2)()(   nnnnnnnn YYYYYYYY
k

m

. (1.48) 

From the case of N = 2, 3, 4, and 5, it is reasonable to assume that Yn can be expressed in the 

form of 

)sin(pnYn  . (1.49) 

The displacements of the system are described by 
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. (1.50) 

Here p is constant and is determined from the condition YN+1 = 0. 

0)]1(sin[1  NpYN , (1.51) 

1


N

k
p




  ( = 1, 2,     , N). (1.52) 

This means that there are N modes in this system. 

For p = pN+1, 

0)sin()
1

)1(
sin()sin( 1 




  nn
N

N
npY Nn 

. (1.53) 

For p = pN+j, (j = 2, 3, 4,   ), 
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. (1.54) 
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Then the solution of Yn with p = pN+j is the same as that with p = pN-j+2. The substitution of the 

form of Yn into Eq.(1) yields to the dispersion relation (relation between  and pk) 

]
)1(2
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2
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00
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









, (1.55) 

where  

mk /0  . 

Note that k is a spring constant and that  is the mode number. The dispersion relation of for N = 

50 is shown in Fig.15, where pis the wave number and the angular frequency is normarized by 

20. 

 

 

Fig.15 Dispersion relation for N = 50. The angular frequency k vs the wave number p. 

 

The chosen modes with  = 1, 2, 3, …, 10 for N = 50 are plotted in Fig.16. 
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Fig. 16 Plot of )50,( Nnak  with k = 1, 2, ..., 10, as a function of n. 

 

2. Double pendulum (another example) 

Here we consider the motion of the double pendulum. This motion is similar to that of the 

longitudinal wave in the chain system with N = 2. 

 

 

Fig.17 Schematic diagram of the double pendulum. l1 = l2. m1 = m2. 

 

1 and 2 are angled (normal coordinates) 

)coscos,sinsin(

)cos,sin(

221122112

11111




llll

ll




r

r

. (2.1) 

The kinetic energy K is given by 
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. (2.2) 

The potential energy U is given by 

)coscos(cos 22112111  llgmglmU  . (2.3) 

From the definition, the Lagrangian L is  

UKL  . (2.4) 

The Lagrange’s equation is given by 
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. (2.5) 

The equations of motion are obtained as 
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 (2.6). 

 

((Mathematica)) Variational method 
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Lagrange equation
Clear"Global`"
 "VariationalMethods`"

L 
1

2
m1 {12 1't2 

1

2
m2 {12 1't2  {22 2't2 

m2 {1 {2 Cos1t  2t 1't 2't  m1 g {1 Cos1t 
m2 g {1 Cos1t  {2 Cos2t

g m1 {1 Cos1t  g m2 {1 Cos1t  {2 Cos2t  1

2
m1 {12 1t2 

m2 {1 {2 Cos1t  2t 1t 2t  1

2
m2 {12 1t2  {22 2t2

eq11  VariationalDL, 1t, t
{1 g m1 Sin1t  g m2 Sin1t  m2 {2 Sin1t  2t 2t2 

m1  m2 {1 1t  m2 {2 Cos1t  2t 2t

eq12  VariationalDL, 2t, t
m2 {2 g Sin2t  {1 Sin1t  2t 1t2 

{1 Cos1t  2t 1t  {2 2t

eq21  EulerEquationsL, 1t, t
{1 g m1 Sin1t  g m2 Sin1t  m2 {2 Sin1t  2t 2t2 

m1  m2 {1 1t  m2 {2 Cos1t  2t 2t  0

eq22  EulerEquationsL, 2t, t
m2 {2 g Sin2t  {1 Sin1t  2t 1t2 

{1 Cos1t  2t 1t  {2 2t  0

eq31  FirstIntegralsL, 1t, t  Simplify

FirstIntegralt 
1

2
2 g m1  m2 {1 Cos1t  m2 {2 Cos2t 

m1  m2 {12 1t2  m2 {22 2t2

eq31  FirstIntegralsL, 2t, t  Simplify

FirstIntegralt 
1

2
2 g m1  m2 {1 Cos1t  m2 {2 Cos2t 

m1  m2 {12 1t2  m2 {22 2t2
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In the limit of small angles, the above equations are simplified as 
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Here we use the following approximations, 
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For simplicity, hereafter we assume that l1 = l2 = l and m1 = m2 = m. 
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We assume that 
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where 1 and 2 are the complex amplitudes and  is the angular frequency. 
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This is reduced to the eigenvalue problem after simple procedures, 
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where 



2

 . 

 

((Mathematica)) Eigenvalue problem 

 

 

(a) The in-phase mode (normal mode) 

The eigenvalue is 
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The eigenvector belonging to the eigenvalue 1 is 
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 (b) The out-of-phase mode (normal mode) 

The eigenvalue of the out-of-phase mode is 
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Since the differential equations are linear, we have the general form given by any 

superposition of 
)1(u  and 

)2(u , 

A1   2 1
1 1

; B1   2 0
0 1


2, 0, 0, 1

C1  InverseA1.B1

2, 1, 2, 2

EigensystemC1  Simplify

2  2 , 2  2 ,  1

2
, 1,  1

2
, 1
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where C1 and C2 are complex constants. From Eqs.(2.10) and (2.16), we have 
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and the initial conditions (at t = 0) 
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(i) Initial condition for the observation of only the in-phase mode 

To this end, it is necessary to have C2 = 0. Then we get 
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which leads to )()(2 21 tt    In other words, if we have the initial condition such that  

]Re[)0()0(2 121 Ctt   , ]Re[)0()0(2 121 Citt   
, 

then the in-phase mode can be realized experimentally. 
 

   
Fig.18(a)The initial conditions for the In-phase mode of the double pendulum. We choose the 

initial conditions such that   )0(1 t .  2)0(2 t . 0)0(1 t . 0)0(2 t .  is a very 

small angle. 
 

(ii) Initial condition for the observation of the out-of-phase mode 
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To this end, it is necessary to have C1 = 0. Then we get 
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which leads to )()(2 21 tt   . In other words, if we have the initial condition such that  

]Re[)0()0(2 221 Ctt   , ]Re[)0()0(2 221 Citt   
, 

then the out-of-phase mode can be realized experimentally. 
 

   

Fig.18(b)The initial conditions for the out-of-phase mode of the double pendulum. We choose 

the initial conditions such that   )0(1 t .  2)0(2 t . 0)0(1 t . 0)0(2 t .  is a 

very small angle. 

 

3 Transverse waves 

We now consider the transverse wave in the system. In equilibrium, the positions of masses 

and the springs are aligned along the straight line. The direction of the displacement is 

perpendicular to the straight line in equilibrium. In other words, the masses can move along the y 

direction. We assume that the distance between masses in equilibrium is longer than the un-

stretched length of springs. Otherwise, the system becomes nonlinear. 
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A transverse wave is a moving wave that consists of oscillations occurring perpendicular to 

the direction of energy transfer. If a transverse wave is moving in the positive x direction, its 

oscillations are in up and down directions that lie in the y direction. 

 

3.1 N = 1 transverse wave 

We consider the case of the transverse wave. The mass is located at the fixed position (x = 

L0). The displacement of the mass occurs along the direction perpendicular to the x axis 

(transverse direction). When the displacement y1 is very small, we find that the mass m 

undergoes a simple harmonic oscillation (the transverse mode).  

 

   

Fig.19 Transverse oscillation for N = 1 system. The displacement of the mass (m) is restricted to 

the direction perpendicular to the chain in equilibrium (the lenght 2L0). The spring constant is k. 

The length L0 is assumed to be larger than the length of un-stretched spring. 

 

The Lagramgian is given by 
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. (3.1) 

The Lagrange equation is 

)2( 11 y
m

k
y 




, (3.2) 

with  

 = (L0 – a)/L0 (>0), 

where a is the unstretched length of spring and y1 is much shorter than L0 and a. When 

]Re[ 11
tieYy  . (3.3) 

we have 
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
m

k
2

. (3.4) 

Note that the angular frequency of the transverse wave is different from that of the longitudinal 

wave by the factor (  ). 

 

((Mathematica)) 

 

 

3.2 N = 2 transverse wave 

 

   

Fig.20 Transverse oscillation for N = 2 system. The displacement of each mass (m) is restricted 

to the direction perpendicular to the chain in equilibrium (the length 3L0). The spring constant is 

k. The length L0 is assumed to be larger than the length of un-stretched spring. 

 

Lagrange equation
Clear"Global`"
 "VariationalMethods`"
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m y't2  2 

1

2
k yt2  L02  a

2

k a  L02  yt2
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m yt2

eq11 

VariationalDL, yt, t  Series, yt, 0, 1 & 
Simplify, L0  0 &  Normal

2 k a  L0 yt
L0

 m yt
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The differential equations for the transverse displacements y1 and y2 are given by 
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Then we have the eigenvalue problem given by 
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where 2 is the eigenvalue and )/(  km . This eigenvalue problem is almost the same as 

that for the longitudinal waves for N = 2, except for the factor /1  in the value of . 

 

((Mathematica)) 

 

 

3.3 N = 3 Transverse wave 

Lagrange equation
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Fig.21 Transverse oscillation for N = 3 system. The displacement of each mass (m) is restricted 

to the direction perpendicular to the chain in equilibrium (the length 4L0). The spring constant is 

k. The length L0 is assumed to be larger than the length of un-stretched spring. 

 

The differential equations for the transverse displacements y1, y2, and y3 are given by 
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where 2 is the eigenvalue and )/(  km . This eigenvalue problem is almost the same as 

that for the longitudinal waves for N = 3, except for the factor /1  in the value of . 

 

((Mathematica)) 
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3.4 N = 4 Transverse wave 
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Fig.22 Transverse oscillation for N = 4 system. The displacement of each mass (m) is restricted 

to the direction perpendicular to the chain in equilibrium (the length 5L0). The spring constant is 

k. The length L0 is assumed to be larger than the length of un-stretched spring. 

 

The Lagramgian is given by 
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 (3.8) 

The Lagrange's equations up to the first order of y1, y2, y3, and y4, are given by 
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where 0/)( 00  LaL . 

The eigenvalue problem for the transverse wave is the same as that for the longitudinal wave, 

when k is replaced by k for the longitudinal wave. 
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where 2 is the eigenvalue and )/(  km . This eigenvalue problem is almost the same as 

that for the longitudinal waves for N = 4, except for the factor /1  in the value of . 

 

((Mathematica)) We use the Mathematica to derive the Lagrange's equations. 

 

 

Lagrange equation
Clear"Global`"
 "VariationalMethods`"

L 
1

2
m y1't2 

1

2
m y2't2 

1

2
m y3't2 

1

2
m y4't2 

1

2
k y1t2  L02  a

2


1

2
k y2t  y1t2  L02  a

2



1

2
k y3t  y2t2  L02  a

2


1

2
k y4t  y3t2  L02  a

2



1

2
k y4t2  L02  a

2
;

eq11 

VariationalDL, y1t, t 
Series , y1t, 0, 1, y2t, 0, 1, y3t, 0, 1, y4t, 0, 1 & 

Simplify, L0  0 &  Normal

2 k a  L0 y1t
L0

 k 
a k

L0
 y2t  m y1t

eq12 

VariationalDL, y2t, t 
Series, y1t, 0, 1, y2t, 0, 1, y3t, 0, 1, y4t, 0, 1 & 

Simplify, L0  0 &  Normal

k 
a k

L0
 y1t  2 k a  L0 y2t

L0
 k 

a k

L0
 y3t  m y2t

eq13 

VariationalDL, y3t, t 
Series, y1t, 0, 1, y2t, 0, 1, y3t, 0, 1, y4t, 0, 1 & 

Simplify, L0  0 &  Normal

k 
a k

L0
 y2t  2 k a  L0 y3t

L0
 k 

a k

L0
 y4t  m y3t

eq14 

VariationalDL, y4t, t 
Series, y1t, 0, 1, y2t, 0, 1, y3t, 0, 1, y4t, 0, 1 & 

Simplify, L0  0 &  Normal

k 
a k

L0
 y3t  2 k a  L0 y4t

L0
 m y4t



38 

3.5 N = 5 Transverse wave 

 

  

Fig.21 Transverse oscillation for N = 5 system. The displacement of each mass (m) is restricted 

to the direction perpendicular to the chain in equilibrium (the length 6L0). The spring constant is 

k. The length L0 is assumed to be larger than the length of un-stretched spring. 

 

The eigenvalue problem is given by 
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where 2 is the eigenvalue and )/(  km . This eigenvalue problem is almost the same as 

that for the longitudinal waves for N = 5, except for the factor /1  in the value of . 

 

4. Continuous chain for the longitudinal and transverse waves 

4.1 Wave equation 

From the above discussion, we find that the wave equations of the longitudinal and 

transverse waves are given by  

)2( 112

2

  sss
s uuuk

dt

ud
m

. (4.1) 

)2( 112

2

  sss
s uuuk

dt

ud
m 

, (4.2) 
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respectively. We use the same form us(x) = u(x, t) for both waves. For the transverse wave, u(x, 

t) is the displacement along the direction (y axis) perpendicular to the chain axis. For the 

longitudinal wave, u(x, t) is the displacement along the chain direction (x axis). Only difference 

between Eqs.(1) and (2) is that the effective spring constant in the transverse wave is different 

from that for the longitudinal wave by the factor . For convenience, hereafter we use one wave 

equation given by Eq.(4.1) for both the longitudinal and transverse waves. In the limit of x 

(→0), sx= x and s is continuous variable. Under this assumption, u(x, t) can be expanded using 

a Taylor expansion, 

3
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Then the original wave equation can be rewritten as 
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or 
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which is the continuum elastic wave equation with the velocity of sound given by 

x
m

k
v 

. (4.7) 

This applies in general to various types of traveling waves. u(x, t) represents various 

positions. For a string, it is the vertical displacement of the elements of the string. For a sound 

wave, it is the longitudinal position of the elements from the equilibrium position. For 

electromagnetic waves, it is the electric or magnetic field components. 

 

4.2 Solution of the wave function (1) 

The wave function can be solved as follows. For convenience, we put  
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),(),( txtxu  , (4.8) 

which satisfies the wave equation given by 
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So that the equation for  becomes 
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. 
The solution obviously has the form 

)()( 21  ff  , 
where f1 and f2 are arbitrary function. 
Or 
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x
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. (4.10) 
The function f1 represents a plane wave moving in the positive x-direction, while the function f2 
represents a plane wave moving in the negative x-direction. 
 
4.3 General solution using the Fourier transform: 

We introduce a Fourier transform defined by 
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The inverse Fourier transform is given by 
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Then the wave equation can be rewritten as 
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Then we have 
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where  is the wave number and is defined by v/  . Here we use  instead of k since k is 

used as a spring constant. The solution of this equation is 
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where () is an arbitrary function of . Finally we get 
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This means that u(x, t) is an arbitrary function of )(
v

x
t  . 

 

5 Modes of the oscillation in the string 

5.1 Wave function of the mode 

We consider the oscillation in the string using the wave equation. In this case both sides of 

the string are fixed.  
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We assume that 

]),(Re[),( tiexUtxu  , (5.2) 

where U(x, w) is the complex amplitude and w is the angular frequency. Then we have 
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with the wave number  given by 

v

 
. (5.4) 

under the boundary condition 
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, (5.5) 

where L is the total distance of the string. The solution of the second order differential equation 

is simply obtained as 

)sin(),( xxU m  , (5.6) 

with 

L

m
m
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 (m = 1, 2, 3, ...),  (5.7) 

where m is an positive integer and denotes the number of mode m. The angular frequency m of 

the mode m is related to the wave number m of the mode m through a relation 
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, (5.8) 

where 1 is the fundamental angular frequency and 2, 3, 4, ... are the angular frequency of 

the second, the third, the fourth, ..., harmonics. The period (T1) and wavelength (1) of the wave 

with the mode m = 1 is 
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The wave function of the mode m is 
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, (5.10) 

where Amei
m is a constant complex amplitude. Here we use the dispersion relation, mm v  . 

The phase velocity vp and the group velocity vg are defined as 
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respectively. In the present case we have  

vvv gp 
. (5.12) 

It is found that the wave function of the mode m is a sum of the travelling wave propagating 

along the (+x) direction [ )](sin[
2 mm
m vtx

A   and the travelling wave propagating along the (-

x) direction [ )](sin[
2 mm

m vtx
A   , leading to the standing wave. 

 

5.2 General solution for the oscillation in the continuous string 

The general solution is a superposition of the wave function for the mode m (m =1, 2, 3, ...). 
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. (5.13) 

where Am and m (m = 1, 2, ...) can be determined from the initial condition, 
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where the form of function, f(x) is given. The wave function is periodic function of t with a 

period of T1 (= 2/1) at the fixed x. From the second initial condition, we obtain 

0...21  . (5.15) 

From the first initial condition, we have 
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The coefficient Am of the Fourier series can be calculated as 
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A
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5.3  Example 

For simplicity, we assume that f(x) is given by a triangle function 
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f(x) = (2a/L) x (0≤x≤L/2). (5.18) 

f(x) = (2a/L) (L – x) (0≤x≤L/2). (5.19) 

 

 

Fig.22 Initial state of the oscillation of the string 

 

The Fourier coefficient Am is calculated as 
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using the Mathematica. Note that 
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Then u(x, t) can be expressed by 
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In Fig.23, we show a plot of u(x, t) as a function of x, where t is changed as a parameter. We 

choose N0 = 50 as the highest term of the summation. When N0 is small (for example, N0 = 3), 

the form of u(x, t = 0) is slightly deviated from a triangle function near at x = L/2. The period is 

2L/v. We use L = 2, a = 1, and v = 1 for the numerical calculation. 
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Fig.23 Plot of u(x, t) as a function of x (x = 0 – 2), where t is changed as a parameter (t = 0 – 4). 

L = 2. a = 1. v = 1. The period T = 2L/v = 4. N0 = 50. 

 

In Fig.24, we show a plot of u(x, t) as a function of t, where x is changed as a parameter. The 

function u(x, t) at any fixed x is a periodic function of t with the period T (=2L/v which is equal 

to 2 in the present case). 

 

  

Fig.24 Plot of u(x, t) as a function of t (t = 0 - 4) where x is changed as a parameter (x = 0 - 2). L 

= 2. a = 1. v = 1. The period T = 2L/v = 4. N0 = 50. 

 

((Mathematica)) 
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6. Wave packet 

In this section we discuss the propagation of the wave packet. Here we use k as the wave 

number (but not ). 

 

6.1 Traveling wave 

We consider the solution the wave function for the infinite chain, 
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, (6.1) 

for x = -∞ to ∞. There is no limit on the value of x. The solution with the mode k is given by a 

travelling wave 

)(
0),( tkxieutxu  , (6.2) 

where A is the complex amplitude . We choose only the positive value of , given by 

kvk 
. (6.3) 

The k is the wave number (positive and negative values this time). The wave with the positive k 

denotes the traveling wave propagating along the positive x axis, while the wave with the 
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PlotStyle  TableThick, Hue0.1 i, i, 0, 9
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negative of k denotes the traveling wave propagating along the negative x axis. Then the general 

solution is expressed by a sum of these modes, 

)],(Re[),( txtxu  , (6.4) 

with 
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, (6.5) 

where f(k) is the complex amplitude.  

 

6.2 Wave packet for the dispersion relation kvk   

Suppose that f(k) is described by a Gaussian distribution function, 

]
)(2

)(
exp[

2

1
)(

2

2
0

0 k

kk

k
Akf








 , (6.6) 

where A0 is the complex amplitude(constant), k0 is the mean wave number, and k is the width 

of the Gaussian distribution (standard deviation of k). 
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with k = v|k|. We use the Mathematica for the calculation of integrals. At t = 0, we have 
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For any t, we obtain 
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where erf(z) and erfc(z) are the error functions of z. 
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z

t dtezerf
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
, erfc(z) = 1 - erf(z). (6.10) 

The first term of u(x, t) is a function of (x – vt), indicating the traveling wave along the positive x 

axis. The second term of u(x, t) is function of (x + vt), indicating the traveling wave along the 

negative x axis. When 1)2/(0 kk  and x ≈ vt, ),( tx  can be approximated by 
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since erf =1 and erfc = 0 in Eq.(6.11). Then u(x, t) can be expressed by 
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This indicates that the wave packet propagates with the group velocity v. Note that the group 

velocity (vg) is equal to the phase velocity (vp) for the dispersion ( = vk). 
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The shape of u(x, t) given by Eq.(6.13) is described by a traveling wave along the positive x axis, 

whose amplitude is modulated by the Gaussian function centered at x = vt. The width of the 

Gaussian function (x) is equal to 1/k;  

1 kx . (6.14) 

This means that a wave packet with a narrow range in k space must be very broad in x space and 

vice versa. 

 

(a) Numerical calculation: A0 = 1, k0 = 20, v = 1, and k = 3. 

In this case, u(x, t) is the traveling wave along the positive x axis. since k0>0. 

The angular frequency:0 = vk0 = 20.  

The period: T0 = 2/0 = 2/20 = /10 = 0.314 

The wave length: 0 = 2/k0 = /10 = 0.314 
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Fig.25 Propagation of the wave packet along the positive x axis. A0 = 1, k0 = 20, v = 1, and k = 

3. 

 

(b) Numerical calculation: A0 = 1, k0 = -20, v = 1, and k = 3. 

In this case, u(x, t) is the traveling wave along the negative x axis. since k0<0. 

The angular frequency: 0 = vk0 = 20.  

The period:  T0 = 2/0 = 2/20 = /10 = 0.314 

The wave length: 0 = 2/k0 = /10 = 0.314 

 

   

Fig.26 Propagation of the wave packet along the negative x axis. A0 = 1, k0 = -20, v = 1, and k 

= 3. 
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6.3 Spread of the Wave packet for the dispersion relation )2/(/ 2 mkEkk    

We now consider the case when the angular frequency k is given by 

m

kEk
k 2

2




, (6.15) 

which corresponds to the case of free electron, where ħ is the Planck’s constant, m is the mass of 

electron, and k is the wave number. The group velocity and the phase velocity are defined as 
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, (6.16) 

respectively. The wave function ψ(x, t) is given by 
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Using the Mathematica, Eq.(6.17) an be calculated as  
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 (6.18) 

From Eq.(6.18), the amplitude of ),( tx  is obtained as a Gaussian function 
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The peak of the Gaussian distribution (xp) appears at  

t
m

k
xp

0


, (6.20) 

which indicates that the center of the Gaussian distribution propagates with the group velocity, 

but not with the phase velocity. The mean width of the Gaussian distribution (x) is related to k 

as 
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. (6.21) 

For times so short that 1/)( 2422  mkt , we have kx  /1 , which is the spread at t = 0. 

The wave packet begins to spread only when 1/)( 2422  mkt . Equation (6.21) can be 

rewritten as 
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Therefore, after a long time, the product kx  becomes very large. Equation (6.21) corresponds 

to the Heisenberg's principle of uncertainty. 

We also note the oscillatory part in Eq.(6.21) given by 
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 (6.23) 

For times so short that 1/)( 2422  mkt , the oscillatory part is approximated by  
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where )2/(0 mk  in the first exponential term is the phase velocity k/k at k = k0. The second 

exponential term indicates the rapid oscillation of the wave packet with increasing t and x. 
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((Mathematica)) 

We make a plot of |u(x, t)| for the Gaussian wave  packet (instead of u(x, t)). Note that u(x, t) 

is an oscillatory function of x at the fixed t. In order to show the semi-log plot (y axis is in a 

logarithmic scale), we need to make such a plot of |u(x, t)|. 

 

   

Fig.27 Propagation pattern of the wave packet along the positive x axis at the fixed times. t = 0, 

0,4, 0.8, 1.2, 1.6, and 2.0. A0 = 1, k0 = 10, m = 1, ħ = 1, and k = 3.  

 

   

Fig.28 Propagation pattern of the wave packet along the positive x axis at fixed times. t = 0, 1, 2, 

3, 4, 5, 6, 7, and 8. A0 = 1, k0 = 10, m = 1, ħ = 1, and k = 3. 
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CONCLUSION 

The oscillations and waves are universal phenomena which appears in a variety of physical 

systems. The wave packet is a superposition of the traveling waves as normal modes with 

various wave numbers. The wave packet consisting of many waves behaves like a particle. The 

peak of the wave packet propagates with the velocity as the nature of the particle. The discussion 

on the propagation of the Gaussian wave packet leads to the concept of the Heisenberg's 

principle of uncertainty.  

In quantum mechanics, the wave–particle duality principle (de Broglie hypothesis) is 

established. All matters exhibits the behaviors of both waves and particles. The French physicist 

de Broglie proposed that particles behave as if they possessed a wave length that was inversely 

proportional to their momentum p;  = h/ where h is the Planck's constant and is the wave 

length. The de Broglie hypothesis was experimentally confirmed from the experiment by the 

Americans C. Davisson and L. Germer. They demonstrated diffraction effect when they 

scattered electrons off a polished nickel crystal.  

In these senses, we think that the concept on the oscillations and waves is closely related to 

the fundamental principle in quantum mechanics. We hope that this note is useful for 

undergraduate students in physics who will study the quantum mechanics and advanced 

electromagnetic theory. 
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APPENDIX Variational method using Mathematica 

A.1 Definition of VariationalD (Mathematica program) 

We suppose that the functional is given by ),',( xyyf . Using the VariationalD 

[Mathematica], one can calculate 
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where the variation of the integral J is defined as 
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((Mathematica)) description of the programs was copied from the Mathematica 7. 

 

 

A.2 Definition of EulerEquations (Mathematica program) 

Using the EulerEquations [Mathematica], one can derive the Euler (Lagrange, in physics) 

equation given by 
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. (A.1) 

 

((Mathematica)) The description of the programs was copied from the Mathematica 7. 

VariationalD

VariationalD f , ux, x
returns the variational derivative of the integral  f „ x with respect to ux, where the integrand f  is 

a function of u, its derivatives, and x.

VariationalD f , ux, y, …, x, y, … 
returns the variational derivative of the multiple integral  f „ x„ y… with respect to ux, y, …, 

where f  is a function of u, its derivatives and the coordinates x, y, ….

VariationalD f , ux, y, …, vx, y, …, …, x, y, … 
gives a list of variational derivatives with respect to u, v, ….



55 

 

 

A.3 Definition of FirstIntegral (Mathematica program) 

Here we note that the Euler (Lagrange) equation can be rewritten as 
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(a) The case when f is independent of x.  

Since 0



x

f
 in Eq.(2), we have 
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 (A.3) 

EulerEquations

EulerEquations f , ux, x
returns the Euler–Lagrange differential equation obeyed by ux derived from the functional f , 
where f  depends on the function ux and its derivatives as well as the independent variable x.

EulerEquations f , ux, y, …, x, y, … 
returns the Euler–Lagrange differential equation obeyed by ux, y, ….

EulerEquations f , ux, y, …, vx, y, …, …, x, y, …
returns a list of Euler–Lagrange differential equations obeyed by ux, y, …, vx, y, …, ….
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When f is independent of x, FirstIntegrals[f, y(x), x] leads to the calculation of 
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(b) The case when f is independent of y.  

Since 0
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
y

f
 in Eq.(1), we have 
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When f is independent of y, FirstIntegrals[f, y(x), x] leads to the calculation of 
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((Mathematica)) The description of the programs was copied from the Mathematica 7. 

 

 

B Wave traveling in the string (transverse wave) 

B.1 Simple model 

 

FirstIntegrals

FirstIntegrals f , xt, t
returns a list of first integrals corresponding to the coordinate xt and independent variable t of the 
integrand f .

FirstIntegrals f , xt, yt, …, t 
returns a list of first integrals corresponding to the coordinates x, y, … and independent variable t.
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Fig.B1 The element of string (s) under the tension T = Ts.  

 

We consider one small string element of length s. The net force acting in the y direction is 

 ss TTF 2sin2  . (B.1) 

Note that s is the mass of the element and that s is equal to 2R. We apply the Newton’s 

second law to this element (centripetal force). 
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The velocity is obtained as 


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. (B.3) 

 

B.2 General case 
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Fig.B2 Tension Ts on the string 

 

Suppose that a traveling wave is propagating along a string that is under a tension Ts. Let us 

consider one small element of length x. The ends of the element make small angle A and B 

with the x axis. The net force acting on the element along the y-axis is 
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where we use the Taylor expansion. 

We now apply the Newton’s second law to the element, with the mass of the element given 

by 
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Then we have 
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which leads to a wave equation given by 
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where  
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