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In classical mechanics, Newton’s laws hold in all systems moving uniformly relative to each other 

(i.e., inertial frames) if they hold in one system. However, this is no longer valid if a system undergoes 
accelerations. It is required to find the new relations between the equations of motion in a fixed system 
and those in the accelerated system. 

Here we consider the equation of motion for an object that is viewed from a rotating frame which 
rotates with the angular velocity  relative to an inertial frame. Here we are interested in a frame 
attached to the rotating earth. Although the angular velocity of the spinning earth is so small, the earth's 
rotation does have measurable effects on the motion of pendulum (known as Foucault pendulum), 
projectile, and other systems. As far as we know, Coriolis force related to the earth's rotation is not 
covered in typical standard textbooks of general physics. Since undergraduate students (taking the class 
of general physics) are very interested in these topics, here we will discuss the effect of the Coriolis force 
on the motions of systems on earth, as one of the example of the relative motion. We encounter a various 
kinds of differential equations to be solved. In order to avoid the complicated mathematics, we will use 
the Mathematica to solve these equations rigorously. We also us the numerical method for solving 
differential equation. We think that such ways might be helpful to students who do not well understand 
how to solve the second order differential equations.  
____________________________________________________________________________________ 
Gaspard-Gustave de Coriolis or Gustave Coriolis (21 May 1792– 19 September 1843) was a French 
mathematician, mechanical engineer and scientist. He is best known for his work on the supplementary 
forces that are detected in a rotating frame of reference. Coriolis was the first to coin the term "work" for 
the transfer of energy by a force acting through a distance.  
 

 
 
https://en.wikipedia.org/wiki/Gaspard-Gustave_Coriolis 
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____________________________________________________________________________________ 
Jean Bernard Léon Foucault (18 September 1819 – 11 February 1868) was a French physicist best 
known for the invention of the Foucault pendulum, a device demonstrating the effect of the Earth's 
rotation. He also made an early measurement of the speed of light, discovered eddy currents, and 
although he did not invent it, is credited with naming the gyroscope. 
 

 
 
http://en.wikipedia.org/wiki/L%C3%A9on_Foucault 
____________________________________________________________________________________ 
1. What is the Corilis force? 

The Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference 
frame. In a reference frame with clockwise rotation, the deflection is to the left of the motion of the 
object; in one with counter-clockwise rotation, the deflection is to the right. Although recognized 
previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by 
French scientist Gaspard-Gustave Coriolis, in connection with the theory of water wheels. Early in the 
20th century, the term Coriolis force began to be used in connection with meteorology. 

Newton's laws of motion describe the motion of an object in a (non-accelerating) inertial frame of 
reference. When Newton's laws are transformed to a uniformly rotating frame of reference, the Coriolis 
and centrifugal forces appear. Both forces are proportional to the mass of the object.  
 
(1) The Coriolis force is proportional to the rotation rate and the centrifugal force is proportional to 
its square. The Coriolis force acts in a direction perpendicular to the rotation axis and to the velocity of 
the body in the rotating frame and is proportional to the object's speed in the rotating frame.  
 
(2) The centrifugal force acts outwards in the radial direction and is proportional to the distance of 
the body from the axis of the rotating frame. These additional forces are termed inertial forces, fictitious 
forces or pseudo forces.[1] They allow the application of Newton's laws to a rotating system. They are 
correction factors that do not exist in a non-accelerating or inertial reference frame. 
 
https://en.wikipedia.org/wiki/Coriolis_effect 
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2. Rotation matrix (inertial and rotation reference frames) 
 

 
 

Fig. Rotation of the coordinate axes. OP = rI = rR. {ex, ey}; the old orthogonal basis. {eRx, eRy,};. and 

the new orthogonal basis. The rotation angle is . The rotation axis is the z axis. 
 
We assume that 
 

  ,  t   
 
with 
 

),0,0(  . 

 
The unit vectors in the fixed reference frame (Cartesian coordinate) is defined as 
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)0,0,1(xe ,  )0,1,0(ye ,   )1,0,0(ze  

 
The unit vectors of the rotation reference frame is defined as 
 

)0,sin,(cos Rxe ,  )0,cos,sin( Rye , )1,0,0(Rze  

 
We consider the position vector of  
 

zIyIxII zyx eeer   

 
in the fixed reference frame and  
 

RzRRyRxRRR zyx eeer   

 
in the rotating reference frame . Note that 
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3. Mathematica 

We now calculate the velocity Ir  and acceleration Ir  by using Mathematica. The results are as 

follows. 
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Clear"Global`";

eRxt_ : Cos t, Sin t, 0;

eRyt_ : Sin t, Cos t, 0;

eRzt_ : 0, 0, 1; 1  0, 0, ;

rI1t_ : rRxt eRxt  rRyt eRyt 
rRzt eRzt;

vI1  DrI1t, t  Simplify;

aI1  DrI1t, t, 2  FullSimplify;

vI1.eRxt, vI1.eRyt, vI1.eRzt 
Simplify

 rRyt  rRxt,  rRxt  rRyt, rRzt

Cross1, rI1t.eRxt,

Cross1, rI1t.eRyt,

Cross1, rI1t.eRzt  Simplify

 rRyt,  rRxt, 0

aI1.eRxt, aI1.eRyt, aI1.eRzt 
Simplify

2 rRxt  2  rRyt  rRxt,

2 rRyt  2  rRxt  rRyt, rRzt

 2 m CrossvI1, 1.eRxt,

2 m CrossvI1, 1.eRyt,

2 m CrossvI1, 1.eRzt  Simplify

2 m   rRxt  rRyt,

2 m   rRyt  rRxt, 0

KI1  m Cross1, Cross1, rI1t  Simplify;

KI1.eRxt, KI1.eRyt, KI1.eRzt 
Simplify

m 2 rRxt, m 2 rRyt, 0
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4. The velocity: 
The velocity in the rotation reference frame: 

 

RRRxI yx   er , 

 

RRRyI xy   er , 

 

RRzI z  er  

 
from the result (the Mathematica calculation described above). 
 

The vector Irω  

 

RxRI y erω )(  

 

RRyI x erω )(  

 

0)(  RzI erω  

 
Therefore we get 
 

RxRRRxII x everωr   )]([  

 

RyRRRyII y everωr   )]([  

 

RzRRRzII z everωr   )]([  

 

We introduce the velocity vector Rv , which is defined by 
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or 
 

RRIRII rΩvrΩvvr   
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since 
 

RI rr   

 

where vR is the velocity of the particle relative to the rotating set of axes.  is the constant angular 
velocity relative to the inertial system. 
 
5. Acceleration 

The acceleration in the rotation reference frame: 
 

RRRRxI xmymxmm 22    er , 

 

RRRRyI xmxmymm 2
22    er , 

 

RRzI zmm   er  

 
from the result (the Mathematica calculation described above). 
 

(a) The vector )(2 ωr Im  : 

 

)(2)(2 RRRxI xymm    eωr  

 

)(2)(2 RRRyI yxmm    eωr . 

 

0)(2  RzIm eωr  

 

(b) The vector )]([ Im rωω  : 

 

RxRI xmm 2)]([  erωω  

 

RRyI ymm 2)]([  erωω  

 

0)]([  RzIm erωω  

 
Then we have 
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 22 )(2)2()]]([)(2[ erΩΩΩrr
 

 

RzRIII zmmmm   erΩΩΩrr )]}([)(2{  

 
Then the acceleration of the particle relative to the rotating set of axes is obtained as 
 

)()(2 IIIR mmmm rΩΩΩrra    

 
or 
 

)()(2 IIIR rΩΩΩvaa   

 
where 
 

RzRRyRRxRR zyx eeea    

 
and 
 

II maF   

 
is the net external force acting on the particle. 
 
6. Newton’s second law 

The equation of motion which in the inertial system is simplily given by 
 

III mm arF    

 
Then we get the effective force as 
 

)()(2)()(2 IIIIIIRR mmmmm rΩΩvΩFrΩΩΩvFaF   

 
or 
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


 

 

 
where 
 

RI rr  , 

 
and 
 

RRII rΩvvr  . 

 
7. Corioli force and centrifugal force 
In the expression 
 

)()(2 RRI

cfcorI
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F

aF






 

 
where  
 

II maF  , 

 
denotes the sum of all the forces as identified in any inertial frame,  
 

)(2 Rcor m vΩF  , 

 
is called the Corioli force, and 
 

)( Rcf m rΩΩF   

 
is called the centrifugal force.  
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Fig. The centrifugal force in the (xR, yR, zR) space. 
 
We note that 
 

RyRRxRR xmymm eevω   22)(2   

 

RyRRxRR ymxmm eevωω 22)(    

 
8. Simple alternative explanation of the effect of Coriolis force 

Suppose that turntable is rotating counter-clockwise with angular velocity 0. At time t = 0, a ball is 
thrown away from the center to the edge of the turntable (radially outward). There is no contact between 
the ball and the trurntable for simplicity.  
(i) In the inertial frame of an observation on the ground, the net force on the ball is zero, and the ball 
follows a straight path. However, when the ball arrives at the edge of the turntable, the observer A has 
moved to the left (the position at A'). In other words, the ball misses the point A.  
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Fig. As seen in the non-rotating frame. The table rotates counter-clockwise. 
 
(ii)- In the rotating frame, the observer A and the origin are in a line on a rotating turntable. At the t = 0, 
the ball is moving in the direction of line OA (radially outward). Because of the Coriolis force the ball 
veers to the right and misses the point A. The ball actually arrives at the point A'. 
 

 
 
Fig. As seen in the rotating frame. Observation (denoted by blue points). The ball (denoted by red 

points). Because of the Coriolis force, the ball veers to the right and misses the point A. The ball 
actually arrives at the point A' on the edge of turntable. 
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Suppose that tvOA 0 = v0t and the angle tAOB 0  in the (xR, yR) plane. The position of the point A' 

at the time t is given by 
 

)sin()( 00 ttvtxR  ,  )cos()( 00 ttvtyR   

 

We make a plot of the position (xR, yR) as a function of t using Mathematica, where v0 = 1 and 0 = 1. 
 

 
 

Fig. ParametricPlot of (xR(t), yR(t)), where v0 = 1 and 0 = 1. 
 
We note that 
 

)sin()cos(2 0
2

00000 ttvtvxR   

 

)sin(2)cos( 0000
2

00 tvttvyR   

 
and 
 

)sin()cos( 00000 tvttvxR   

 

)sin()cos( 00000 ttvtvyR   

 
9. The effect of the Centrifugal force on the gravity on the earth 
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Fig. The centrifugal force  eΩrΩF )sin(])[( 2
0 RRcf rmm  .  erΩ )sin( 0 RR r . The unit 

vector e  which points radially outward from the axis of the rotation. The unit vector e  which is 

directed tangentially along the circle with radius .  
 
 

  eeeeΩrΩF )sin()()(])[( 2
0

2
000 RzRcf rmmmm  . 

 

  eerΩv )()sin( 00  RR r  

 
where 
 

 sinRr  
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If we momentarily let   er )( 0 Rv , then the centrifugal force takes the familiar form, 



2mv
. 

 

 
 
Fig. The effective gravitational force which is sum of the original gravitational force mg0 and the 

centrifugal force Fcf. 
 
The effective gravitational force along the radial direction 
 

 22
00

22
00 cossin ERrad Rgrgg   

 
The effective gravitational force along the tangential direction 
 

 cossincossin 2
0

2
0tan ER Rrg   

 
where 
 

ER2
0  = 0.0336983 m/s2 = 3.36983 cm/s2. 
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Since g0 = 9.8 m/s2, we see that, because of the centrifugal force, the value of g at the equator is about 
0.3 % less than at the poles.  
 
10. The magnitude of Fcor and Fcf  
 

RRcor vmvmF 002  ,  2
0 Rcf mrF . 

 
where vR is the object's speed relative to the rotating frame of the earth. It is the speed as observed by us 
on the earth's surface. Then we have 
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Here we assume that ER Rr   which is the radius of the earth. Using RE = 6.372 x 106 m, we get 

 
V = 463.39 m/s = 1036.59 miles/h. 

 
((Note)) 

When vR = V, the centrifugal force Fcf is comparable to the Coriolis force Fcor. The gravitational force 
is slightly changed by the centriufugal force. Even if vR<<V where Fcf is much smaller than Fcor, the 
Coriolis force can have appreciable effect (for example, with Foucault pendulum). 
 

11. The case of 0IF  (no external force) 

Supposew that 0IF . Then we have the differential equations for xR and yR in the rotatin frame, 

 

RRR xyx 22    , 

 

RRR yxy 22    , 

 

with the initial condition; 0Rx , 0Ry , 0Rx , and 0vyR  , The solution of these differential 

equations are given by 
 

)sin()( 0 ttvtxR  , )cos()( 0 ttvtyR   

 
for the rotation frame and 
 

0)( txI ,  tvtyI 0)(  . 
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for the inertial frame. The results are as follows. 
 
((Mathematica)) 
 

 
 
 

 
 
Fig. Path of particle projected radially outward from center as viewed from inertial frame of reference. 
 

Clear"Global`";

eq1  Dxt, t, 2  2  Dyt, t  2 xt;

eq2  Dyt, t, 2  2  Dxt, t  2 yt;

eq3  DSolveeq1, eq2, x0  0, y0  0, x'0  0, y'0  v0,

xt, yt, t  FullSimplify;

x1t_  xt . eq31
t v0 Sint 

y1t_  yt . eq31
t v0 Cost 

xI

yI

O
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Fig. Path of particles projected radially outward from center as viewed rotating frame of reference. 
The rotation direction is counter clockwise. 

 

 
 
Fig. Path of particles projected radially outward from center as viewed rotating frame of 

reference. The rotation direction is clockwise. 
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12. Another method: solving differential equation using complex number 
Now we define the complex number  

 

RRR iyxu   

 
The differential equation: 
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yixiiyx

yxixy

yixu








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



2

)(2)(

)2(2

2

2

22









 

 
with the initial condition 
 

0)0( Ru , 0)0( ivuR   

 
The solution is as follows. 
 

ti
R teivtu  0)(  

 

)sin()]()([
2

1
)( 0

* ttvtututx   

 

)cos()]()([
2

1
)( 0

* ttvtutu
i

ty   

 
((Mathematica)) 
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__________________________________________________________________________ 
13. The 3D motion in the presence of only the Coriolis force 
 

Clear"Global`"; Clearu;

exp_  : exp . Complexre_, im_  Complexre, im;

eq1  Dut, t, 2  2   Dut, t  2 ut;

eq2  DSolveeq1, u0  0, u'0   v0, ut, t  FullSimplify;

u1t_  ut . eq21
  t  t v0

x1t_  SimplifyExpToTrig1

2
u1t  u1t

t v0 Sint 

y1t_  SimplifyExpToTrigu1t  u1t
2 



t v0 Cost 
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ΩvF  Rcor m2  

 

corF  acts as a centripetal force, giving rise to the uniform circular motion. The circular motion occurs in a 

plane perpendicular to  (along the zI axis).  
 

0

2

2  R
R

R mv
r

v
m  

 
or 
 

02

1




R

R

v

r
 

 
The period T is 
 

0

2





R

R

v

r
T  

 
We solve the differential equation using Mathematica 

Fcor

W

xR

yR

zR,zI

vR
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)sin(2 0 RR yx   

 

000 )cos(2)sin(2 vzxy RRR    

 

)cos(2 0 RR yz   

 
with the initial conditions; 
 

0)0( txR , 0)0( vtyR  ,  0)0( tzR  

 

0)0()0()0(  tztytx RRR  

 
The solutions are as follows. 
 

)(sinsin)( 0
2

0

0 t
v

txR 


  , 

 

)2sin(
2

)( 0
0

0 t
v

tyR 


  

 

)(sincos)( 0
2

0

0 t
v

tzR 


  . 

 
We make a plot of the motion of the system using the ParametricPlot3D . As is expected, we have the 
uniform circular motion on a plane perpendicular to the zI axis. 
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14. Mathematica 
The differential equation 
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Clear"Global`";

eq1  Dxt, t  2 0 yt Sin;

eq2  Dyt, t 
2 0 Sin xt  2 0 Cos zt  v0;

eq3  Dzt, t  2 0 Cos yt;

eq4  x0  0, y0  0, z0  0;

seq1 

DSolveJoineq1, eq2, eq3, eq4 ,

xt, yt, zt, t  FullSimplify;

xt_  xt . seq11
v0 Sin Sint 02

0

yt_  yt . seq11
v0 Sin2 t 0

2 0

zt_  zt . seq11
v0 Cos Sint 02

0
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15. Analogy between the Lorentz force and Coriolis force 
The analogy between the Coriolis force and the Lorentz force is as follows. Suppose that the Lorentz 
force is defined by 
 

BvF  RLor c

q
 

 
where q is the charge and c is the velocity of light. When the effective magnetic field B is related to the 

angular velocity  as 
 

mc

q

2

B
Ω   

 
The direction of the angular velocity is parallel or antiparallel to that of the effective magnetic field. Then 
we have 
 

corRRLor m
q

mc

c

q
FΩvΩvF  )(2

2
 

 

  40 °; v0  1; 0  10;

f1  ParametricPlot3D100 xt, yt, zt,

t, 0, 10, Boxed  False, Axes  None,

PlotStyle  Blue, Thick;

f2  Graphics3D
Red, Thick, Arrow0, 0, 0, 4, 0, 0,

Arrow0, 0, 0, 0, 4, 0,

Arrow0, 0, 0, 0, 0, 4,

Arrow0, 0, 0, 4 Cos, 0, 4 Sin,

TextStyle"xR", Black, 12, 4.3, 0, 0,

TextStyle"yR", Black, 12, 0, 4.3, 0,

TextStyle"zR", Black, 12, 0, 0, 4.3,

TextStyle"zI", Black, 12,

4.3 Cos, 0, 4.3 Sin;

Showf1, f2, PlotRange  All
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Fig. Configuration of Lorentz force, where 
mc

q

2

B
Ω  . 

 
____________________________________________________________________________ 
16. Coriolis force and centrifugal force 
 

)]([2 RRcentricor mm rΩΩΩvFF   

 
with 
 

)sin,0,cos()cos,0,sin( 00  Ω  

 

where  is the latitude, 
 

 
2

. 

 
The equation of the motion is given by 

FLor

B

xR

yR

zR,zI

vR
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)sincos2(sin 000  RRRR xzyx    

 

)cos2sin2( 00  RRRR zyxy    

 

)sincos2(cos 000  RRRR xzyz    

 
We use the initial conditions given by 
 

0)0( xtxR  ,  0)0( tyR ,  0)0( tzR  

 
and 
 

0)0( txR ,  0)0( vtyR  ,  0)0( tzR  

 
____________________________________________________________________________________ 
17. The in-plane (2D) motion in the presence of only the Coriolis force 

Suppose that z(t) = 0. 
 
The equation of the motion is given by 
 

)2(sin0 RR yx    

 

)sin2(0 RR xy    

 
or 
 

)(sin2 0 RR yx   

 

00 )(sin2 vxy RR    

 
with the initial conditions; 
 

0)0( txR , 0)0( tyR , 0)0( txR , 0)0( tyR  

 
The solution of the above differential equation is given by 
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)]sin2cos(1[
sin2

)sin(sin
sin

)( 0
0

0
0

2

0

0 t
v

t
v

txR 











  

 

)sin2sin(
sin2

)( 0
0

0 t
v

tyR 





  

 
These points are located on a circle given by 
 

2

0

022

0

0

sin2
)]([)

sin2
)(( 
















v
ty

v
tx RR  

 

in the {xR, yR) plane. The center of the circle is )0,
sin2

(
0

0


v

. The radius is 
sin2 0

0


v

. 

 
18. Mathematica 

We assume that v0 = 1, 100  ,  is changed as a parameter;  = 20, 30, 40°, 50°, 60°, 70°, 80°, and 

90°. (the clock-wise rotation) 
 

 

Clear"Global`";

eq1  Dxt, t  2 0 yt Sin;

eq2  Dyt, t  2 0 Sin xt  v0;

eq3  x0  0, y0  0;

seq1 

DSolveJoineq1, eq2, eq3 , xt, yt,

t  FullSimplify;

xt_  xt . seq11
v0 Csc Sint 0 Sin2

0

yt_  yt . seq11
v0 Csc Sin2 t 0 Sin

2 0
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v0  1; 0  10;

f1  ParametricPlot
EvaluateTable100 xt, yt,

, 20 °, 90 °, 10 °, t, 0, 10,

Axes  None, AspectRatio  Automatic,

PlotStyle  TableHue0.1 i, Thick,

i, 0, 10;

f2 

GraphicsBlack, Thin,

Arrow0, 0, 32, 0,

Arrow0, 15, 0, 15,

TextStyle"xR", Black, 12, 33, 0,

TextStyle"yR", Black, 12, 0, 16,

TextStyle"30°", Black, 12, 28, 0,

TextStyle"60°", Black, 12, 14, 0,

TextStyle"90°", Black, 12, 9, 0;

Showf1, f2, PlotRange  All

xR

yR

b=30°b=60°b=90°
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19. Combination of Coriolis and centrifugal forces (2D plane) 

Suppose that zR(t) = 0. We only consider the planar motion in the (xR, yR) plane 
 
The equation of the motion: 
 

)sin2(sin 00  RRR xyx    

 

)sin2( 00 RRR yxy    

 
We use the initial conditions given by 
 

0)0( xtxR  ,  0)0( tyR . 

 
and 
 

0)0( txR ,  0)0( vtyR  , 

 
We solve the differential equation numerically by using the Mathematica. 
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Fig. The in-plane motion in the (xR, yR) plane under the influence of the Coriolis force and 

centrifugal force. The latitude  = 40°. 
 
20. Mathematica 
 

v0=0.1

v0=0.2

v0=0.3

v0=0.4

v0=0.5

v0=0.6

v0=0.7

v0=0.8

v0=0.9

v0=1.0

b=40°

xR

yR

b=40°
-10 -5 5

-15

-10

-5
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21. Free fall and the Coriolis force 
 

Clear"Global`"; 0  1;   40 °;

Coriolisv0_, tmax_ :

Modulenumsol, numgraph,

numsol 

NDSolve
Dxt, t, 2  0 Sin 2 y't  x t 0 Sin,

Dyt, t, 2  0 yt 0  2 x't Sin,

x0  0, y0  0, x'0  0, y'0  v0,

xt, yt, t, 0, tmax ;

numgraph  ParametricPlot
Evaluatext, yt . numsol1,

t, 0, tmax, PlotStyle  Huev0, Thick;

g1  TableCoriolisv0, 6, v0, 0.1, 1.0, 0.1;

g2 

Graphics
TextStyle"v00.1", Black, 12, 2, 1.5,

TextStyle"v00.2", Black, 12, 2, 3,

TextStyle"v00.3", Black, 12, 2, 4.5,

TextStyle"v00.4", Black, 12, 2, 5.5,

TextStyle"v00.5", Black, 12, 2, 6.5,

TextStyle"v00.6", Black, 12, 2, 7.8,

TextStyle"v00.7", Black, 12, 2, 8.8,

TextStyle"v00.8", Black, 12, 2, 10,

TextStyle"v00.9", Black, 12, 2, 11,

TextStyle"v01.0", Black, 12, 2, 12,

TextStyle"40°", Black, 12, 7, 1.0,

TextStyle"xR", Black, 12, 8, 1,

TextStyle"yR", Black, 12, 1, 2,

TextStyle"40°", Black, 12, 7, 1.0 ;

Showg1, g2, PlotRange  All
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Corioligravitym FFa 
 

 
with 
 

 
 
where 
 

),0,0( mggravity F
 

 

)cos,0,sin( 00  Ω  
 

))sin(2],)sin()[cos(2,)cos(2(

)(2

000 ymzxmym

mCorioli

  
 vΩF

 

 
Equation of motion: 
 

yx  )cos(2 0   

 

])sin()[cos(2 0 zxy     

W0

l

l

O



 

34 
 

 

ygz  )sin(2 0   

 
 

Since, 
 

2  we have 
 

yx  )sin(2 0   

 

])cos()[sin(2 0 zxy     

 

ygz  )cos(2 0   

 

We use the initial condition:  the initial velocity: )0,0,( 0u , and the initial position: ),0,0( 0z . 

 

)sin(2 0 yx   

 

)cos()(2)sin(2 000  zzxy   

 

ygtz )cos(2 0   

 
The exact solution of these differential is as follows. 
 

)2sin()]2cos(21[
8

0
22

02
0

tt
g

x 


  

 

)cos()]2sin(2[
4

002
0

tt
g

y 


  

 

)}]2cos(21){2cos()}2cos(
8

21[{
8

0
22

00

2
0022

02
0

ttt
g

z
t

g
z 





   

 

In the limit of t0 →0, we have 

 

2
0

2 ))(cos()sin(
6

1
tgtx    
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)cos()(
3

1
0

2 tgty   

 

)](cos)(
3

1
1[

2

1 22
0

2
0 tgtzz   

 
The remarkable thing about this solution is that a freely falling object doies not fall straight down. Instead 
the Coriolis force causes it to curve slightly to the positive y direction.  

Suppose that we use the approximation; 
 

0x , 
 

)cos()(
3

1
0

2 tgty  , 

 

gtzz
2

1
0  , 

 

to the order of .0t  

 
When z = 0, (falling from the height z0 = h to the ground z = 0),  
 

g

h
t

2
 . 

 
Then the value of y is obtained as 
 

)cos()
2

(
3

1 2/3
0 

g

h
gy   

 

At Binghamton, NY, the latitude is  = 42.0986 (N). For h = 100 m, the value of y is evaluated as 
 

y = 1.625 cm. 
 
where 
 

5
0 1027221.7

360024

2 





 rad/s 
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It is a small deflection, but certainly detectable. 
 
22. Mathematica 
 

 
 

 
23. Mathematica 
The differential equations (Se. 11) can be solved using the Mathematica. 

Clear"Global`"

0 
2 

24  3600
 N;

rule1  h  100,   42.0986 °, g  9.8;

y1 
1

3
g 0

2 h

g

32
Cos . rule1  N

0.0162509



 

37 
 

 
 
24. Foucault pendulum 
 

Clear"Global`";

eq1  Dxt, t  2 0 yt Sin;

eq2  Dyt, t 

2 0 Sin xt  2 0 Cos zt  z0;

eq3  Dzt, t  g t  2 0 Cos yt;

eq4  x0  0, y0  0, z0  z0,

x'0  0, y'0  0, z'0  0;

seq1 

DSolveJoineq1, eq2, eq3, eq4 ,

xt, yt, zt, t  FullSimplify;

xt_  xt . seq11
g 1  2 t2 02  Cos2 t 0 Sin2 

8 02

yt_  yt . seq11


g Cos 2 t 0  Sin2 t 0
4 02

zt_  zt . seq11
1

8 02 g  2 g t2 02  8 z0 02  g Cos2 t 0 
g Cos2  1  2 t2 02  Cos2 t 0

Seriesxt, t, 0, 4  Normal  Simplify

1
6

g t4 02 Cos Sin

Seriesyt, t, 0, 4  Normal  Simplify

1
3

g t3 0 Cos

Serieszt, t, 0, 4  Normal  Simplify


g t2

2
 z0 

1
6

g t4 02 Cos2
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Fig. The latitude  = 90° - . 
 

Assume the Earth is a sphere rotating about the zI axis with constant angular velocity . Choose a co-
ordinate system on Earth with the k axis along the vertical, the xR axis pointing South, and the yR axis 

pointing East.  is a latitude of the observer.  is the colatitude.  = 90° - . 
The pendulum bob is acted upon by two real forces: the tension in the string (T) and gravity (mg). It is 

also acted upon by two fictitious forces: Coriolis force and the centrifugal force. For convenience we 
neglect the centrifugal force. 
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Corioligravitym FFTa 
 

 
with 
 

),,( zLyx
L

T
T  nT

 
 
where 
 

),0,0(
1

zLyx
L

n
 

 

),0,0( mggravity F
 

 

)cos,0,sin( 00  Ω  
 

))sin(2],)sin()[cos(2,)cos(2(

)(2

000 ymzxmym

mCorioli

  
 vΩF

 

 
Equation of motion: 
 

RRR yx
mL

T
x  )cos(2 0   

 

])sin()[cos(2 0 RRRR zxy
mL

T
y     

 

RRR yzL
mL

T
gz  )sin(2)( 0   

 
The pendulum is very long so that the string is essentially vertical at all times. 
 

T = mg 
 

RRR yKx
L

g
x  2  
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xKy
L

g
y  2  

 
where 
 

 sin)
2

cos()cos( 000 K , 

 
and 
 

2
L

g

. 
 

where  is the latitude of the location on the Earth. Then we have the differential equations, 
 

RRR yKxx  22    

 

RRR xKyy  22    

 
We define the complex number as 
 

RRR iyxu   

 

RRRRRRRRR uiKuyixiKiyxyixu  2)(2)( 22    

 
The diffrential equation is then given by 
 

02 2  RRR uuiKu   

 
with the initial condition 
 

0)0()0()0(  tiytxtu RRR , 0)0()0()0( vtyitxtu RRR   . 

 
The solution of the differential equation is obtained by using the Mathematica. The final result is as 
follows. 
 

1

10 )sin()cos(
)(





tKtv

txR  
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1

10 )sin()sin(
)(





tKtv

tyR  

 
where 
 

22
1 K   

 
Since 
 

1  

 
we get 
 

)cos(
)sin(

)( 0 Kt
tv

tx



  

 

)sin(
)sin(

)( 0 Kt
tv

ty



  

 
with 
 

sin0K  
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Fig. The oscillation of the Foucault pendulum. K = 1.  = 3. v0 = 1. t = 1 - 15. 
 
25. Mathematica 
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Clear"Global`";

exp_  : exp . Complexre_, im_  Complexre, im;

eq1  ut  2  K ut  2 ut;

eq2  SimplifyDSolveeq1, u0  0, u0  v0, ut, t;

srule1    2  K2   1,
1

2  K2
 



1
;

u1t_  FullSimplifyut .eq21 .srule1
 K t v0 Sint 1

1

x1t_  SimplifyExpToTrig1

2
u1t  u1t

v0 CosK t Sint 1
1

y1t_  SimplifyExpToTrigu1t  u1t
2 




v0 SinK t Sint 1

1
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26. Foucault’s pendulum, Pantheon, Paris 

The first public exhibition of a Foucault pendulum took place in February 1851 in the Meridian of the 
Paris Observatory. A few weeks later Foucault made his most famous pendulum when he suspended a 28 
kg brass-coated lead bob with a 67 meter long wire from the dome of the Panthéon, Paris. The plane of 
the pendulum's swing rotated clockwise 11° per hour, making a full circle in 32.7 hours. The original bob 
used in 1851 at the Panthéon was moved in 1855 to the Conservatoire des Arts et Métiers in Paris. A 
second temporary installation was made for the 50th anniversary in 1902.  
http://en.wikipedia.org/wiki/Foucault_pendulum 
 
The angular velocity of the Earth: 
 

x11t_  x1t .1  K2  2 ;

y11t_  y1t .1  K2  2 ;

ParametricPlotEvaluatex11t, y11t . K  1,   3, v0  1 ,

t, 0, 100, PlotStyle  Red, Thick, Background  LightGray
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5
0 1027221.7

360024

2 





 rad/s 

 
Latitude of Panthéon, Paris, France 
 

 = 48.8742° N.  = 90°- = 41.1258°. 
 
The detail of the Foucault  pendulum: 
 

L = 67 m.  m = 47 kg. 
 
The angular velocity of the pendulum 
 

382451.0
67

80.9


L

g  rad/s 

 

4287.16
2

0 



T  s. 

 

 sin0K 0.753267 x 51027221.7  = 5.477916 x 10-5 rad/s 

 

382451.022
1  K  rad/s  . 

 
The period: 
 

114700
2


K

T K


 s = 31 hours 51 min 40 sec 
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Fig. Foucault’s pendulum, Pantheon, Paris 
http://en.wikipedia.org/wiki/Foucault_pendulum 
 
We note that  
 

sin

24
KT  hours 

 

depends on the latitude. When  = 90° (North Pole), TK is exactly equal to 24 hours. 
 
27. Foucault’s pendulum in New York City (United Nations) 
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Fig. Foucault pendulum which hangs in the United Nations Building in New York City. 
 

The sphere takes approximately 36 hours and 45 minutes to complete its cycle. The time of rotation 
has been found mathematically to vary in accordance with the latitude of the location of the pendulum. 
At the North Pole, where the pendulum would be directly above the earth's axis and the latitude is 90 
degrees, the time of rotation is 24 hours. At the equator, where the latitude is 0 degree, the plane of the 
pendulum would not shift at all. At other latitudes the Foucault effect varies, becoming more pronounced 
nearer the poles. 
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Latitude of New York City, NY (U.S.A.): 
 

 = 40.7142° N.  = 90°- = 49.2858°. 
 

L = 23 m.  m = 95 kg. 
 

652753.0
23

80.9


L

g  rad/s 

 

62567.9
2

0 



T  s. 

 

 sin0K 4.74356 x 10-5 rad/s 

 

652753.022
1  K  rad/s  . 

 

132457
2


K

T K


 s = 36 hours 47 min 37 sec 

 
29. Meteological phenomena due to the Coriolis force 

The Coriolis force plays a significant role in many meteological phenomena.  Mases of air tend to 
move from a region of high pressure to a region of low pressure, the so-called pressure gradient The wind 
continues parallel to the isobars, circulating in the Northern Hemisphere in a counter clock-wise direction 
around the center of low pressure, and in a clock-wise direction around the center of high pressure, when 
viewed from the above. 
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Fig. Air flows near the site with low pressure in the northern Hemisphere. Near the center of low 

pressure, the air flow rotates in counter clock-wise. 
 

 
 
Fig. Air flows near the site with high pressure in the northern Hemisphere. Near the center of high 

pressure, the air flow rotates in clock-wise. 

Low pressure

High pressure
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APPENDIX-I  List of the Foucault pendulum in the world 

 
 
APPENDIX-II Method using the Lagrange equation 

The Lagrangian L is given by 
 

),,()()()[(
2

1 222
IIIIII zyxUzyxmUTL    

 
where T is the kinetic energy and U is the potential energy. Using the relation 
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the new Lagrangian L can be rewrittem in terms of the new variables, xR, yR, zR as 
 

),,(])()()()(2)([
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since 
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The Lagrange equaion 
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We have the form of vectors 
 

][)]([)(2 UGradmmm RRR  rΩΩvΩa  

 
____________________________________________________________________________________ 
APPENDIX-III 
colatitude () The latitude measured down from the North Pole (instead of up from the equator, as is 

more usual with geographers). 

latitude () It is geographic coordinate that specifies the north-south position of a point on the Earth's 
surface. Latitude is an angle (defined below) which ranges from 0° at the equator to 90° 
(North or South) at the poles.  

________________________________________________________________________________ 
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