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In classical mechanics, Newton’s laws hold in all systems moving uniformly relative to each other
(i.e., inertial frames) if they hold in one system. However, this is no longer valid if a system undergoes
accelerations. It is required to find the new relations between the equations of motion in a fixed system
and those in the accelerated system.

Here we consider the equation of motion for an object that is viewed from a rotating frame which
rotates with the angular velocity (2 relative to an inertial frame. Here we are interested in a frame
attached to the rotating earth. Although the angular velocity of the spinning earth is so small, the earth's
rotation does have measurable effects on the motion of pendulum (known as Foucault pendulum),
projectile, and other systems. As far as we know, Coriolis force related to the earth's rotation is not
covered in typical standard textbooks of general physics. Since undergraduate students (taking the class
of general physics) are very interested in these topics, here we will discuss the effect of the Coriolis force
on the motions of systems on earth, as one of the example of the relative motion. We encounter a various
kinds of differential equations to be solved. In order to avoid the complicated mathematics, we will use
the Mathematica to solve these equations rigorously. We also us the numerical method for solving
differential equation. We think that such ways might be helpful to students who do not well understand
how to solve the second order differential equations.

Gaspard-Gustave de Coriolis or Gustave Coriolis (21 May 1792— 19 September 1843) was a French
mathematician, mechanical engineer and scientist. He is best known for his work on the supplementary
forces that are detected in a rotating frame of reference. Coriolis was the first to coin the term "work" for
the transfer of energy by a force acting through a distance.

https://en.wikipedia.org/wiki/Gaspard-Gustave Coriolis




Jean Bernard Léon Foucault (18 September 1819 — 11 February 1868) was a French physicist best
known for the invention of the Foucault pendulum, a device demonstrating the effect of the Earth's
rotation. He also made an early measurement of the speed of light, discovered eddy currents, and
although he did not invent it, is credited with naming the gyroscope.

http://en.wikipedia.org/wiki/L%C3%A90on_Foucault

1. What is the Corilis force?

The Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference
frame. In a reference frame with clockwise rotation, the deflection is to the left of the motion of the
object; in one with counter-clockwise rotation, the deflection is to the right. Although recognized
previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by
French scientist Gaspard-Gustave Coriolis, in connection with the theory of water wheels. Early in the
20th century, the term Coriolis force began to be used in connection with meteorology.

Newton's laws of motion describe the motion of an object in a (non-accelerating) inertial frame of
reference. When Newton's laws are transformed to a uniformly rotating frame of reference, the Coriolis
and centrifugal forces appear. Both forces are proportional to the mass of the object.

(1) The Coriolis force is proportional to the rotation rate and the centrifugal force is proportional to
its square. The Coriolis force acts in a direction perpendicular to the rotation axis and to the velocity of
the body in the rotating frame and is proportional to the object's speed in the rotating frame.

(2) The centrifugal force acts outwards in the radial direction and is proportional to the distance of
the body from the axis of the rotating frame. These additional forces are termed inertial forces, fictitious
forces or pseudo forces.! They allow the application of Newton's laws to a rotating system. They are
correction factors that do not exist in a non-accelerating or inertial reference frame.

https://en.wikipedia.org/wiki/Coriolis effect




2. Rotation matrix (inertial and rotation reference frames)

Fig. Rotation of the coordinate axes. OP = ri= rg. {ey, ey}; the old orthogonal basis. {erx, ery};. and
the new orthogonal basis. The rotation angle is . The rotation axis is the z axis.

We assume that

0=0w, 0 = wt
with

Q=(0,0,w).

The unit vectors in the fixed reference frame (Cartesian coordinate) is defined as



e, =(1,0,0), e, =(0,1,0), e, =(0,0,1)
The unit vectors of the rotation reference frame is defined as

e, = (cosd,sinb,0), eq, = (—sind,cos06,0), ez, =(0,0,1)
We consider the position vector of

K =Xe, t+Ye +2e,
in the fixed reference frame and

Fr = Xg€r, T Yr€ry t Zg€p,

in the rotating reference frame . Note that

r=ry.
with
Xg cosd sin@ 0 X,
Yz |=| —sin@ cos@ 0]y,
Zq 0 0 1)z
and
X, cosd —sinf 0) X
Y, |[=| sin@ cos@ 0] yg
Z, 0 0 1\ z4
3. Mathematica

We now calculate the velocity 7 and acceleration # by using Mathematica. The results are as

follows.



Clear["Global "];

eRx[t ] := {Cos[wt], Sin[wt], 0};

eRy[t ] := {-Sin[wt], Cos[wt], 0};

eRz[t ] :={0,0, 1}; wl = {0, O, w};

ril[t ] = rRX[t] eRX[T] + rRy[L] eRy[L] +
rRz[t] eRz[L];

vil=D[ri1[t], €] // Simplify;
all=D[rlIl[t], {t, 2}] // FullSimplify;

{vll.eRx[t], vll.eRy[t], vIl.eRz[t]} //
Simplify

{-wrRy[t] + rRX [t], w rRX[t] + FRy [t], rRZz'[t]}
{Cross[wl, rll[t]].eRx[t],

Cross[wl, rll[t]]-eRy[t],
Cross[wl, rll[t]].eRz[t]} // Simplify

{-wrRy[t], wrRx[t], O}

{all.eRx[t], all.eRy[t], all.eRz[t]} //
Simplify
{—werx[t]-2a)rRy’ft]+-rRx”[t],

~w’ rRy[t] + 2w FRX' [t] + FRY”[T], rRZ" [t] ]

{2mCross[vll, wl].eRx[t],
2mCross[vll, wl].eRy[t],
2mCross[vll, wl].eRz[t]} // Simplify

{(2mw (wrRX[t] + rRY’ [t]),
2mw (wrRy[t] - rRX [t]), 0}
KI1=mCross[wl, Cross[wl, rI1[t]]] // Simplify;

{KI1l.eRx[t], KIl.eRy[t], KI1l.eRz[t]} //
Simplify
{—n1w2rRx[t], “maw? rRy[t], 0}



4. The velocity:
The velocity in the rotation reference frame:

F - ep = Xg — @Yy,
F, ‘epy =Yg + OXg,
P o-ep, =1y
from the result (the Mathematica calculation described above).
The vector w xr,
(wx1)- ey, =—wyg
(0x1)-ep, =Xy
(woxr) ey, =0
Therefore we get
[ —(@x1)] eq =Xz = Vg - gy
[, —(@x1)] eq, =Yg =Vg - €gy
[, —(@oxr)] ey, =1z = vy - e,
We introduce the velocity vector v, which is defined by
Vr = Xg€p + yReRy + Zzep,
=F —(@2x1)
=v, —(2xr)
or

L=y, =V +Qxr =vy + 2 xry



since
r =ry

where vy is the velocity of the particle relative to the rotating set of axes. @ is the constant angular
velocity relative to the inertial system.

5. Acceleration
The acceleration in the rotation reference frame:

Mié, - e, = MX, —2May, — M@ Xg
MF, - e, = MYp + 2MaXg — M@’ Xyp

My, - e,, = Mz,
from the result (the Mathematica calculation described above).
(a) The vector 2m(r, x w):

2m(r x @) - eg, =2Ma(Yg + OXg)

2m(r, x @) - ep, = —2Ma(Xz — @yg) -

2m(/, x ) - ez, =0
(b) The vector mlew x (@ xr,)]:

Mo x(wxn)] e, = —Mo’ X,

Mo x(wxr)]- ey = —Mma’y,

mlex (@x1,)] - e, =0

Then we have



[Mii, +2m(7, x 2) + M2 x (2% 1,)]]- eg, = (MK —2M@Y, — M@’ X)) +2MA(V + OXg) — M X
— m¥,

[MF +2m(F xQ2) + M2 x (2 x ,)]]- e, = (MY +2MaXy — Mo’ Y) — 2Ma(Xz — @Yg) — M’ Y,

= myR
{Mi +2m(F x 2) + MR x (2 xr )]} ez, = MZy
Then the acceleration of the particle relative to the rotating set of axes is obtained as

Mag =Mk, +2M(F, x 2)+ M2 x (2 xr)

or
a, =a, +2(v, x2)+ 2x(2xr)
where
ag = Xplpy + yReRy + Zeg,
and

F, =ma,
is the net external force acting on the particle.

6. Newton’s second law
The equation of motion which in the inertial system is simplily given by

F, =m#, =ma,
Then we get the effective force as
F,=may,=F, +2m(v, x2)+ M2 x(2xr)=F, -2m(2xv, )+ M2 x (2 xr,)

or



F,=F, +2m(i, x2)+ M2 x (2 xr,)
=F, +2mv, +(oxry)]|x 2+ Mo x (2 xry)
=F +2m(vy x 2) -2m2 x (2 xr;) + M2 x (2 xry)
=F -2m(2xvy)-m2x (2 xry)

where
r=ry,
and
FL=v, =vy +2xry.
7. Corioli force and centrifugal force

In the expression

F, =mag,
:E +Fcor+Fcf
=F -2m(2xvy)—m2x(2xry)

where
F, =ma,,

denotes the sum of all the forces as identified in any inertial frame,
F  =-2m(2xvg),

1s called the Corioli force, and
F,=—mQ2x(2xry)

is called the centrifugal force.



X (L xrg)

Fig.  The centrifugal force in the (X, Yr, Zr) space.

We note that

—2M(@ X vy) =2Mayzep, —2MaXgep,
—Mo x (0 % vy) = Mo’ Xgeq, + Mo’ Yr€ry

8. Simple alternative explanation of the effect of Coriolis force

Suppose that turntable is rotating counter-clockwise with angular velocity £2. At time t = 0, a ball is
thrown away from the center to the edge of the turntable (radially outward). There is no contact between
the ball and the trurntable for simplicity.
(1) In the inertial frame of an observation on the ground, the net force on the ball is zero, and the ball
follows a straight path. However, when the ball arrives at the edge of the turntable, the observer A has
moved to the left (the position at A'"). In other words, the ball misses the point A.

10



Fig.  As seen in the non-rotating frame. The table rotates counter-clockwise.

(11)- In the rotating frame, the observer A and the origin are in a line on a rotating turntable. At the t =0,
the ball is moving in the direction of line OA (radially outward). Because of the Coriolis force the ball
veers to the right and misses the point A. The ball actually arrives at the point A'.

O

Fig. As seen in the rotating frame. Observation (denoted by blue points). The ball (denoted by red
points). Because of the Coriolis force, the ball veers to the right and misses the point A. The ball
actually arrives at the point A' on the edge of turntable.
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Suppose that OA= V,t = Vot and the angle ZAOB =Qt in the (Xr, Yr) plane. The position of the point A'

at the time t is given by
Xg () = v tsin(Qt), Yr (1) =V tcos(,t)

We make a plot of the position (Xg, Yr) as a function of t using Mathematica, where vo = 1 and £ = 1.

YR

Il L L L Il L L L Il L L L Il L X
0.2 0.4 0.6 0.8 R

Fig. ParametricPlot of (Xg(t), yr(t)), where vo =1 and £ = 1.
We note that

Ke = 2V, cos(Qt) — Vot sin(Q,t)

Vo = =V tQ,” cos(Qt) — 2v,Q, sin(Q,t)
and

Xg =V, tQ, cos(€2,t) + Vv, sin(€2t)

Yr =V, cos(Q,t) —V,tQ, sin(€,t)

9. The effect of the Centrifugal force on the gravity on the earth

12
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Fig. The centrifugal force F; =m[(2xr;)x 2]= m(QozrR sind)e, . Qxr, =(Q;sind)e,. The unit
vector e, which points radially outward from the axis of the rotation. The unit vector e, which is

directed tangentially along the circle with radius p.

Fy =m[(2xr)x 2]=m(Q,p)e; xQe, = m(QOZp)ep = m(QOZrR sind)e, .
v, =2 xr, =(Qlsind)e, =(Q,0)e,
where

p=TIysind

13



2
mv
If we momentarily let v, = Qxr, =(€Q,p)e,, then the centrifugal force takes the familiar form, —
P

Fig.  The effective gravitational force which is sum of the original gravitational force mgy and the
centrifugal force Fr.

The effective gravitational force along the radial direction
Orar = Gy = Tesin® 2 = gy —Q Re cos” B

The effective gravitational force along the tangential direction
0., = Q, TysinAcos A = Q,’R. sin Bcos B

where

Q,’R. =0.0336983 m/s* = 3.36983 cm/s”.

14



Since go = 9.8 m/s?, we see that, because of the centrifugal force, the value of g at the equator is about
0.3 % less than at the poles.

10.  The magnitude of For and Fet
F o= 2MQV, ~ MQ Vg, F=mr.Q, .

where Vg is the object's speed relative to the rotating frame of the earth. It is the speed as observed by us
on the earth's surface. Then we have

F

cor __

F

cf

QOVR= Ve ~ Ve %R
Qoer Qpry - QRe

Here we assume that I, = R. which is the radius of the earth. Using Rg = 6.372 x 10° m, we get

V =463.39 m/s = 1036.59 miles/h.
((Note))
When vr =V, the centrifugal force F.ris comparable to the Coriolis force F..;. The gravitational force

is slightly changed by the centriufugal force. Even if vg<<V where F is much smaller than F, the
Coriolis force can have appreciable effect (for example, with Foucault pendulum).

11.  Thecase of F ;=0 (no external force)

Supposew that F,=0. Then we have the differential equations for Xg and yr in the rotatin frame,

Ko=2p + @ X,

g 2
Vo= 20Xz + 0 Yy,

with the initial condition; X; =0, y; =0, X; =0, and Y, =V,, The solution of these differential

equations are given by
Xg (1) =y tsin(awt),  Yg(t) =V,tcos(at)
for the rotation frame and

Xl(t)=0, Y () =V,t.

15



for the inertial frame. The results are as follows.
((Mathematica))
Clear["Global "];

eql = D[x[t], {t, 2}] ==2wD[y[t], t] + w’ X[t];
eq2= DIy[t], {t, 2}] == -2wD[X[t], €] + wzy[t];

eg3 = DSolve[{egl, eg2, x[0] =0, y[0] ==0, x"[0] ==0, y"[0] =VvO},
{x[t], y[t]l}, t] // FullSimplify;

X1[t ] =x[t] /-eq3[[1]]

tvOSIn[tuw]

yl[t ] =y[t] /. eq3[[1]]
tvOCos[tuw]

Fig.  Path of particle projected radially outward from center as viewed from inertial frame of reference.



Fig. Path of particles projected radially outward from center as viewed rotating frame of reference.
The rotation direction is counter clockwise.

XR

e

Fig. Path of particles projected radially outward from center as viewed rotating frame of
reference. The rotation direction is clockwise.
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12.  Another method: solving differential equation using complex number
Now we define the complex number

Ug = Xg +1Yg
The differential equation:
Uy = X5 + 1V
=2y, + a)2XR+i(—2a))'(R + a)zyR)
= " (XgHiyg) = 2i0(Xo+iY )
= 0'Uy—2iol,
with the initial condition
UR(O):Oa UR(O)ziVO

The solution is as follows.

Ug (1) =iv, te™

X(t) = %[u(t) +U (t)] =V tsin(at)

y(t) = %{u(t) U (0] =yt cos(et)

((Mathematica))

18



Clear["Global "]; Clear[u];

*

exp *:=exp /. {Complex[re , im ] = Complex[re, -im]};
eql =D[u[t], {t, 2}] ==-2wd D[u[t], €] +w2u[t];
eq2 = DSolve[{eql, u[0] =0, u®"[0] ==4VvO}, u[t], t] // FullSimplify;

Ul[t_ ] =uft] /. eq2[[1]]

ietttvo

1
X1[t ] = Simpliﬁ/[ExpToTrig[E (UL[E] + ul[t]*)”

tvOSin[tuw]

ul[t]—ul[t]*”

yl[t ] =Simplify[ExpToTrig[ >3

tvOCos[tuw]

13.

The 3D motion in the presence of only the Coriolis force

19



LR,Z|

VR

Yr

F,, =2my xQ

cor

F_, acts as a centripetal force, giving rise to the uniform circular motion. The circular motion occurs in a

cor

plane perpendicular to £2 (along the z; axis).

Vv 2
R _
m——=2mv,Q,

rR
or
R_ 1
Ve 2Q,
The period T is
T 2ar, T
Ve Q

We solve the differential equation using Mathematica

20



Xg = 2€,Yg sin(f)
Yr = —2QX; sin(fB) —2Q,z, cos(f) +V,
2, =20 Y cos(f)
with the initial conditions;
X(t=0)=0, y(t=0)=Vv,, 2, (t=0)=0
Xg(t=0)=ys(t=0)=2;(t=0)=0

The solutions are as follows.

X, (t) :g‘;—"sin Bsin®(Qt),

0

\Y
t)=—"
Ye=275

sin(2Q,t)

0

Z(t) = g\;—ocosﬂsinz(ﬂot) .

0

We make a plot of the motion of the system using the ParametricPlot3D . As is expected, we have the
uniform circular motion on a plane perpendicular to the z; axis.

21
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cor

XR

14.  Mathematica
The differential equation

22



Clear["Global +"];
eql =D[x[t], t] = 2Q0y[t] Sin[B];
eq2 =D[y[t], t] =
-2Q0SIn[B] X[t] - 2 Q0 Cos[B] z[t] + VO;
eq3 =D[z[t], t] =2 Q0Cos[B] Y[t];
egqd = {xX[0] =0, y[0] =0, z[O] == 0};
seql =
DSolve[Join[{eql, eq2, eq3}, eqgd4 ],
{x[t], y[t], z[t]}, t] // FullSimplify;

X[t ] =x[t] /-seql[[1]]

vO Sin[B] Sin[t Q01?2
Q0

y[t_1=y[t] /-seql[[1]]

vOSin[2 t Q0]
2 00

z[t ] =2z[t] /.seql[[1]]

vO Cos [3] Sin[t 0]?
Q0

23



B=40°; v0=1; Q0 = 10;

Tl = ParametricPlot3D[100 {x[t], Yy[t], z[t]},
{t, O, 10}, Boxed - False, Axes -» None,
PlotStyle -» {Blue, Thick}];

T2 = Graphics3D][

{Red, Thick, Arrow[{{0O, O, O}, {4, O, 0}}]1,
Arrow[{{0, O, 0}, {0, 4, 0}}1,

Arrow[{{0O, O, 0}, {0, O, 4}}71,

Arrow[{{0, O, 0}, {-4Cos[B], O, 4Sin[B]}}],
Text[Style[''xR", Black, 121, {4.3, 0, 0}],
Text[Style["yr", Black, 121, {0, 4.3, 0}],
Text[Style["'z;", Black, 121, {0, O, 4.3}],
Text[Style['z,", Black, 12],

{-4.3Cos[B], 0, 4.3SIn[B]}]1}];
Show[fl, f2, PlotRange - All]

15.  Analogy between the Lorentz force and Coriolis force
The analogy between the Coriolis force and the Lorentz force is as follows. Suppose that the Lorentz
force is defined by

F, =ﬂvaB
C

where q is the charge and c is the velocity of light. When the effective magnetic field B is related to the
angular velocity £2as

_ 9B

0=
2mc

The direction of the angular velocity is parallel or antiparallel to that of the effective magnetic field. Then
we have

q 2mc

F__=—v_x
Lor R
C

Q=2m(v,x2)=F,

cor

24



LR,Z|

YR

Fig.  Configuration of Lorentz force, where 2 = 2q—B
mc
16.  Coriolis force and centrifugal force
Fcor + F;:entri = vaRX‘Q — M2 x (£ x I’R)]
with

2 =Q (-sinA,0,cos 1) =Q (—cos 3,0,sin )

where fis the latitude,

T
“Z_1.
F=3

The equation of the motion is given by

25



Xz =Q,sin B2y, +Q,z; cos B+ €2 X, sin )

Ve =Q)(=2Xgsin S+ )y, — 27, cos )

I, =Q,cos f(2y; +€yZs cos f+Q X sin )
We use the initial conditions given by

Xg(t=0)=X,, Y (t=0)=0, 2, (t=0)=0
and

Xz (t=0)=0, Yr(t=0)=V,, 2x(t=0)=0

17.  The in-plane (2D) motion in the presence of only the Coriolis force
Suppose that z(t) = 0.

The equation of the motion is given by
Xz =Q,sin S(2YR)
Vr = Q) (2% sin f)
or
Xg =2€, sin B(YR)
Yp =—2Q,sin B(X3) +V,
with the initial conditions;
Xg(=0)=0, y,(t=0)=0, X;(t=0)=0, yi(t=0)=0

The solution of the above differential equation is given by

26



Vo . : v,
sin“(Q, sin =
Q,sin S (sin A1) 2Q sin

Xg (1) = [1—cos(2€Q), sin /)]

\' . .
Ve (1) = 2QO#ﬁsm(ﬂlo sin f3t)

These points are located on a circle given by

Vo

2 2 Vo ’
(XR(t)—m) +[Yr(D)] _(—ZQosinﬂ]

\" Y
in the {Xg, lane. The center of the circle is (——2——,0). The radius is ——>—.
- Yr) P (ZQO sin 3 ) 2Q,sin S

18. Mathematica
We assume that vo = 1, Q, =10, fis changed as a parameter; =20, 30, 40°, 50°, 60°, 70°, 80°, and

90°. (the clock-wise rotation)

Clear["Global %"7];

eql = D[x[t], t] == 20 y[t] Sin[B];

eq2 =D[y[t], t] == -2Q0 SIin[B] x[t] +VO;

eq3 = {X[0] =0, y[0] = 0};

seql =

DSolve[Join[{eql, eq2}, eq3], {X[t], y[t]},
t] // FullSimplify;

X[€_] =x[€] /- seql[[1]]

vO Csc[B] Sin[t 0 Sin[B]]?
Q0

y[t.]1=y[t] /- seql[[1]]

vOCsc[B] SIN[2t Q0 SIn[B]]
20
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vO=1; Q0 = 10;
Tl = ParametricPlot]
Evaluate[Table[100 {x[t], y[t]},
{B,20°,90°, 10°}1], {t, O, 10},
Axes -» None, AspectRatio -» Automatic,
PlotStyle » Table[{Hue[0O.1 1], Thick},
{1, 0, 10}11];
2 =
Graphics[{Black, Thin,
Arrow[{{0, 0}, {32, 0}}],
Arrow[{{0, -15}, {0, 15}}1,
Text[Style[''xz", Black, 12], {33, 0}],
Text[Style["yr", Black, 12], {0, 16}],
Text[Style["3=30°", Black, 121, {28, 0}],
Text[Style["B3=60°", Black, 12], {14, 0}],
Text[Style["3=90°", Black, 121, {9, 0}1}1;
Show[f1l, 2, PlotRange -» All]

YR

A

XR
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19.  Combination of Coriolis and centrifugal forces (2D plane)
Suppose that zg(t) = 0. We only consider the planar motion in the (Xgr, Yr) plane

The equation of the motion:

Xg =Q,sin f(2Yg + QyXg sin )

Ve =Q(—2Xzsin B+ Q,YR)
We use the initial conditions given by

X (t=0)=X,, Ye(t=0)=0.
and

X (t=0)=0, Y (t=0)=Vv,,

We solve the differential equation numerically by using the Mathematica.
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YR

Fig. The in-plane motion in the (Xg, Yr) plane under the influence of the Coriolis force and
centrifugal force. The latitude = 40°.

20. Mathematica
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Clear["Global %"]; Q0 =1; 3 =40°;
Coriolis[vO , tmax ] :
Module[ {numsol, numgraph},
numsol =
NDSolve [
{D[x[t], {t, 2}] ==Q0 SIn[B] (2y"[t] +x [t] QO SIn[B]),
DIy[t], {t, 2}] =00 (y[t] @0 -2x"[t] Sin[A]),
X[0] =0, y[0] ==0, x"[0] =0, y"[0] == vO},
{x[t], y[t]l}, {t, O, tmax}] ;
numgraph = ParametricPlot]
Evaluate[{x[t], y[t]} /- numsol[[1]]],
{t, 0, tmax}, PlotStyle » {Hue[vO], Thick}]1];

gl = Table[Coriolis[VvO, 6], {vO, 0.1, 1.0, 0.1}];

g2 =

Graphics]
{Text[Style["v,=0.1", Black, 12], {-2, -1.5}],
Text[Style["v,=0.2", Black, 121, {-2, -3}],
Text[Style["v,=0.3", Black, 121, {-2, -4.5}],
Text[Style["v(=0.4", Black, 12], {-2, -5.5}],
Text[Style["v(=0.5", Black, 12], {-2, -6.5}],
Text[Style["v,=0.6", Black, 121, {-2, -7.8}],
Text[Style["v,=0.7", Black, 121, {-2, -8.8}],
Text[Style["v,=0.8", Black, 121, {-2, -10}],
Text[Style["v(=0.9", Black, 12], {-2, -11}],
Text[Style["vp=1.0", Black, 121, {-2, -12}],
Text[Style['B=40°", Black, 12], {-7, -1.0}1,

Text[Style['xR", Black, 121, {8, 1}1,

Text[Style["yr", Black, 127, {1, 2}],

Text[Style["3=40°", Black, 12], {-7, -1.0}] }1:;
Show[gl, g2, PlotRange » All]

21. Free fall and the Coriolis force
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ma =F + F

— & gravity Corioli

with

where

Fgravity = (O’O’_mg)
2 =(-€Q,sin4,0,Q,cos )

F,

Corioli

=-2m(2 xv)
=(2mQ, cos(A)Y,—2mQ[cos(A)X +sin(A)Z],2mC2, sin(4)Y)

Equation of motion:
X =2Q,cos(1)y

Y =-2Q [cos(A)X +sin(1)Z]
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Z=-0+2Q,sin(1)y

i=Z_p

Since, 2 we have
X =2Q,sin(S)y
y =-2Q,[sin(B)X + cos(S)Z]
7=-0+2Q,cos(p)y
We use the initial condition: the initial velocity: (U,,0,0), and the initial position: (0,0,z,).
X =2Q,ysin(f)
y =-2Qxsin(f) —2Q,(z - z,)cos(f)
Z2=—-0t+2Q,cos(p)y

The exact solution of these differential is as follows.

X = 83 [-1420,%t + cos(2Q,)]sin(2 8)

0

y= 4302 [20,t —sin(2Q,t)]cos(S)

2
7-_9 S[-1-20,t + % +c0S(2Q, 1)} + cos(2B) {1+ 2Q,°t* + cos(2Q,t)} ]
0

In the limit of Q t —0, we have

x= % ot* sin( ) cos(B) )’
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y= % gt (Qh) cos(f)

1 2 _l 2 2
2=2,~ 0t 1 3(Qot) cos” (/)]

The remarkable thing about this solution is that a freely falling object doies not fall straight down. Instead
the Coriolis force causes it to curve slightly to the positive y direction.
Suppose that we use the approximation;

x=0,

y=§gt2(90t)cos(ﬂ>,

z=zo—%gt,

to the order of Qt.

When z = 0, (falling from the height zy = h to the ground z = 0),

Then the value of'y is obtained as

1 2h
y=3 QQO(E)”2 cos(f)

At Binghamton, NY, the latitude is f=42.0986 (N). For h = 100 m, the value of y is evaluated as

y=1.625 cm.
where
2z s
Q,=———=7.27221x10" rad/s
24 x 3600
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It is a small deflection, but certainly detectable.
22.  Mathematica

Clear["Global "]

27

Q0 = ———
24 x 3600

// N;

rulel = {h-» 100, B -42.0986 °, g -» 9.8};
1 2hy3/2
y1=?3 g 0 (—) Cos[B] /- rulel // N
g

0.0162509

23.  Mathematica
The differential equations (Se. 11) can be solved using the Mathematica.
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Clear["Global "] ;
eql =D[x[t], t] = 2Q0y[t] SIin[B];
eq2 =D[y[t], T] ==
-2Q0SiIn[B] x[t] - 2 Q0Cos[B] (z[t] - z0);
eq3 =D[z[t], t] == -gt +2 QO0Cos[B] Y[t];
eq4 = {x[0] ==0, y[0] ==0, z[O] == zO,
X"[0] =0, y"[0] =0, z"[0] == 0};
seql =
DSolve[Join[{eql, eq2, eq3}, eqd],
{x[t], y[t], z[t]l}, t] // FullSimplify;

X[t ] =x[t] /.seql[[1]]

g (-1+21t7Q0% +Cos[2tQ0]) Sin[2 3]
8 Q0?

ylt ]1=y[t] /-seql[[1]]
_gCos[B] (-2tQ0+SIN[2tQ0])
4 Q0

z[t ]=2z[t] /-.seql[[1]]

oo (-g-2g1t° 0%+ 820 Q0% + g Cos[2 t Q0] +

gCos[2p] (-1+2t°Q0%+Cos[2tQ0]))

Series[x[t], {t, 0, 4}] // Normal // Simplify

% g t* 00? Cos[3] Sin[B]

Series[y[t], {t, O, 4}] // Normal // Simplify

% g t2 00 Cos [ 8]

Series[z[t], {t, O, 4}] // Normal // Simplify

2
_gzt +ZO+%gt4QOZCOS[B]2

Foucault pendulum
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Fig. The latitude f=90° - A.

Assume the Earth is a sphere rotating about the z; axis with constant angular velocity @. Choose a co-
ordinate system on Earth with the k axis along the vertical, the xR axis pointing South, and the yR axis

pointing East. fis a latitude of the observer. A is the colatitude. A =90° - £.

The pendulum bob is acted upon by two real forces: the tension in the string (T) and gravity (mg). It is
also acted upon by two fictitious forces: Coriolis force and the centrifugal force. For convenience we
neglect the centrifugal force.
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ma=T+ Fgravity + FCorioIi
with
T=Tn= TI(—X,—y, L-2)
where
1
n=—0-x0-y,L-2)
L
Fgravity = (0,0,—mg)
02 =(—Q,sin1,0,Q,cos 1)

FCorioIi = _2m(9 X V)
=(2mQ, cos(A)Y,—2mQ [cos(A)X +sin(A)Z],2mC2, sin(4)Y)

Equation of motion:
T

Xg = T Xg +2Q, cos(A) Yy

T (o +sin(A)?
Vo = - Y —2Q,[cos(A)Xg +sin(A)Z,]

. T . .
7. =—0 +H(L_ Zz) +2Q, sin(4) Y,

The pendulum is very long so that the string is essentially vertical at all times.

T=mg

%y = —%xR+2KyR
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y=-—=y-2KX
where
K=Q,cos(1)=Q, cos(% -p)=Q,sinf,

and

where fis the latitude of the location on the Earth. Then we have the differential equations,

Ko =~ Xg + 2KV
Vo = —@°Yg — 2KX,
We define the complex number as
Ug = Xg +1Yg
Uy = Xy + 1Y, = —@" (Xg +1Yg) — 2IK (X, + 1Y) = —@°Ug, — 2iKU,
The diffrential equation is then given by
U, + 2iKU, ++@’U, =0
with the initial condition

Ug(t=0) = Xo(t = 0) + iy (t =0) =0, U (t =0) =Xy (t =0) +iy(t=0)=V,.

The solution of the differential equation is obtained by using the Mathematica. The final result is as
follows.

v, cos(Kt)sin(;t)

Xg (t) = 0
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_ V,sin(Kt)sin(€;t)

Yr 1= Q1

where

Since

_V,sin(at)

X(t) cos(Kt)

V, sin(at)

y(t) = sin(Kt)

with

K=Q,sinf
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Clear["Global "] ;

exp_ * :=exp /. {Complex[re , im ] :» Complex[re, -im]};

eql = U’ [t] = -23Ku'[t] -w? u[t];

eq2 = Simplify[DSolve[{eql, u[0] =0, u" [0] =VvO}, u[t], €]];

1 .
srulel:{\/- (0®+ K?) > iol, _,_i};
'\/ —(w2+ KZ) ol

ul[t ] = FullSimplify[u[t] /-eq2[[1]] /-srulel]

e 1Kty Sin[tal)]
Q1

1
x1[t ] = Simplify[ExpToTrig[—2 (u1rt] +u1[t]*)”

vOCos[Kt] Sin[tQl)
1

yl[t_] = Simpl iﬂ/[ExpToTrig[u“t]z_fjlm* ”
1

_VOSIn[Kt] Sin[tol]
0l
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x11[t ] =x11t] /-{al > VK2 +o? };
yii[e 1 =yire] /-{al > VK2 +o? };

ParametricPlot[Evaluate[{x11[t], y11[t]} /- {(K»1, w-»3,VO->1}],
{t, 0, 100}, PlotStyle » {Red, Thick}, Background -» LightGray]

26. Foucault’s pendulum, Pantheon, Paris

The first public exhibition of a Foucault pendulum took place in February 1851 in the Meridian of the
Paris Observatory. A few weeks later Foucault made his most famous pendulum when he suspended a 28
kg brass-coated lead bob with a 67 meter long wire from the dome of the Panthéon, Paris. The plane of
the pendulum's swing rotated clockwise 11° per hour, making a full circle in 32.7 hours. The original bob
used in 1851 at the Panthéon was moved in 1855 to the Conservatoire des Arts et Métiers in Paris. A
second temporary installation was made for the 50th anniversary in 1902.
http://en.wikipedia.org/wiki/Foucault pendulum

The angular velocity of the Earth:
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27

Q,=—————=7.27221x10" rad/s
24 x3600

Latitude of Panthéon, Paris, France

[=48.8742° N. A=90°-=41.1258°.
The detail of the Foucault pendulum:
L=67m. m =47 kg.

The angular velocity of the pendulum

a):\/gz @:0.382451 rad/s
L V67

T, =27 _ 164287 .

[0

K =Q,sin=0.753267 x 7.27221x107°=5.477916 x 107 rad/s

Q, = @* +K? =0.382451 rad/s ~ w.

The period:

TK:%:1147OO s =31 hours 51 min 40 sec
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Fig.  Foucault’s pendulum, Pantheon, Paris
http://en.wikipedia.org/wiki/Foucault pendulum

We note that

depends on the latitude. When = 90° (North Pole), Tk is exactly equal to 24 hours.

27. Foucault’s pendulum in New York City (United Nations)
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Fig.  Foucault pendulum which hangs in the United Nations Building in New York City.

The sphere takes approximately 36 hours and 45 minutes to complete its cycle. The time of rotation
has been found mathematically to vary in accordance with the latitude of the location of the pendulum.
At the North Pole, where the pendulum would be directly above the earth's axis and the latitude is 90
degrees, the time of rotation is 24 hours. At the equator, where the latitude is 0 degree, the plane of the
pendulum would not shift at all. At other latitudes the Foucault effect varies, becoming more pronounced
nearer the poles.
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Latitude of New York City, NY (U.S.A.):

B=40.7142° N. A =90°-=49.2858°.

L=23m. m =95 kg.
o= \/g = & =0.652753 rad/s
L V23
T, = 2_7z =9.62567 s.
1)

K =Q,sin B =4.74356 x 10” rad/s

Q, =V’ +K? =0.652753 rad/s ~ w.

2 .
T = ?” = 132457 s = 36 hours 47 min 37 sec

29. Meteological phenomena due to the Coriolis force

The Coriolis force plays a significant role in many meteological phenomena. Mases of air tend to
move from a region of high pressure to a region of low pressure, the so-called pressure gradient The wind
continues parallel to the isobars, circulating in the Northern Hemisphere in a counter clock-wise direction

around the center of low pressure, and in a clock-wise direction around the center of high pressure, when
viewed from the above.

48



-~

Low pressure

/_\

Fig.  Air flows near the site with low pressure in the northern Hemisphere. Near the center of low
pressure, the air flow rotates in counter clock-wise.

-

High pressure

/\

Fig.  Air flows near the site with high pressure in the northern Hemisphere. Near the center of high
pressure, the air flow rotates in clock-wise.
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APPENDIX-I List of the Foucault pendulum in the world
Location Length (m) Mass (kg)
Pantheon, Paris 67 47 (1995 bob)
UN building, NYC 23 90
Franklin Institute, Philadelphia 26 410
Univ. of Guelph, Canada 0.83 4.5
Univ. of Maryland 14 28
Yale University 11 12
Griffith Observatory, Los Angeles 12 100
Ryerson Library, Michigan 22 14
Ottawa High School, Michigan 9 14
Univ. of Wisconsin, Madison 14.5 30
Morrison Planeterium 9 87
Science Museum, London 20 9
APPENDIX-11 Method using the Lagrange equation

The Lagrangian L is given by
1 ! . ,
L=T-U :Em[(XJz +(y|)2 +(Z, )2 -U(X,,Y,,2))

where T is the kinetic energy and U is the potential energy. Using the relation
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X, cos(wt) —sin(at) 0 Xz
Y, |=| sin(wt) cos(wt) 0| Yy
Z, 0 0 1)\ z5

the new Lagrangian L can be rewrittem in terms of the new variables, Xg, Yr, Zr as

L(Xg> YrsZrsXr> Yr»Zr :Em[a)z(xR2 + yR2)+2w(XRyR _XRyR)+(XR)2 +(YR)2 +(ZR)2]_U(XR’yR72R)

since

U(XR,yR,zR):U(X,,yl,Z,)

The Lagrange equaion

dfeLy oL dfel) o dfal) oL
dt{ 0%, ) oxg dt{ oy, ) oy’ dt| 6z, | oz,
aU(XRayRﬂzR)

MK, =M@’ Xg +2May, —

OXg

my, =M’y —2MmaX, _ U Xs, Y 20)
YR

_ U (Xg>Yr>Zs)
0z,

Mz, =

We have the form of vectors

Ma, =-2mM(2xvy)—m[2x(2xr,)]—-GCGrad[U ]

APPENDIX-I111

colatitude (4) The latitude measured down from the North Pole (instead of up from the equator, as is
more usual with geographers).

latitude (f) It is geographic coordinate that specifies the north-south position of a point on the Earth's

surface. Latitude is an angle (defined below) which ranges from 0° at the equator to 90°
(North or South) at the poles.
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