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Johannes Kepler, working with data collected by Tycho Brahe, developed the three laws which 
described the orbital motion of the planets such as the Earth. 
 
Kepler's laws 

(i) The orbit of a planet is an ellipse with the Sun at one of the two foci. 
(ii) A line segment joining a planet and the Sun sweeps out equal areas during equal 

intervals of time. (angular momentum conservation) 
(iii) The square of the orbital period of a planet is proportional to the cube of the semi-

major axis of its orbit. 
 

One of the triumph of classical mechanics is that the observed elliptical orbits of the planets 
around the Sun can be explained directly from the Newton’s laws of motion and the inverse 
square law of gravity. Such a demonstration starts with the differential equation for ru /1  as a 

function of angle  and solve the Kepler problem analytically. There is another approach to the 
solution of the Kepler problem, the hodograph proposed by Sir William Rowan Hamilton and 
August Möbius. This approach has been originated mainly from the Newton Principia 
Mathematica. Because of the use of geometry instead of analysis, the physics has not always 
been clear to physicists. It has been often forgotten and independently rediscovered several times. 
In my view, one of the best known rediscoveries is the lecture given by Richard P. Feynman at 
March 13, 1964. Thanks to a book edited by D. and J. Goodstein, it is available for one to read 
this lecture note of Feynman. We note that Sir William Rowan Hamilton called the graph of the 
tip of the velocity vector as a function of time as the hodograph, from the Greek ‘‘to draw’’ 
graphein, and ‘‘path’’ hodos.  

Here we present a hodorographics solution of Kepler’s law of ellipses using both the 
analytical method and the Euclidean geometry. Most part of the approach was already discussed 
by Feynman and James C. Maxwell. The visualization of the hodograph diagram by using 
Mathematica makes much easier for one to understand the physics of orbital motion, in particular, 
the vectors of the velocity (tangential direction) and the acceleration (centripetal, toward the Sun). 
 
((Feynman’s comment)) 

“It is not easy to use the geometrical method to discover things. It is very difficult, but the 
elegance of the demonstrations after the discoveries are made, is really very great. The power of 
the analytical method is that it is much easier to discover things than to prove things. But not in 
any degree of elegance, it is a lot of dirty paper, with x’s and y’s and crossed out, cancellations 
and so on.” 



D.L. Goodstein and J.R. Goodstein, Feynman’s Lost Lecture: The Motion of Planets Around the 
Sun (W.W. Norton, New York, 1996). Lecture by R.P. Feynman at March 13, 1964. 

 
1. Geometry of ellipse orbit 
(a) Definition of ellipse 

An ellipse is the curve that can be made, by taking one string and two tracks and putting a 
pencil here and going around. Or mathematically, it is the locus, such that the sum of the distance 
SQ and the distance FQ remains constant (see Fig.1) , where S (the Sun) and F are the two fixed 
points. One may have heard another definition of an ellipse: these two points are called the foci, 
and this focus means that the light emitted from S will bounce to F from any point on the ellipse 
(ellipse optic theorem). 

Suppose that the Earth undergoes an orbital motion of ellipse where the Sun (S) is one of the 
focus of the ellipse, and F is another focus. We consider the point Q on the ellipse orbit. 
 



 
 
Fig.1 Hodograph diagram. Q (the Earth) is on the ellipse. F and S (the Sun) are foci. FQ + QS 

= 2 a. SQCFQC   (ellipse optic theorem). The point P is on the circle (radius 2a) 

centered at S. FP is proportional to the velocity at the point Q. The direction of the 
velocity is parallel to the tangential line at Q. 

 
From the property of the ellipse, we have 
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aSQFQ 2 , 

 
aeOSOF  , 

 
where a is the semi-major axis and e is the eccentricity; 0<e<1. When QPFQ  , we have 

 
aSP 2 . 

 
The point P is located at the circle with radius 2a centered at the focal point S.  
 
(b) Ellipse optic theorem 

First we demonstrate the equivalence of these two definitions for ellipse. The light is 
reflected as though the surface were a plane tangent to the actual curve. We know that the law of 
reflection for the light from a plane is that the angle of incidence and reflection are the same. In 
other words, the angles made with the two lines FQ and SQ are equal, that that line is then 
tangent to the ellipse. 
 



 
 
Fig.2 Q (the Earth) on the ellipse with foci S (the Sun)  and F. The green circle (radius a) 

centered at the origin O. FS = 2ae. 
 
((Proof)) 

First we extend the perpendicular from F to the tangential line at the point Q, the same 
distance on the other side, to obtain P, the image of F; Now connect the point Q to P. Two right 
triangles are exactly the same (see Fig.2). Thus we have 
 

PQHFQH  , FQPQ  . (ellipse optic theorem) 

 
So we get 
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aSPQSPQQSFQ 2 , 

 
Suppose that we takes any other point on the tangent, Q'. We take the sum of distances, 
 

SQPQSQFQ ''''  , 

 
where 
 

'' PQFQ  . 

 
It is clear that the inequality 
 

aSPSQPQ 2''  , 

 
in the triangle SPQ' .In other words, for any point on the tangential line, the sum of the 

distances from Q' to F and from Q' to F is greater than it is for a point Q on the ellipse. 
 
2. Geometrical theorems 

Using the Mathematica, we prove analytically that 
 

(i) 2bSHFH  . 

 

(ii) aSP 2 .  (P is on the circle (radius 2a) centered at the point S) 

 

(iii) aOHOH  ' . [H and H' are on the same circle (radius a) centered at O] 

 

where b is the semi-minor axis and is given by 21 eab   (see Fig.2). We consider the point Q 

on the ellipse. The position vector of Q is given by 
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where u is a angle such that 
a

x
u 1cos  . u is a little larger than QOS . The position vector of the 

focus F and the Sun S is given by 
 

)0,( aeOF   ,  )0,(aeOS  . 



 
The line QQ’ which is tangential line at Q on the ellipse is expressed by 
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The line SQP is expressed by 
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The line FHP, which is perpendicular to the tangential line H’QH, is expressed by 
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The line SH’P’, which is perpendicular to the tangential line H’QH,  
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From Eqs.(2) and (3), the position vector of P can be obtained as 
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The point H is the middle point between the points F and P, 
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where 
 

aOH  . 

 

The position vector SP  is given by 
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where 
 

aSP 2 . 

 

The position vector SH  is obtained as 
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From Eqs.(1) and (4), we get the position vector of H’ as 
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Note that 
 

aOH ' . 

 

The position vector 'SH  is obtained as 
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then we have 
 

2' bSHFH  . 

 
((Mathematica)) 
 



 

Clear "Global` " ; F1 a e1, 0 ;

F2 a e1, 0 ; O1 0, 0 ;

rule1 x1 a Cos u ,

y1 a 1 e12 Sin u ;

eq1 y y1 1 e12 x1 y1 x x1 ;

eq2 y y1 x1 a e1 x a e1 ;

eq3 y y1 1 e12 x1 x a e1 ;

eq23 Solve eq2, eq3 , x, y Simplify;

eq4 y y1 1 e12 x1 x a e1 ;

eq14 Solve eq1, eq4 , x, y ;

P1 x, y . eq23 1 Simplify;

M1 x, y . eq14 1 Simplify;

H1 1 2 P1 F2 ; Q1 x1, y1 ;

P2 P1 . rule1 Simplify;

H2 H1 . rule1 Simplify; Q2 Q1 . rule1;

M2 M1 . rule1 Simplify;

P2
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1 e1 Cos u
,

2 a 1 e12 Sin u
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a Cos u , a 1 e12 Sin u

H2.H2 Simplify
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H2 FullSimplify , a 0, 0 e1 1 &
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,
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F2P2 P2 a e1, 0 ; F2P2.F2P2 FullSimplify
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F2P2 Simplify
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,
2 a 1 e12 Sin u
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F1H2 H2 a e1, 0 ; f1 F1H2.F1H2 FullSimplify

a2 1 e12 1 e1 Cos u
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F1H2 Simplify

a 1 e12 Cos u

1 e1 Cos u
,

a 1 e12 Sin u

1 e1 Cos u



 
 
3. The velocity on the ellipse orbit ((Maxwell) 

Here we show the discussion on the velocity, which was given by J.C. Maxwell (see Fig.3). 
The physics given by Maxwell is very clear for me. We consider the ellipse A0QP0 with foci F 
and S (S standing for the Sun, A0 the aphelion, and P0 the perihelion). Let Q be any point on the 
ellipse, and draw SP through Q, such that SP = A0P0 = 2a. In order to avoid the confusion, we 
use A0 and P0 for the aphelion and perihelion. Draw a line from F to P. It remains to be shown 
that PF is perpendicular to, and proportional to, the velocity at point Q, and that the locus of P is 
a circle. 
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Fig.3 The direction of the velocity vector. The magnitude of the velocity is proportional to the 

distance FP. 
 
((Proof)) 

In the ellipse, PF is perpendicular to the velocity at the point Q. Draw a tangent from Q to 
intersect PF at H. Then by the ellipse optical theorem, 
 

FQHSQH  ' , 
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PQHFQH  . 

 
We also have 
 

FQQSaQSPSPQ  2 . 

 
where 
 

aPS 2 . (2a: the distance between the perihelion and aphelion) 
 
So HQ is perpendicular to PF. Then the direction of PF is perpendicular to the tangent, and hence 
the velocity at Q. 

In the ellipse, PF is proportional to the velocity at Q. Draw a perpendicular line from S to the 
tangent to intersect the tangent at H'. Let v be the velocity at Q, of the magnitude v. By the 
conservation of angular momentum, we get 
 

lSmvH ' , 
 
where l is a constant. Using the geometrical theorem 
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so PF is proportional to v. 

Since SP is always equal to the major axis, it follows that the locus of P is a circle, with 
common origin of the velocity vectors at F; this circle is the hodograph turned through 90° 
because PF is perpendicular to v. Then we have 
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Note that this scaling factor. We consider the aphelion and the perihelion 
(i) At the aphelion 
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Then we have 
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The scaling factor is obtained as 
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(ii) At the perihelion, 
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where b is the minor axis distance, 
 

21 eab  , 



 
and p is the semi-latus rectum; 
 

)1( 2
0 eap  . 

 

 
 

 
 
Fig.4 (a) Q is near the perihelion and (b) Q is on the perihelion.  
 
4. Centripetal acceleration 

First we discuss the velocity vectors at the point Q1 and Q2 on the same ellipse, where Q1 and 
Q2 are very close. The velocity at the point Q1 is proportional to the length FP1.  
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The velocity is directed along the tangential line at the point Q1. The rotation of the vector 1FP  

around the point F by /2 in a counterclockwise leads to the direction of the velocity. For this 

rotation we use the geometrical rotation operator )
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When the particle rotates from Q1 to Q2' on the ellipse during the time t, the instantaneous 
acceleration a is 
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In the limit where the point P2 is very close to P1. the vector 21PP  is perpendicular to the vector 

1SP . Then the acceraltion is directed toward the Sun (one of the focus in the ellipsoid). 

 



 



 
Fig.5 The points P1 and P2 are on the circle (radius 2a) centered at S. The point P1’ and P2' are 

on the circle (radius 2a) centered at F. The points H1, H2, H1', and H2' are on the circle 

(radius a) centered at the origin O. K1Q1H1Q1. K2Q2H2Q2. 
 
5. Hodograph diagram 

Using the Mathematica we draw the hodograph for typical position of Q on the ellipse. 
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Fig.6 The velocity vector where the point Q is located at  different positions on the ellipse orbit. 
 
6. The velocity distribution 

We make a plot of the velocity at various points on the ellipse. The circle denoted by green 
line is the hodograph. It is clear that the velocity is the largest at the perihelion, and that the 
velocity is the smallest at the aphelion, indicating the Kepler's second law (the conservation of 
the angular momentum.  
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Fig.7 Velocity of various points on the ellipse. The direction of the velocity is parallel to the 

tangential line at the points. For convenience, the magnitude of the velocity is assumed to 
be equal to the length of FH.  
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Fig.8 The velocity distribution. The starting point of the velocity vector coincides with the 

origin, while the magnitude of the velocity is assumed to be equal to the length of FH. 
 
7. The hodographical solution ((Maxwell)) 

The hodographical solution was discussed  by Maxwell. The detail is as follows. 
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Fig.9 The hodograph. The points P and P’ are located on the circle (radius 2a) centered at S. 

When the planet moves from Q to Q' during the time t , the velocity (which is 
proportional to FP) changes from FP to FP'.  'QSQ . SQ = r. SQ' = drr  . QQ'=

r . QQ’= trt
t

rrd 



 
. 

t



  is the angular velocity at the point Q. PP’=

taa   22  
 

On the diagram of velocity the line traced out moving point is called the hodograph of the 
body which it corresponds.  

The study of the hodograph was introduced by Sir W.R. Hamilton. The hodograph may be 
defined as the path traced out by the extremity of a vector which continually represents, in 
direction and magnitude, the velocity of a moving body. In applying the method of the 
hodograph to a planet, the orbit of which is in one plane, we shall find it convenient to suppose 



the hodograph turned round its origin through a right angle, so that the vector of the hodograph is 
perpendicular instead of parallel to the velocity it represents. 

Hence FP is always proportional to the velocity, and it is perpendicular to its direction. Now 
SP is always equal to 2a (the distance between the aphelion and the perihelion). Hence the circle 
whose center is S (Sun) and radius 2a is the hodograph of the planet, F being the origin of the 
hodograph. 

The corresponding points of the orbit (Q) and the hodograph (P) are those which lie in the 
same straight line through S (in other words, P, Q and S are on the same straight line). 

Thus Q corresponds to P and Q' corresponds to P'. The velocity communicated to the body 
during its passage from Q to Q' is represented by the geometrical difference between the vector 
FP and FP', that is, by the line PP', and it is perpendicular to this arc of the circle, and is therefore 
directed toward the Sun S. 
 
8. Centripetal acceleration: central-force problem 

If PP' is the arc described in unit of time, then PP' represents the acceleration, and since P P' 
is on a circle whose center is S, the distance of arc PP' will be a measure of angular velocity,  
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where  is the angular velocity at the point Q, 
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Note that the angular momentum l is conserved and is given by 
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The acceleration a is obtained as 
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or 
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where )
2

,(


z  is the geometrical rotation operator (counter-clockwise rotation of the system 

around the z axis by . 
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and 
 

)1( 2
0 eap  . 

 
The acceleration is inversely as the square of the distance SQ. Hence the acceleration of the 
planet is in the direction of the Sun, and is inversely as the square of the distance from the Sun. 

This, therefore, is the law according to which the attraction of the Sun on a planet varies as 
the planet moves in the orbit and alters its distance from the Sun. 
 
9. Derivation of the gravitational constant 

From the Kepler’s second law 
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T is the time of going completely around the orbit and is obtained by 
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Using this we get 
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We note that the attractive central force for the Earth, due to the Sun, is given by 
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where G is the gravitational constant. Comparing two equations for the force F, we have 
 

2

32

2
0

2 4

T

ma
GmM

mp

l 
 . 

 
Then the gravitational constant G is derived as 
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where M is the mass of the Sun, T is the orbital period of the Earth, and a is the major axis 
distance of the ellipse orbit. From this equation we can get 
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which is the Kepler's third law. 
 
((Note)) 



The Earth's orbit around the Sun is not a circle. The Earth's orbit around the Sun is slightly 
elliptical. Therefore, the distance between the Earth and the Sun varies throughout the year. At 
its nearest point on the ellipse that is the Earth's orbit around the Sun, the Earth is 91,445,000 
miles (147,166,462 km) from the Sun. This point in the Earth's orbit is known as perihelion and 
it occurs around January 3. The Earth is farthest away from the Sun around July 4 when it is 
94,555,000 miles (152,171,522 km) from the Sun. This point in the Earth's orbit is called 
aphelion. 
The slight ellipse in the Earth's orbit does have a slight impact on the amount of solar energy 
being received by the Earth. This 3.3% difference in distance does not impact the Earth as much 
as the seasonal variations, however. Scientists utilize the average distance from the Earth to the 
Sun as the standard for one astronomical unit (1 AU). This average distance from the Earth to the 
Sun is 92,955,807 miles (149,597,870.691 km). It takes light from the Sun about 8.317 minutes 
to reach the Earth. 
The Earth takes 365 days, 5 hours, 48 minutes, and 46 seconds (365.242199 days) to make a full 
revolution around the Sun. 
http://geography.about.com/od/physicalgeography/a/orbitSun.htm 
 
Here we use 
 

T = 365.242199 days. (the orbital period of the Earth) 
 

)1( earp  = 1.47166462 x 1011 m,  

(distance between the Sun and the 
perihelion) 

 

)1( eara  = 1.52171522 x 1011 m,  (distance between the Sun and the aphelion) 

 
a = 1.49669 x 1011 m,   (semi-major axis 

 
e = 0.0167204.    (eccentricity) 

 
Then we get 
 

111068428.6 G  m3/(kg s2), 
 
which is close to the 2010 CODATA-recommended value of the gravitational constant 
 

G 6.67384(80) x 10-11 m3/(kg s2). 
 
((Mathematica)) 
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APPENDIX The Hodograph by using Mathematica 

Here we show the locus of the point P, H, H’ and P’ as Q moves on the ellipse orbit. 

Clear "Global` " ;

rule1 M 1.988435 1030, a 1.49669 1011,

T 365.242199 24 3600 ;

G1
4 2 a3

M T2
. rule1

6.68428 10 11



 
 
Fig.10 Hodograph for the ellipse orbit. 


