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_________________________________________________________________________ 
Johannes Diderik van der Waals (November 23, 1837 – March 8, 1923) was a Dutch theoretical 
physicist and thermodynamicist famous for his work on an equation of state for gases and liquids. His 
name is primarily associated with the van der Waals equation of state that describes the behavior of 
gases and their condensation to the liquid phase. His name is also associated with van der Waals forces 
(forces between stable molecules), with van der Waals molecules (small molecular clusters bound by 
van der Waals forces), and with van der Waals radii (sizes of molecules). He became the first physics 
professor of the University of Amsterdam when it opened in 1877 and won the 1910 Nobel Prize in 
physics. 
 

 
http://en.wikipedia.org/wiki/Johannes_Diderik_van_der_Waals 
_________________________________________________________________________ 
Thomas Andrews (9 December 1813 – 26 November 1885) was a chemist and physicist who did 
important work on phase transitions between gases and liquids. He was a longtime professor of 
chemistry at Queen's University of Belfast. 
https://en.wikipedia.org/wiki/Thomas_Andrews_%28scientist%29 
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https://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Andrews_Thomas.jpg/225px-
Andrews_Thomas.jpg 
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Fig.1 Maxwell construction for a van der Waals system with the law of the corresponding 
states (we use the Mathematica for this). The critical point is at K. Phase coexistence 
occurs along the path a-c-e, when the shaded areas are equal. The line AK and AB are the 
spinodal lines. This figure is obtained by using the Mathematica. The van der Waals 
isotherms. For tr<1, there is a region a-b-c-d-e in which, for a given values of reduced 
pressure pr and the reduced volume vr is not uniquely specified by the van der Waals 
equation. In this region the gas transforms to liquid. The states on the path b-d are 
unstable. The observed state follows the path ace.  
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Fig.2 ParametricPlot3D of {vr, 10(1-tr), pr} for the van der Waals system, by using the 
Mathematica. The co-existence boundary is shown by the blue circles. For the sake of 
clarity, we use 10(1-tr) instead of (1 - tr). The values of vr and pr for each reduced 
temperature are listed in the APPENDIX. 
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The van der Waals equation is a thermodynamic equation describing gases and liquids under a 
given set of pressure (P), volume (V), and temperature (T) conditions (i.e., it is a thermodynamic 
equation of state). It was derived in 1873 by Johannes Diderik van der Waals, who received the Nobel 
Prize in 1910 for "his work on the equation of state for gases and liquids. The equation is a modification 
to and improvement of the ideal gas law, taking into account the nonzero size of atoms and molecules 
and the attraction between them. van der Waals equation of state, when supplemented by the Maxwell 
construction (equal-area rule), provides in principle a complete description of the gas and its transition to 
the liquid, including the shape of the coexistence boundary curve. 

Here we discuss the physics of the van der Waals equation of state from numerical calculations. We 
use the Mathematica to determine the detail of the flat portion (the coexistence line of liquid phase and 
gas phase). We also discuss the critical behavior near the critical point. To this end, it is significant for 
us to get the appropriate Mathematica program to determine the nature of the flat portion (the 
coexistence of liquid and gas phase). Before we started to make our own Mathematica program for the 
van der Waals equation of state, we found three resources for the programs related to this equation (as 
far as we know). The Maxwell construction was briefly discussed using the Mathematica by Kinzel and 
Reents (1998). Second is form the book of Nino Boccara, Essentials of Mathematica (Springer, 2007). 
The third is from Paul Abbott, The Mathematica Journal vol.8 Issue 1 (2001, Trick of the Trade, 
Maxwell Construction). Here we use the method with FindRoot, which is used by Abbott for the 
evaluation of Maxwell’s construction. There is no simple analytical solution to equation for the Maxwell 
construction. Fairly accurate initial guesses are required. These can be obtained from the plots of the 
unphysical van der Waals equation. Here we show our Mathematica program to discuss the van der 
Waals equation of state.  

Here we use the Mathematica (ContourPlot, ParametricPlot, Plot3D, ParametricPlot3D, and so on) 
for the calculations. Because of the nature of the nonlinearity in the van der Waals equation of state, the 
use of the Mathematica is essential to our understanding on the critical behavior of liquid-gas system 
around the critical point.  

Although we spent many years in understanding the nature of the van der Waals equation of state. 
unfortunately our understanding was not sufficient. Thanks to the Mathematica, finally we really 
understand how to calculate the exact values of thermodynamic parameters at fixed temperatures such as 
p1, v1, v2, v3, vm1, pm1, vm3, pm3 (see the definitions in the text) using the Mathematica. Using these 
parameters we will discuss various thermodynamic properties of the van der Waals equation of state. 
There have been so many books and papers since the appearance of the van der Waals equation. Almost 
all the universal properties of van der Waals equation have been discussed thoroughly. Although there is 
nothing new in this article, we present our results of calculations using Mathematica. 
 
2. Historical Background 

The proper elucidation of the nature of gas-liquid equilibrium and the so-called critical point was 
gained by a series of experiments carried out by Thomas Andrews at Queen’s College, Belfast, between 
1861 and 1869. He chose carbon dioxide (CO2) for his work. It is gaseous at normal temperatures and 
the pressure required for studying the whole range where gas and liquid are in equilibrium are relatively 
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low. He determined, at different temperatures, the change in the volume of a given quantity of the 
substance when the pressure varied. The resultant curves are called isotherms because they each refer to 
one and the same temperature.  

The flat part of the isotherm reveals an important fact. Since the pressure remains constant, while 
more and more of the gas condenses into liquid, the pressure of the gas in contact with the liquid must 
be always the same, quite independent of whether a small or a large fraction if the volume is occupied 
by liquid. It also is apparent from Andrew’s diagram that this equilibrium pressure rises as we go to 
higher isotherms, i.e., as the temperature is increased. Moreover, we also notice that the flat part 
becomes shorter until a singularly important isotherm is reached which has no true flat portion at all but 
just one point (the so-called the critical point Tc) at which the direction of the curve changes its sign. The 
higher isotherms are now all ascending smoothly over the whole range of pressure and volume, and if 
one goes to still higher temperatures, the isotherms attain more and more the shape of true rectangular 
hyperbola. This is then the region in which Boyle’s law is valid. 
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Fig.3 Isotherms of a real gas (CO2) as measured by Andrews. They approximate Boyle’s law 

only at high temperatures. At low temperatures they are more complicated and below the 
critical point there is a region of liquefaction. The critical temperature of CO2 is 31 °C.  
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Fig.4 Isotherms of a real gas (H2CO3) as measured by Andrews. 
 

Andrew’s result not only yielded a wealth of new facts but they also presented a beautifully 
complete and satisfying picture of the relation between the gaseous and liquid states of aggregation. 
Andrew’s careful measurements opened the way to an understanding of the strong forces of cohesion 
which are vested in each atom but never reach the dimension of ordinary macroscopic observation. It 
should also be noted that, while Andrew’s observations were confined to carbon dioxide, the pattern is 
quite generally valid.  

We have used Andrew’s diagram not only for its historical interest but also because it illustrates in a 
clear and convincing manner the significance and the boundaries of the liquid state. Van der Waals used 
Andrews’s terminology, and even adopted the title of Andrews’s Bakerian lecture, without reference, almost 
verbatim as the title of his doctoral thesis of Van der Waals developed his equation of state independently, 
but he did compare it with Andrews’s results. 

Only four years elapsed before van der Waals used newly developing ideas on the kinetic theory of 
gases to give a plausible theoretical explanation of Andrew’s experimental data. van der Waals assume 
that gas is made up of molecules with a hard core and a long-range mutual attraction. The range of the 
attractive forces was assumed to be long compared with the mean free path, and they give rise to a 
negative internal pressure.  
 

2int v

a
P ernal  , 

 
where NVv /  is the volume per molecule. For the hard core he made the simplest assumption that the 
available volume is reduced from v to v-b. Hence the equation he put forward was 
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The new equation, which instead of the old TPV / constant now has, when plotted, a peculiar wiggly 
shape. In this wiggly region van der Waal’s equation has for any given pressure three solutions for the 
volume. A straight line, joining any of these three solutions will then result in a curve which very closely 
resembles the flat portion of the Andrew’s isotherms. It is no doubt that in its broad concepts the van der 
Waals’ approach was correct. The importance of this equation was quickly recognized by Maxwell who 
reviewed the thesis in Nature in 1874, and in a lecture to Chemical Society in 1875. It was in this lecture 
that Maxwell put forward his famous “equal-area construction, which completes the van der Waals 
treatment of liquid-gas equilibrium. The equal-area rule (Maxwell construction) can be expressed as 
 


G

V

V

V

lgV PdVVVP )( , 

 
where PV is the vapor pressure (flat portion of the curve), Vl is the volume of the pure liquid phase on the 
diagram, and Vg is the volume of the pure gas phase. The sum of these two volumes will equal the total 
volume V. 

Thanks to such pioneering works, we now understand the essential nature of liquid phase and gas 
phase. A flat portion for the low temperature phase, corresponds to the region where the liquid 
condenses from the gas. Following any of these isotherms from large to small volume, i.e., starting on 
the right-hand side, we encounter the rise and then a kink where the level portion starts. Here the very 
first droplets of liquid appear. When now the volume is further decreased, more and more of the gas 
turns into liquid until, at the end of the level stretch, there is no gas left at all. From now on any further 
increase in pressure hardly changes the volume at all, showing that the liquid phase is highly 
incompressible. 

Much more detail of the historical background on the van der Waals equation of state can be learned 
from the following books. 
 
J.C. Maxwell, The Scientific Papers of James Clerk Maxwell vol.II, van der Waals on the Continuity of 

the Gaseous and Liquid States (Dover Edition). ). p.424 - 426. 
J.S. Rowlinson and F.L. Swinton, Liquids and Liquid Mixtures, 3rd edition (Butterworth Scientific, 

1982). 
C. Domb, The Critical Point: A historical introduction to the modern theory of critical phenomena 

(Taylor & Francis, 1996). p.39 - 74. 
J.L. Sengers, How fluids in mix Discoveries by the School of Van der Waals and Kamerlingh Onnes 

(Royal Netherlands Academy of Arts and Sciences, 2002). 
R. Flood, M. McCartney and A. Whitaker, James Clerk Maxwell: Perspectives on his Life and Work 

(Oxford, 2014). Chapter 8, J.S. Rowlinson, Maxwell and the theory of Liquids. 
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3. Origin for the van der Waals equation of state 
van der Waals realized that two main factors were to be added to the ideal gas equation: the effect of 

molecular attraction and the effect of molecular size. The intermolecular forces would add a correction 
to the ideal gas pressure, whereas the molecular size would decrease the effective volume. In the case of 
the ideal gas there is no intermolecular attraction. The intermolecular attraction decreases the pressure 

from its ideal value. If realP  is the pressure of a real gas and idealP  is the corresponding pressure of the 

ideal gas, i.e. the pressure in the absence of intermolecular forces, then  
 

pPP realideal  , 

 
where p  is the correction. Since the pressure is proportional to the number density ( )/VN  (as can be 

seen from the ideal gas equation), p  should be proportional to ( )/VN ). In addition, the total force on 

each molecule close to the wall of the container is also proportional to the number density ( )/VN ); 

hence p  should be proportional to two factors of ( )/VN ) so that one may write: 

 

2)(
V

N
ap  . 

 
The correction to the volume due to the molecular size, i.e., the" excluded volume," is simply 
proportional to the number of molecules. Hence 
 

NbVVideal  , 

 
in which b is the correction for one mole. Substituting these values in the ideal gas equation 
 

TNkVP Bidealideal  . 

 
we obtain the van der Waals equation 
 

TNkNbV
V

aN
P B ))((

2

2

. 
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Fig.5 van der Waals considered molecular interaction and molecular size to improve the ideal 

gas equation. (a) The pressure of a real gas is less than the ideal gas pressure because 
intermolecular attraction decreases the speed of the molecules approaching the wall. 

Therefore pPP idealreal  . (b) The volume available to molecules is less than the 

volume of the container due to the finite size of the molecules. This "excluded" volume 

depends on the total number of molecules. Therefore NbVVideal  . [D. Kondepudi 

and I. Prigogine, Modern Thermodynamics, p.18 Figure 1.4]. 
 
4. Derivation of van der Waals equation: Helmholtz free energy 

For ideal gas, the partition function is given by 
 

VnZ Q1 . 
 
so the free energy F is calculated as 
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where 
V

N
n  , and Qn  is the quantum concentration; 
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where m is a mass of atom. 
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with the constant  
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2/3)2(

h

mkB  . 

 
In summary the Helmholtz free energy is obtained as 
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The pressure P is obtained as 
 



15 
 

2
,, v

a

bv

Tk

v

f

V

F
P B

NTNT
























 , 

 
or more simply, 
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((van der Waals equation)) 

or 
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v  , the above van der Waals equation can be rewritten as 
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5. Law of the corresponding state 
 

0









Tv

P
, 0

2

2












T
v

P
. (1) 

 

From the condition, 0









Tv

P
, we get 

 

0
)(

2
23





bv

Tk

v

a B . (2) 

 

From the condition, 0
2

2












T
v

P
, we get 

 

0
)(

3
34






bv

Tk

v

a B . (3) 

 



16 
 

From Eqs.(1) - (3), we have 
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Here we define the dimensionless variables by  
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V
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c
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T
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and the dimensionless form of the van der Waals equation, 
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r tv
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p
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3
( 2    Law of corresponding state.

 
 
((Universality)) Law of corresponding state 

This equation is universal since it contains no parameters characteristic of an individual substance, 
and so it is equally valid for all. The variables of pr, vr, and tr is called the reduced variables. The 
thermodynamic properties of substances are the same in corresponding states, that is, states with a pair 
of equal reduced variables from the complete triplet of variables. In fact, the existence of such an 
equation implies that if two reduced variables are the same for a set of the systems, then the third 
reduced variable is also the same throughout the set. 
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((Visualization of the phase transition of van der Waals system by Mathematica)) 
The phase diagrams of pr vs vr and vr vs pr are shown below. It can be obtained by using the Maxwell 

construction for the van der Waals system (we use the Mathematica to get this. The method will be 
discussed later).  
 

 
 

Fig.6 The phase diagrams of pr vs vr fot rt =0.80 – 1.20. The horizontal straight line for tr<1 is 

the coexistence line between the liquid phase and the gas phase. 
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Fig.7 The vr vs pr phase diagram at fixed reduced temperatures (tr = 0.80 -1.20 with tr = 0.02). 
The vertical straight line for tr<1 is the coexistence line between the liquid phase and gas 
phase. 
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Fig.8 rr vp  / vs rv  phase diagram at fixed reduced temperatures (tr = 0.80 -1.20 with tr = 

0.02). 0/  rr vp  for 31 vvv   ( 1rt ). 

 

 
 

 
 
Fig.9 Typical examples for the Maxwell construction. The phase diagrams of pr vs vr fot tr = 

0.99 and 0.98. The area of closed path a-c-b-a is equal to that of the closed c-d-e-c. The 
path a-c-e is the coexistence line.  

 
6 Compressibility factor Z 

The compressibility factor Z is defined by 
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Z should be equal to 3/8 at the critical point (pr = 1, vr = 1, tr = 1) for the van der Waals systems. We 
make a plot of Z as a function of pr by using the ParametricPlot of Mathematica, where tr is changed as a 
parameter (tr = 0.7 – 2). When tr is much larger than 1, Z tends to 1 (it is independent of vr), as is 
expected from the Boyle’s law for the ideal gas (in the non-interacting limit). The deviation from the 
ideal gas behavior (the Boyl’s law) is clearly indicated from the compressibility factor Z as a function of vr. 
Note that there is a discontinuity in Z at the reduced pressure corresponding to the coexistence line. It is a 
useful thermodynamic property for modifying the ideal gas law (Boyle’s law) to account for the real gas 
behavior. 

 
 

 
 
Fig.10 Compressibility factor Z as a function of pr for the van der Waals gas. tr = 0.70 – 2.0. Z = 

1 for the ideal gas obeying the Boyle’s law.  
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((Mathematica)) 
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We make a ParametricPlot of the co-ordinate ),( Zpr , where tr is fixed as a parameter and vr is changed 

over the whole range of vr.  
 

 
 
Fig.11 Compressibility factor Z as a function of reduced pressure pr, where tr is changed as a 

parameter. The fact that the data for a wide variety of fluids fall on identical curves 
supports the law of corresponding states. [H.E. Stanley, Introductiom to Phase 
Transitions and Critical Phenomena, p.73] 
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((Mathematica)) 

 

Clear "Global` " ; p0 t , v :
3

v2

8
3

t

v 1
3

;

Z t , v :
3
8

p0 t, v v
t

;

f1 ParametricPlot

Evaluate Table p0 t, v , Z t, v ,

t, 1, 2, 0.1 , v, 0.34, 15 ,

PlotRange 0, 8 , 0.2, 1.5 ,

PlotStyle Table Hue 0.1 i , Thick , i, 0, 10 ,

AspectRatio 1 ;

f2

Graphics

Text Style "pr", Black, 12, Italic , 6, 0.25 ,

Text Style "Z", Black, 12, Italic ,

0.32, 1.4 ,

Text Style "tr 1", Black, 12, Italic ,

1.0, 0.3 ,

Text Style "1.2", Black, 12, Italic ,

2, 0.55 ,

Text Style "1.4", Black, 12, Italic ,

2.7, 0.7 ,

Text Style "1.6", Black, 12, Italic , 3.3, 0.79

, Text Style "1.8", Black, 12, Italic ,

4, 0.865 ,

Text Style "2.0", Black, 12, Italic ,

4.5, 0.925 ;

Show f1, f2
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7. Critical points and critical exponents 

To examine the critical behavior, we write 
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P
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T
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where , , and can be regarded as small. We obtain the universal equation 
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 (1) 

 

The term omitted from this expression are justified post hoc in fact, we can see that   , so Eq.(1) is 

indeed the lowest non-trivial order approximation to the equation of state near the critical point. 
 
((Mathematica)) 
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Critical papameter of the van der Waal’s equation
Pc, vc, and Tc

Clear"Global`";

P 
kB T

v  b


a

v2
;

eq1  DP, v  Simplify


kB T

b  v2


2 a

v3

eq2  DP, v, 2  FullSimplify


6 a

v4


2 kB T

b  v3

eq3  Solveeq1  0, eq2  0, v, T  Simplify

v  3 b, T 
8 a

27 b kB


Pc, vc, Tc  P, v, T . eq31
 a

27 b2
, 3 b,

8 a

27 b kB




25 
 

 
 

(a) Critical exponent  
We start with 
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Fig.12 Physical meaning of 41rp  at  = 0. 
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When 0 ,  
 

41rp  with 0 .  

 
which is nearly equal to the reduced pressure p1 for the coexistence line (the path a-c-e). Then we have 
 

0
2

3
6 3   , 

 
or 

0 ,    2 . 

 
where 0 . Then we have 
 

  23 ,    21 . 

 
The reduced pressures v1 (= vl) at the point a and v3 (= vg) at the point e, are obtained as 
 

  211 11v , 

 

 413 lg vvvv , 

 

lg vv   depends on (-). It reduces to zero when  0 . The critical exponent  is equal to 1/2. 

 

2

1
   (mean-field exponent).  
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Fig.13 The points a; ),( 11 pv , c; , ),( 12 pv , and e; ),( 13 pv , in the pr-vr plane. 411 p . 

  211 11v .   211 33v .  is negative.    is very small. 

 

(b) Critical exponent  and ’ 
The isothermal compressibility is defined by 
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For <0,  42  , 
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The isothermal compressibility T  diverges as 01rt  with a critical exponent 

 
1'  .  (mean-field exponent). 

 
In summary, we have 
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(c) Critical exponent for specific heat at constant volume 

The specific heat predicted by the van der Waals theory is 
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where 2/3 BV kc   is the non-interacting (high-temperature) limit or ideal gas. Thus we have the critical 

exponent, 
 

0 . 
 

Note that the slope of Vc  vs tr is finite as 1rt  from below, so that we have 0' . 

((Note)) This discussion is repeated later for the critical behavior of the specific heat. 
 

(d) Critical exponent  (critical isotherm) 
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at 1rt . We expand pr at tr=1 (T = Tc) in the vicinity of 1rv . 
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This is approximated by 
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in the region very close to the critical point, leading to the critical exponent (critical isotherm) 
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(e) Thermal expansion coefficient 

The thermal expansion coefficient is given by 
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Around the critical point, we have 
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So that it is strongly divergent like TK . 

 
(f) Mean-field exponent relation 

From the above discussion, we find that the following relation is valid, 
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which is the same as that predicted from the mean-field theory. We also have the relation predicted from 
the mean field theory of phase transition, 
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These results imply that the van der Waals theory is one of the mean field theories. Well above the 
critical temperature there exists the short range order due to the attractive interaction between particles. 
On approaching the critical temperature, short range grows gradually. At the critical temperature, a part 
of short range order changes into the long range order. Well below the critical temperature, the long 
range order extends over the entire system. 
 
8. Scaled thermodynamic potential 
(a) Scaled Helmholtz free energy f 

Using the reduced variables, the Helmholtz free energy is given by 
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(b) The law of the corresponding states 

The pressure is given by 
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The reduced pressure pr is given by 

 



32 
 

13

83
)

1327

8

9

1
(

27

1
222

2






r

r

rr

r

rc
r v

t

vv

t

vb

a

b

aP

P
p  

 

or 
 

13

83
2 


r

r

r

r v

t

v
p

. 
 
(c) Scaled internal energy u 

The internal energy is determined by standard thermodynamics, 
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(d) Scaled entropy s 

The entropy S can be similarly determined by standard thermodynamics 
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(e) Scaled Gibbs free energy g 

The Gibbs free energy G is given by 
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where s0 is the constant entropy. Note that the above equation gives g as a function of v and T. The 
natural variables for g are P and T,  
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We note that the Gibbs free energy can also be obtained by the following approach. 
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(f) Thermodynamics surface 

From the expression of u, the temperature T is calculated as 
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Thus u depends on v and s, 
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9. Mathematica program 

Method how to determine the values of characteristic reduced pressure and volume at a 
fixed reduced temperature 

 
The van der Waals equation is given by 

 

13

83
2 


r

r

r

r v

t

v
p , (1) 

 
(i) The local maximum point (the point d) and local minimum point (the point b) satisfies: 
 

0
)13(

246
23 







r

r

rr

r

v

t

vv

p
. (2) 

 
(ii) Maxwell’s construction: 
 

13111 ),(),( pvtpvtp rr  , (3) 

 



37 
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131311
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 . (4) 

 
(iii) v1 (a), v2 (c), and v3 (e) are the roots of  
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21 
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r

r

r

rrr v
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v
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Fig.14 The phase diagrams of pr vs vr fot rt =0.93. The area of closed path a-c-b-a is equal to 

that of the closed c-d-e-c. The path a-c-e is the coexistence line.  
 
For a fixed tr (= t1 <1), the locations of the points a and e can be determined from  
 

a: ),( 11 pv , c: ),( 12 pv , e: ),( 13 pv  

 

Clear "Global` " ; p0 t , v :
3

v2

8
3

t

v 1
3

;

Eq1 t , v1 , v3 : p0 t, v1 p0 t, v3 ;

Eq2 t , v1 , v3
3

v1
3

v3
8
3

t Log 1 3 v1 Log 1 3 v3

p0 t, v1 v3 v1 ;
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b: ),( 11 mm pv , d: ),( 33 mm pv . 

 
(a) Appropriate method to find boundary conditions for v1 and v3 

For a fixed reduced temperature tr, we determine the values of vm1 and vm3 from Eq.(2) using DSolve. 
The initial values v1’ for v1 and v3’ for v3 are obtained as follows. First calculate the value of v as 
average of vm1 and vm2 as 
 

)(
2

1
31 mm vvv  . 

 
The corresponding pressure is obtained as 
 

),( vtpp rr . 

 
Next we solve the equation 
 

),( rrr vtpp   

 

This equation has three roots, '1vv  , '3v , and v . Figure shows the pr vs vr curve at tr= 0.86.  

 

680031.01 mv , 68212.13 mv  

 
Then we have 
 

18107.1
2

31 


 mm vv
v ,

 

554593.0),(  vtpp rr . 

 
Using Eq.(1), we solve  
 

),( vtpp rr , 

 
and get the three solutions, 
 

559688.0'1 v , and 72774.2'3 v , 
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as well as the root ( 18107.1v ). The two outer ones (v1’, and v3’) are suitable boundary values. Note 
that these values are already close to the values which we are looking for; v1 = 0.561955 and v3 = 2.9545. 
 

 
 
Fig.15 How to get the boundary values. v1’ amd v3’ for finding the values of v1 and v3. 
 
(b) Subroutine program to determine the boundary values of v1 and v3. 
 

 
 
((Subroutine program to determine the values of v1m and v3m (local maximum and local 
minimum)) 

initial t ; t 1 :

Module v11, v31, v1, v2, v3, v, vi, eq11, eq12, eq21, eq22, t1 ,

t1 t;

eq11 D p0 t1, v , v Simplify;

eq12 NSolve eq11 0, v ;

v11 v . eq12 1 ; v31 v . eq12 2 ;

eq21 NSolve p0 t1, v p0 t1,
v11 v31

2
, v ;

eq22 Sort v . eq21 1 , v . eq21 2 , v . eq21 3 ,

1 2 & ;

vi eq22 1 , eq22 3
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(c) Maxwell’s construction 

Using the initial values for v1 and v3, we determine the final values of v1 and v3 by using FindRoot 
for two equations, 
 

),(),( 31 vtpvtp rr  , (3) 
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with 
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v
vtpp r . 

 
(d) Determination of v2 
 
For each t = t1 (<1), we get the required values, 
 

a: ),( 11 pv , 

b: ),( 11 mm pv , 

d: ),( 33 mm pv . 

e: ),( 13 pv  

 
We also need the value of v2 for pr =  p1 at the point c. Using the equation 
 

13

83
21 


v

t

v
p  

Deriv1 t ; t 1 : Module v, eq11, eq12, eq2, t1, N1, h1, k1 ,

t1 t;

eq11 D p0 t1, v , v Simplify;

eq12 NSolve eq11 0, v, Reals ;

N1 Length eq12 ;

h1 Table v . eq12 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;

k1 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3,

eq2 1 , eq2 2 , eq2 3 ; k1 2 , k1 3 ;
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Using Solve, we get the solution of this equation as v = v2, as well as v = v1 and v3. 
 

c: ),( 12 pv  

 
(e) Subroutine program to determine the value of v2 
 

 
 
(f) Subroutine program to determine the values of v1 and v3 at p1 based on the Maxwell 

construction 
 

 

FV2 t , p : Module v, g1, g2, t1, p1, N1, h1, k1, eq1, eq2 ,

t1 t;

p1 p;

g1 p0 t1, v ;

g2 g1 p1;

eq1 NSolve g2, v, Reals ;

N1 Length eq1 ;

h1 Table v . eq1 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;

k1 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3,

eq2 1 , eq2 2 , eq2 3 ;

LG1 t ; t 1 :

Module t1, eq1, v1, v2, v3, v11, v13, v21, v22, v23,

vm21, pm21, vm23, pm23, p1, p21 , t1 t;

v11, v13 initial t1 ;

eq1 FindRoot Evaluate Eq1 t, v1, v3 , Eq2 t, v1, v3 ,

v1, v11 , v3, v13 ;

v21 v1 . eq1 1 ;

v23 v3 . eq1 2 ;

p21 p0 t1, v21 ;

vm21 Deriv1 t1 1 ;

vm23 Deriv1 t1 2 ;

v22 FV2 t1, p21 2 ;

pm21 p0 t1, vm21 ;

pm23 p0 t1, vm23 ;

t1, p21, v21, pm21, vm21, v22, pm23, vm23, v23 ;
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((pr-vs vr curve for t<1)) 

pr can be expressed by 
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with the co-existence line (p1) between v1 and v3. 
 
(g) Subroutine program for the pr-vr phase with the coexistence line 
 

 
 

 
 

P3D t , v : Module t1, p1, v1, vm1, pm1, v2, vm3, pm3, v3, h1 ,

t1 t;

a 10;

t1, p1, v1, pm1, vm1, v2, pm3, vm3, v3 LG1 t1 ;

h1 x : Which 0.5 x v1, p0 t1, x , v1 x v3, p1,

x v3, p0 t1, x ;

v, h1 v , a 1 t1 ; P3U t , v : Module t1, h1 , t1 t;

h1 x : p0 t1, x ;

v, h1 v , a 1 t1 ;
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Fig.16 Maxwell’s construction. The phase diagram of pr vs vr at tr = 0.88. 
 

 
 

h11 ParametricPlot3D

Evaluate Table P3D t, v , t, 0.85, 0.999, 0.0025 ,

v, 0.35, 3 ,

PlotStyle Table Hue 0.01 i , Thick , i, 0, 70 ,

AspectRatio Full ; a 10;

h12

Graphics3D Thick, Red, Line 1 3, 0.5, 1.5 , 3, 0.5, 1.5 ,

Blue, Line 1 3, 0.5, 1.5 , 1 3, 1.2, 1.5 , Black,

Line 1 3, 0.5, 0 , 1 3, 0.5, 1.5 ,

Text Style "K", Black, 15 , 1, 1, 0 ,

Text Style "pr", Black, 15 , 0.4, 1.1, 1.5 ,

Text Style "vr", Black, 15 , 1.7, 0.45, 1.5 ,

Text Style "a 1 tr ", Black, 15 , 0.4, 1.2, 0.9 ;

h21 ParametricPlot3D

Evaluate Table P3U t, v , t, 1, 2, 0.0025 , v, 0.35, 3 ,

PlotStyle Table Hue 0.1 i , Thick , i, 0, 70 ,

AspectRatio Full ;

Show h11, h12, h21, PlotRange 1 3, 3 , 0.5, 1.2 , 0.2, 1.5
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Clear "Global` " ; p0 t , v :
3

v 2

8

3
t

v 1

3

;

Eq1 t , v1 , v3 : p0 t, v1 p0 t, v3 ;

Eq2 t , v1 , v3
3

v1

3

v3

8

3
t Log 1 3 v1 Log 1 3 v3

p0 t, v1 v3 v1 ;

initial t ; t 1 :

Module v1m, v2m, v3m, v1, v2, v3, v, vi, eq11, eq12, eq21, eq22, t1 ,

t1 t;

eq11 D p0 t1, v , v Simplify;
eq12 NSolve eq11 0, v ;

v1m v . eq12 1 ; v3m v . eq12 2 ;

eq21 NSolve p0 t1, v p0 t1,
v1m v3m

2
, v ;

eq22 Sort v . eq21 1 , v . eq21 2 , v . eq21 3 , 1 2 & ;

vi eq22 1 , eq22 3

FV2 t , p : Module g1, g2, t1, p1, N1, h1, k1, k2, eq1, eq2 , t1 t;
p1 p;

g1 p0 t1, v ;
g2 g1 p1;

eq1 NSolve g2, v, Reals ;
N1 Length eq1 ;

h1 Table v . eq1 i , i, 1, N1 ;
eq2 Sort h1, 1 2 & ;

k2 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,
eq2 1 , eq2 1 , eq2 2 , N1 3, eq2 1 , eq2 2 , eq2 3 ;

Deriv1 t : Module v, eq11, eq12, eq2, t1, N1, h1, k1 , t1 t;

eq11 D p0 t1, v , v Simplify;
eq12 NSolve eq11 0, v, Reals ;

N1 Length eq12 ;
h1 Table v . eq12 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;
k1 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3, eq2 1 , eq2 2 , eq2 3 ;
k1 2 , k1 3 ;
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LG1 t ; t 1 :
Module t1, eq1, v1, v2, v3, v11, v13, v21, v22, v23, vm21, pm21,

vm23, pm23, p1, p21 , t1 t;
v11, v13 initial t1 ;

eq1 FindRoot Evaluate Eq1 t, v1, v3 , Eq2 t, v1, v3 ,
v1, v11 , v3, v13 ;

v21 v1 . eq1 1 ;
v23 v3 . eq1 2 ;
p21 p0 t1, v21 ;

vm21 Deriv1 t1 1 ;
vm23 Deriv1 t1 2 ;
v22 FV2 t1, p21 2 ;
pm21 p0 t1, vm21 ;

pm23 p0 t1, vm23 ;
t1, p21, v21, pm21, vm21, v22, pm23, vm23, v23 ;

MAX1 t :

Module , , t1, p1, v1, vm1, pm1, v2, vm3, pm3, v3, f11, f12,

g11, h11, J1 , t1 t;

t1, p1, v1, pm1, vm1, v2, pm3, vm3, v3 LG1 t1 ;

0.01, 0.017 ;

0.25, 0 ;

f11 Graphics Red, Thick, Line v1, p1 , v3, p1 ;

f12 Plot Evaluate p0 t1, v , v, 0.35, 4 , PlotStyle Blue, Thick ;

g11 Graphics Text Style "a", Italic, Black, 12 , v1, p1 ,

Text Style "b", Italic, Black, 12 , vm1, pm1 ,

Text Style "c", Italic, Black, 12 , v2, p1 ,

Text Style "d", Italic, Black, 12 , vm3, pm3 ,

Text Style "e", Italic, Black, 12 , v3, p1 ,

Text Style "tr " ToString t1 , Italic, Black, 12 , v3, p1 ;

h11

RegionPlot Evaluate v1 x v2 && p0 t1, x y p1,

v2 x v3 && p1 y p0 t1, x , x, 0.35, 4 , y, 0, 1 ,

PlotPoints 100,

PlotStyle Opacity 0.2 , Green , Opacity 0.2 , Green ,

PlotRange All ;

J1 Show f12, f11, g11, h11 ;
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S1 Show MAX1 0.98 , MAX1 0.96 , MAX1 0.93 , MAX1 0.90 , MAX1 0.87 ,

PlotRange All ;

f1 Table LG1 t , t, 0.5, 0.999, 0.001 ;

f1

TableForm ,

TableHeadings

None, "tr", "p1", "v1", "pm1", "vm1", "pm1", "v2", "pm3", "vm3",

"v3" &;

N1 Length f1 ;

g1 Table f1 i, 3 , f1 i, 2 , i, 1, N1 ;

g2 Table f1 i, 5 , f1 i, 4 , i, 1, N1 ;

g3 Table f1 i, 8 , f1 i, 7 , i, 1, N1 ;

g4 Table f1 i, 9 , f1 i, 2 , i, 1, N1 ;

J1 ListPlot g1, g2, g3, g4 , Joined True,

PlotStyle Table Hue 0.15 i , Thick , i, 0, 5 ,

PlotRange 0, 4 , 0.4, 1 ;

J2 Graphics Text Style "vr", Italic, Black, 12 , 3, 0.40 ,

Text Style "pr", Italic, Black, 12 , 0.3, 1.2 , Black, Thick,

Arrowheads 0.02 , Arrow 0, 0.5 , 4, 0.5 ,

Arrow 0.5, 0.1 , 0.5, 1.3 ;

Show S1, J1, J2, PlotRange 0, 4 , 0.1, 1.3
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_________________________________________________________________________ 
10. Maxwell construction using the Gibbs free energy 
(a) Maxwell construction for the vr-pr phase diagram 

Unfortunately we cannot conveniently put G into an analytic form as a function of P instead of V. 
We need 
 

),(),,( PTNNPTG  . 

 

It is  that determines the phase co-existence relation; gl   . At any T, the lowest branch represents 

the stable phase. The point a (vr = v1 = vl) and the point e (vr = v3= vg) are on the coexistence line 
denoted by the path a-c-e. 
 

J2 Graphics Text Style "K", Black, 12 , 1, 1.03 ,

Text Style "A", Black, 12 , 0.75, 0.55 ,

Text Style "B", Black, 12 , 1.9, 0.55 ,

Text Style "Liquid", Black, 12 , 0.65, 0.85 ,

Text Style "Gas", Black, 12 , 2.5, 0.68 ,

Text Style "vr", Italic, Black, 12 , 3.2, 0.55 ,

Text Style "pr", Italic, Black, 12 , 0.50, 1.2 , Black, Thick,

Arrowheads 0.02 , Arrow 0, 0.5 , 4, 0.5 ,

Arrow 0.5, 0.1 , 0.5, 1.3 , PointSize 0.010 , Point 1, 1 ;

Show MAX1 0.90 , J1, J2
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Fig.17 The vr vs pr phase diagram with a fixed reduced temperature tr (in this case tr = 0.96). The 

area a-b-c-a is equal to the area e-d-c-e. (Maxwell construction) 
 
The reduced volumes v1 and v3 are determined by the condition that 
 

),(),( rrgrrl ptpt   , 

 
along the horizontal line between v1 and v3. This will occur if the shaded area below the line is equal to 
the shaded area above the line. 
 

dNVdPSdTdG  . 

 
For N = const. and T = constant, 
 

rrdpvdg  , 

 
for the scaled Gibbs free energy, and 
 

 rrlg dpvgg . 

 
The integral is just the sum of the shaded area (Maxwell construction). 
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(b) Maxwell construction for the pr vs vr phase diagram 
 

 
 
Fig.18 The phase diagram of vr vs pr at tr = 0.96. 
 

At 1ttr  , 

 


p

p

rrrarr

a

dptpvptgpttg ),(),(),( 111 , 

 

We assume that epp 0  (the pressure at the point e). Then we have 

 

 
cde

rrr

abc

rrraer dptpvdptpvptgpttg ),(),(),(),( 1111 , 

 

Since ),(),( 11 ea ptgptg  , we have 

 

0),(),( 11  
cde

rrr

abc

rrr dptpvdptpv , 

 



51 
 

or 
 

 
bc

rrr

ab

rrr

dc

rrr

ed

rrr dptpvdptpvdptpvdptpv ),(),(),(),( 1111 . 

 
We note that 
 

0),( 1 
ed

rrr dptpv ,   
cd

rrr

dc

rrr dptpvdptpv ),(),( 11  

 
and 
 

0),( 1 
bc

rrr dptpv ,   
ba

rrr

ab

rrr dptpvdptpv ),(),( 11 . 

 
Then we have 
 

 
ba

rrr

bc

rrr

cd

rrr

ed

rrr dptpvdptpvdptpvdptpv ),(),(),(),( 1111 , 

 
which means that the area of the region e-d-c is the same as that of the region a-b-c. Note that 
 

1pppp eca  . 

 
It is only after the nominal (non-monotonic) isotherm has been truncated by this equal area construction 
that it represents a true physical isotherm.  

In summary, In the pr vs vr phase diagram,  
 

(i) The a-c-e- is the coexistence line ( 1ppr   and 1ttr  ) of the liquid phase and the gas phase. 

(ii) The area (a-b-c-a) is the same as the area (c-d-e-c) [Maxwell construction]. 
(iii) K is the critical point (pr = vr = tr = 1). 
(iv) The line KA and the line AB are the spinodal lines. 
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Fig.19 The phase diagram of pr vs vr at tr = 0.96. 
 
(c) Example: the area for the vr vs pr and the area for the pr vs vr for tr = 0.95 
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e
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Fig.20 pr vs vr curve at tr = 0.95. a: (v1, p1); b (v1m, p1m), c (v2, p1), d (v3m, p3m), e (v3, p1). 

Maxwell (equal-area) construction. The pressure p where two phase coexistence begins 
for tr = 0.95 is determined so that the areas above(c-e-d) and below the horizontal line (a-
b-c) are equal. In this case, p = 0.811879 (the pressures at a and e). 

 
tr = 0.95 p1 = 0.811879,  

v1= 0.684122,  v2 = 1.04247  v3 = 1.72707 
 

v3m = 1.33004,  p3m = 0.845837 (local maximum point) 
v1m = 0.786967, p1m = 0.74049  (local minimum point) 

 

313223.0),( 1 vtg r .  319189.0),( 3 mr vtg  

307563.0),( 1 mr vtg  

 
(d) The Gibbs energy at the critical point (K) 

Let us plot the pr-vr plane an isotherm of the liquid and gas. According to the thermodynamic 
inequality we have 
 

0










rtr

r

v

p
,  

 
which implies that pr is a decreasing function of vr. The segments a-b and d-e of the isotherms 
correspond to metastable super-heated liquid state and super-cooled vapor state, in which the 
thermodynamic inequality is still satisfied. 

A complete-equilibrium isothermal change of state between the points a and e corresponds to the 
horizontal segment a-c-e, on which separation into two phases occur. If we use the fact that the points a 

vr

pr

a

b

c

d

e

tr 0.95

1.0 1.5 2.0 2.5 3.0

0.7

0.8
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1.0



54 
 

and e have the same ordinate 1ppr  , it is clear that the two parts of the isotherm cannot pass 

continuously into each other: there must be a discontinuity between them. 
The isotherms terminates at b and e, where  

 

0










rtr

r

v

p
. 

 
Curve A-K-B on which the thermodynamic inequality is violated for a homogeneous body; boundary of 
a region in which the body can never exist in a homogeneous state. 

Near the critical point, the specific volumes of the liquid and gas are almost the same, denoting them 

by vr and vr +  vr, we can write the condition for equal pressure of the two phases 
 

),(),( rrrrrr tvvptvp  , 

 
or 
 

0...
2

1
2

2
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
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rr tr

r
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r

v

p
v

v

p  . 

 

Hence we see that, when 0rv  (at the critical point), 

 

0










rtr

r

v

p
. 

 
(e) Properties of the Gibbs free energy in the metastable state and unstable state 

To see the qualitative behavior of the Gibbs function ),( rr ptg  as a function of rp , we use the 

relation 
 

rt
r

r p

g
v )(




 , 

 
or 
 


p

p

rrrrr dpvptgptg
0

),(),( 0 . 
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On the ),( rr ptg  curve as a function of rp , rv  represents the slope, 
rt

rp

g
)(




: 

 

rt
r

r p

g
v )(




 . 

 
We take the van der Waals isotherm a-b-c-d-e in the pr-vr diagram. We make a plot of the corresponding 

),( rr ptg curve as function of rp   at tr = t1 (in this case, tr = 0.95). 

 

 
 
Fig.21 Gibbs free energy as a function of pr at tr = 0.95. 
 

(i) Around the point d (on the path d-e-g) where 0)(
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expressed by using the Taylor expansion, as 
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So that 
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 become infinite at the point b and ),( 1 rptg curve has another cusp. 

(iv) From l to b (on the path l-a-b). 
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 is negative, but 

becomes small as the point l is approached.  
 
In summary, the path d-c-b corresponds to unstable region and the paths e-d and b-a are metastable. 
 
(f) Numerical calculation 

We can make a plot of g vs pr where tr is fixed, using the ParametricPlot of the Mathematica. The 

scaled Gibbs free energy g and the reduced pressure rp  are given by 
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So we make a ParametricPlot of the co-ordinate ),( gpr  when tr is given as a fixed parameter and vr is 

continuously changed as a variable. The Mathematica which we use is as follows. 
 
((Mathematica)) 
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(i) tr = 0.99 

The pr dependence of the scaled Gibbs energy is shown below. We note that the scaled Gibbs energy 
is the same at the points a and e. The Gibbs energy along the path a-b (the metastable state), along the 
path b-c-d (the unstable state), and along the path d-e is higher than that along the path l (liquid)-a and 
along the path e-g (gas). This means that the coexistence line (a-c-e) is the equilibrium state. It is seen 
that the Gibbs free energy vs pr shows a thermodynamically invisible bow tie. 
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Fig.22 vr vs pr for tr = 0.99. The line a-c-e is the co-existence line between the gas and liquid 

phases. K: critical point. The lines A-K and B-K are spinodal lines. The path a-c-e is the 
co-existence line of the liquid and gas phases. 
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Fig.23 Scaled Gibbs free energy g vs pr for tr = 0.99. g is in the units of (a/b). The path b-c-d is 

unstable. p1 = 0.960479. pm1 = 0.955095 (point b). pm3 = 0.964369 (point d) 
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Fig.24 The phase diagram of pr vs vr for tr = 0.99. v1 = 0.830914 (point a). v3 = 1.24295 (point e). 

p1 = 0.960479. 
 
________________________________________________________________________ 
(ii) tr = 0.98 

 



62 
 

 
 
Fig.25 vr vs pr for tr = 0.98. The line a-c-e is the coexistence line. The path b-c-d is unstable. The 

path a-b and the path d-e is unstable. The area enclosed by a-b-c is the same as that by c-
d-e (Maxwell construction). p1 =0.921912. v1 = 0.775539. v3 = 1.3761. 
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Fig.26 Scaled Gibbs energy g (in the units of a/b) vs pr for tr = 0.98. The path b-c-d is unstable. 

The shape of the b-c-d is similar to spine (the spinodal decomposition). The path a-b and 
the path d-e are unstable. p1 = 0.921912. pm1 = 0.905756 (point b). pm3 = 0.932089 (point 
d). 
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Fig.27 pr vs vr for tr = 0.98. The line a-c-e is the coexistence line. The path b-c-d is unstable. The 
path a-b and the path d-e are metastable. The area enclosed by a-b-c-a is the same as that 
by c-d-e-c (Maxwell's construction). p1 =0.921912. v1 = 0.775539. v3 = 1.3761. 

 
__________________________________________________________________ 
(iii) tr = 0.97 
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Fig.28 Phase diagram of vr vs pr at tr = 0.97. 

 
 
Fig.29 Gibbs free energy as a function of pr at tr = 0.97. p1 = 0.884294. pm1 = 0.853279. pm3 = 

0.901849. 
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Fig.30 Phase diagram of pr vs vr at tr = 0.97. 
_______________________________________________________________________________ 
(iv) tr = 0.96 

 

 
 
Fig.31 Phase diagram of vr vs pr at tr = 0.96. 
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Fig.32 Gibbs free energy as a function of pr at tr = 0.96. p1 = 0.847619. pm1 = 0.798108. pm3 = 

0.873186. 
 

 
 
Fig.33 Phase diagram of pr vs vr at tr = 0.96. p1 = 0.847619. v1 = 0.708189. v3 = 1.61181. 
 
(g) Plot3D of the Gibbs free energy g(tr, pr) 
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We make a Plot3D of g(tr, pr) in the (tr, pr) plane by using the Mathematica. 
 

 
 
Fig.34 Gibbs surface for the van der Waals gas in the vicinity of the critical point. We use the 

Mathematica (ParametricPlot3D). 
 
As tr is raised and v3-v1 diminishes, the two branches L-a-b and d-e-G intersect more and more nearly 
tangentially. The cusped region becomes steadily smaller until at the critical temperature the curve 
degenerates into a single continuous curve. Just at the critical temperature the gradient of the curve, 

which is equal to vr, is everywhere continuous, but the curvature 
rtr
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 becomes momentarily infinite 

at the critical pressure, since at this point the van der Waals gas is infinitely compressible. Above the 
critical temperature, the curves for g are everywhere continuous in all their derivatives. Here we show 

the ParametricPlot3D for )},(),,(,{ rrrrr vtgvtpt  in the vicinity of the critical point.  

 
((Mathematica)) 
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(g) Proof of Maxwell construction by Enrico Fermi 

We find this proof in the book by E. Fermi (Thermodynamics). It seems that this proof is much 
simpler than the Maxwell construction based on the Gibbs free energy and Helmholtz free energy. The 
area of closed path a-b-c-a is equal to that of the closed path c-d-e-c. We show that the work done on the 
system W during a reversible isothermal cycle is equal to zero. We now consider the reversibly 
isothermal cycle a-b-c-d-e-c-a. According to the first law of thermodynamics 
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For a reversible cycle, we have 
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In this case, the cycle is isothermal. So we can remove 1/T from under the integral sign, 
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Then we have 
 

0 PdV . 

 
This integral consists of two parts, 
 

0  cdecabca
PdVPdV , 

 
or 
 

 
cedcabca
PdVPdV , (Maxwell construction), 

 
since 
 

 
cedccdec
PdVPdV , 

 
which is positive. 
 
11. Double-tangent construction based on Helmholtz free energy 

Maxwell construction based on the Gibbs free energy is equivalent to the double-tangent 
construction based on the Helmholtz free energy. Here we discuss the double-tangent construction using 
the concept of the Helmholtz free energy. 
(a) Double-tangent line (coexistence line) 

Using the relation 
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the Helmholtz free energy can be obtained as 
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The Helmholtz free energy is related to the Gibbs free energy as 
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According to the Maxwell construction from the Gibbs free energy, we have 
 

31 gg  , 

 

at the point a ( 1ppr  , 1vvr  ) and point e ( 1ppr  , 3vvr  ), where 

 

1111 vpfg  ,  at the point a, 

 

3133 vpfg  , at the point e. 

 

In the diagram of f vs rv  the point a is located at the co-ordinate (v1, f1), while the point e is located at 

the co-ordinate (v3, f3). Note that the point a and point b are on the coexistence line in the pr vs vr 
diagram for tr<1. The straight line (double-tangent line) connecting the points a and e can be given by 
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The reduced pressure p1 corresponds to a negative of the slope of the straight line (the double-tangent 
line) connecting the point a and the point e. We note that 
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fDT . 

 
We make a plot of the reduced Helmholtz free energy as a function of the reduced volume vr at fixed 

temperature (in this case tr = 0.85). The double-tangent line is denoted by the straight line connecting the 
points a and e. The tangential line at the point a coincides with that at the point e. Note that the 
Helmholtz free energy at fixed tr is higher than the corresponding double-tangent line between v1 and v3. 
This means that this double tangent line is the coexistence line between the points a and e.  
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Fig.35 The isothermal Helmholtz energy f as a function of the reduced volume. tr = 0.85. The 

Helmholtz free energy has two inflection points at the point b and the point d below the 
critical point. The double-tangent line (the straight line a-e) represents coexisting vapor 
and liquid phases. The Helmholtz free energy with double-tangent line (the path a-e) is 
lower than the metastable (the path a-b and the path d-e) and unstable part (the path b-c-
d) between v1 (the point a) and v3 (the point e); double-tangent construction. v1 = 0.55336. 
v3 = 3.12764. p1 = 0.504492. 
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(a) 

 

 
 

(b) 
 
Fig.36 (a) and (b) 

Tangential line (green line) of the Helmholtz free energy vs vr, corresponding to – pr at fixed 
reduced temperature tr (= 0.8, in this case). The double-tangent line (black line) is the co-

existence curve with 1ppr   between vr = v1 (the state a) and v3 (the state e). The tangential line 

at the point a, coincides with that at the point e. v1 = 0.517409. v2 = 1.20827. v3 = 4.17246. 
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Fig.37 ),( rr vtf  vs vr at each fixed reduced temperature tr (tr = 0.75, 0.80, 0.85, 0.90, and 0.95). 

The double-tangent lines are also denoted by the black straight lines connecting between 
the point a and the point e.  

 
(b) Pressure as a function of the reduced volume 

The reduced pressure is given by 
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using the Helmholtz free energy. The reduced pressure pr is plotted as a function of the reduced volume 
(tr = 0.85). Above the critical point, as vr increases, the Helmholtz free energy decreases, corresponding 
to the monotonic decrease in pr vs vr. This is a typical of any temperature above the critical point. Below 
the critical point, we see that the path l (liquid)-a and the path e-g (gas) in which the reduced pressure 
decreases monotonically as vr increases. These are joined by a straight line. The path a-e touching the 
path l-a at the point a and touching the path e-g at the point e. The three portions correspond to the 
liquid phase, to the gas phase, and to a two-phase liquid-gas system. This typically happens when tr<1. 
Note that the path a-b represents superheated liquid. The path d-e represent super-cooled vapor. We see 
that all states represented by these portions of curves are metastable.  
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Fig.38  
rtrr vfp  /  as a function of vr. tr = 0.85. The path a-c-e is the coexistence boundary. 

 
(c) Metastable state and unstable state 
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Fig.39  
rtrvf 22 /  as a function of vr. tr = 0.85.   0/ 22 

rtrvf  for the path b-c-d, indicating 

that the curve f vs vr is concave upwards (unstable).   0/ 22 
rtrvf  for the path a-b and 

path d-e, indicating that the curve is concave downwards (metastable). 
 
The Helmholtz free energy of the superheated liquid (the path a-b) or the supersaturated vapor (the path 
d-e) is greater than that for the double-tangent line. The portions curve a-b and d-e are in the metastable 
state. They have curvature concave upwards so that  
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because of the definition of mathematics, 
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We note that the path b-c-d has a curvature concave downwards. This would correspond to a positive 
value of 
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leading to unstable states. Such states are not realized. 

Since the tangent line )( rvf  maintains the same slope between v1 and v3, the pressure remains 

constant between v1 and v3: 
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In other words, the line connecting points on the rr vp   plot is horizontal and the two coexistence 

phases are in thermal equilibrium. For each temperature below tr = 1, the phase transformation occurs at 
a well-defined pressure p1, the so-called vapor pressure. Two stable branches g (gas)-e-d and b-a-l 
(liquid) correspond to different phases: the branch g-e-d (gas phase) and the branch b-a-l (liquid phase). 
The branch e-c-a is the co-existence line between the gas phase and liquid phase. The branch e-d is a 
metastable gas phase, while the branch b-a is a metastable liquid phase. 
 

(d) Difference DTfff   

Here we define as 
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where DTf  is given by 

 

)(),( 1
13

13
1 vv

vv

ff
fvtf rrrDT 




 , 

 

for the double-tangent line. Since 0/),( 22  rrrDT vvtf , it follows that 

 
2222 /),(/),( rrrrrr vvtfvvtf  . 

 
The plots of f  vs vr is shown for the range (v1<v<v3), where tr is changed as a parameter. We note that 

the difference f is equal to zero at vr = v1 and v3. It shows a peak at vr = v2. We show the deviation f

vs vr between v1 and v3 at tr = 0.95. The points a (vr = v1), b, c (vr = v2), d, and e (vr = v3), are shown in 

this figure. 0/ 22  rvf  for the path a-b (the superheated state) and the path d-e (the super-cooled 

state). 0/ 22  rvf  for the path b-c-d (unstable state). 
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Fig.42 (a), (b), and (c) The deviation f vs vr between v1 and v3 at tr = 0.95. The points a (vr = 

v1), b, c (vr = v2), d, and e (vr = v3), are shown in this figure. 0/ 22  rvf  for the path a-

b (the superheated state) and the path d-e (the super-cooled state). 0/ 22  rvf  for the 

path b-c-d (unstable state). 
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Fig.43 ),( 1vtf r , ),( 1mr vtf , ),( 2vtf r , ),( 3mr vtf , and ),( 3vtf r  as a function of tr. Note that v1, 

vm1, v2, vm3, and v3 are dependent on tr according to Maxwell construction or double-
tangent construction. 

 
(e) The lever rule for the Helmholtz free energy 

The straight line connecting the point a and the point e is given by 
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where 31 vvv  . This can be written as 
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or 
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corresponding to the lever rule for the reduce volume, where 
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3
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13

1
3 vv

vv




 , 

 
f can be written as 
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which is the straight line passing through the two points ),( 11 fv  and ),( 33 fv . We recognize this as the 

common tangent line. 
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and 
 

0











n

n

v

f
. 

 
(f) Summary 

According to the Maxwell relation 
 

rtr

rr
r v

vtf
p 













),(
, 

 
the Helmholtz free energy can be obtained as the area under the isotherm: 
 


isotherm

rrrr dvpvtf ),( . 

 
Note that v1 and v3 are defined by the double-tangent construction. At any point along the tangent, the 
Helmholtz free energy is a linear combination of those at a and e, and thus represent a mixture of the 

liquid and gas phases. Note that the value of ),( rr vtf  for 31 vvv r   is larger than that on the double 

tangent line, as is obvious from the graphical construction. Thus the phase-separated state is the 
equilibrium state. The states a and e are defined by the condition 
 

31
1 v

f

v

f
p








 ,  (equal pressure) 
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rr  ,  (Maxwell construction) 

 
or 
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For local stability at any point the curve ),( vTf  must always lie above its tangent, and for global 

stability this tangent must not cut the primitive ),( vTf  curve at any other point. If it does, the substance 

will split into a mixture of two phases with values of volume v1, v2 corresponding to the two points of 
contact of the tangent. The double-contact tangent corresponds to the co-existence of two phases in 
equilibrium.  
 
12. Critical behavior of v1 and v3 around the critical point 

We make a plot of the values of characteristic reduced volumes (v1, vm1, vm3, and v3) as a function of 
tr for tr≤1.  
 

 
 
Fig.44 tr vs v1, tr vs vm1, tr vs vm3, and tr vs v 3 with v1 and v3 lines (bimodal lines) and vm1 and vm3 lines 

(spinodal lines). 
 

(a) The least squares fitting of 1)(
2

1
31  vvv  vs    

(i) The result of 1)(
2

1
31  vvv  vs    (for 010.00   ) is best fitted by a polynomial 

given by 
 

432
31 5431.418942.1913377.96.31)(

2

1   vvv . 
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Fig.45 1)(
2

1
31  vvv  vs    (for 010.00   ). 

 

(ii) The result of 1)(
2

1
31  vvv  vs    (for 001.00   ) is best fitted by a straight line 

given by 
 

64535.31)(
2

1
31  vvv , 

 

 
 

Fig.46 1)(
2

1
31  vvv  vs    (for 001.00   ). 
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(b) The least squares fitting of )(
2

1
13 vvv   vs    

(i) The result of )(
2

1
13 vvv   vs    (for 010.00   ) is best fitted by a polynomial given 

by 
 

2/52/32/1
13 174.1487746.5000.2)(

2

1   vvv  

 

 
 

Fig.47 )(
2

1
13 vvv   vs    (for 010.00   ) 

 

(i) The result of )(
2

1
13 vvv   vs    (for 001.00   ) is best fitted by a polynomial given 

by 
 

501368.0
13 02437.2)(

2

1  vvv  
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Fig.48 )(
2

1
13 vvv   vs    (for 001.00   ). 

 
13. Lever rule for the reduced volume in the coexistence line 

At the point e the substance is entirely in the gas phase with volume v1; at the point a, it is entirely in 
the liquid phase with volume v1. At any point on the line a-c-e (the coexistence line), the reduced 
volume can be described by 
 

3311 vvv   , 

 

using the lever rule, where 1 is the fraction of the liquid phase and 3 is the fraction of the gas phase, 
 

131  . 

 
Then we have 
 

13

3
1 vv

vv




 ,  
13

1
3 vv

vv




 . 

 

For 1vv  , 11   and 03    (the pure liquid phase). 

For 3vv  , 01   and 13  . (the pure gas phase). 
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Fig.49 Lever rule (tr = 0.85 in this case). The reduced volume v on the coexistence line between 

v1 and v3, 3311 vvv   . 1 is the fraction of the liquid phase and 3 is the fraction of the 

gas phase. 
 
14. van der Waals equation with reduced density 
(a) Law of the corresponding states 

We consider the law of the corresponding states with the reduced density defined by  
 

N

V
v 


1

.  

 
We start with the law of corresponding state, 
 

3

1
1

3

83
2




r

r

r

r

v
t

v
p . 

 
We introduce a reduced density variable defined by 
 

r
r v

1
 . 

 
Then we have 
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r

rr
rr

t
p







3

8
3 2 . 

 
(b) Maxwell construction 

On the co-existence curve, we have 
 

31 pppr    at   1ttr , 

 
where 
 

1
1

1

v
 ,  

3
3

1

v
 , 

 
with 
 

31 1   . 

 

From the condition 311 ppp  , or, 

 

2

22
2

1

12
1 3

8
3

3

8
3













tt
pr , 

 
we get the expression of t as 
 

))(3)(3(
8

1
1 3131  t . 

 
Using this t, we get 
 

)3( 31311  p . 

 
The Maxwell’s construction can be expressed by 
 

21 II  , 

 
where I1 and I2 are the area of the region (a-b-c-d-e) and the area of the region (a-c-e) of the co-
existence line, 
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Then we have 
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
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or 
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31313131 
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
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
  

 
Suppose that 
 

11 1  , 33 1   

 

where 10 1   and 10 3  . We substitute these forms into the Maxwell’s construction, and 

expand each side in powers of 1  and 3 . The coefficients up to the third-order in the left-hand side is 

zero. The coefficient of the fourth order in the left-hand side is given by 
 

3
13

3
31 4

3

4

3
 , 

 
which is equal to zero. Thus we have 
 

 13 , 

 
leading to the symmetry of the van der Waals coexistence line near the critical point.  
 

(c) Critical behavior for the difference )( 31    as 1rt  along the coexistence curve. 
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

 t

 

 

We then let  31 . We get 

 

2

4

1
1  t  

 
or 
 

2/12/1 2)(2    

 

We define the quantity  2)( 3131   as the order parameter of the gas-liquid critical point. 

The critical exponent is 
2

1
 , a manifestation of the mean-field nature of the van der Waals theory. 

 

 
 

Fig.50  2)( 3131   as a function of rtt  1 . 

 
The result of the least squares fitting: 
 

3 1
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  AAgasliquid  )(31 , 

 
for tr = 0.995 – 1. The least squares fit of the data yields 
 

A = 3.983 and  = 0.4994, 
 

which is in good agreement with the mean field exponent ( = 1/2). 
 

 
 

Fig.51 1 (liquid) vs tr and 3 (gas) vs tr for t 1rt . The shaded portion represents a coexistence 

region. 
 
((Mathematica)) 
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__________________________________________________________________________ 
(d) Phase diagram of pr vs reduced density  
 

Clear "Global` " ; p0
8 t x
3 x

3 x2 ; p01 p0 . x x1;

p03 p0 . x x3;

seq1 Solve p01 p03, t

t
1
8

3 x1 3 x3 x1 x3

p011 p01 . seq1 1 FullSimplify

x1 x3 3 x1 x3

eq1

Integrate
p0

x2
, x, x3, x1 , GenerateConditions False

Simplify; eq11 eq1 . seq1 1 ;

eq2
p011
x1 x3

x1 x3 eq11 FullSimplify

rule1 x1 1 d1, x3 1 d3 ;

eq3 eq2 . rule1 Series , d1, 0, 3 , d3, 0, 3 &

FullSimplify

O d3 4 3 d33

4
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3 d33
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3 d32
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Coefficient eq3, d33 d1, d13 d3

3
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,
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Fig.52 Pressure vs density at fixed temperature for carbon dioxide (CO2). 

http://www.warpig.com/paintball/technical/gasses/co2pv.gif 
 

 
 

Fig.53 rp  vs rr v/1  phase diagram where tr is fixed as tr = 0.87, 0.90, 0.93, 0.96, and 0.98. 

 
In the co-ordinates (tr – vr), when there is a critical point, the equilibrium diagram appears as shown in 
this Fig. As the rediuced temperature tr approaches its critical value tr = 1, the reduced volumes of the 
liquid phase and gas phase in equilibrium becomes closer, and at the critical point, these phases coincide.  

For the liquid-vapor transition, as the critical temperature was approached from below (T<Tc), the theory 
predicted that the order parameter is expressed by 
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 )1(31 rt , 

 

with  = 1/2. The average )(
2

1
31    is denoted by the blue line (so called the rectilinear diameter: locus of 

the mid-point). It is seen to trace the straight line. 
 

 
 
Fig.54 tr vs 1, tr vs m1, t vs m3, and tr vs 3. The average 2/)( 31    is denoted by the blue line (so 

called the rectilinear diameter). 
 

3 m3 m1 1
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Fig.55 Reduced densities of co-existing liquid and gas phases. (E.A. Guggenheim, Thermodynamics). 

The mean reduced density 2/)( 31   is seen to trace the straight line shown in dotted in this 

diagram. 
 
(e) Critical exponent   

The isothermal compressibility is defined by 
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using the reduced density where 
 

r
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a
Pc 27
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Using the relation 
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we get 
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Then ),1( rr tK   is obtained as 
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6

1
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leading to the critical exponent 1 ; 
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We make a plot of ),( rr tK   vs pr at constant reduced temperature tr (tr>1), where vr is changed as a 

parameter. 
 
((Mathematica)) 
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Fig. ),( rrcT tKPK   as a function of pr for tr≥1.  

 
15. Specific heat 
(a) Specific heat at constant volume; cv 

The internal energy is given by 
 

Tk
v

a
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The specific heat at constant volume is defined by 
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which is the same as that for the ideal gas with TNkPV B . 

 

(b) Specific heat at constant pressure, Pc  
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To determine 




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on the critical isobar ( = 0), we must solve  
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This is strongly divergent. 
 
(c) The difference between CP and CV 

The difference between CP and CV can be expressed by 
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Using the isothermal compressibility 
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A quantitative calculation from the van der Waal’s equation is straightforward.  
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(d) Specific heat: critical isochore ( 0 ) 

Using the lever rule, the reduced volume rv  (= 1 + ) in the co-existence line is given by 
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where  is the fraction of the gas phase, 11 1 v  and 33 1 v . Then we have 
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The internal energy for T>Tc is given by 
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We show the specific heat cv as a function of t around rt  = 1. The specific heat undergoes a jump 

discontinuity of 4.5 kB. 
 

 
 
Fig.57 Specific heat along the critical isochore ( 0 ). 
 
((Critical behavior))  Specific heat 

The specific heat predicted by the van der Waals theory is 
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is the non-interacting (high-temperature) limit or ideal gas. Thus we have the critical exponent 
 

0 . 
 

Note that the slope of Vc  vs tr is finite as 1rt  from below, so that we have 0' . 

 
16. Adiabatic (   ) 

Around the critical point, the entropy is constant; 
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Near the critical point we have 
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_________________________________________________________________________ 
17. Isothermal compressibility along the coexistence boundary 
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On the Any attempt to compress the substance at constant  results in a decrease in volume with no 
change in pressure on the coexistence boundary 
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TK  diverges on approaching the critical point. 

 
18. Adiabatic behavior 
(a) Adiabatic compressibility 
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The pressure P is expressed by 
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(b) Adiabatic expansion 
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Then we have 
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______________________________________________________________________ 
19. Super-heated state and super-cooled state 

Here we show the phase diagram of vr vs tr and tr vs vr, where tr is fixed. In the diagram of vr vs tr, the 
vertical line (the path a-c-e) is the coexistence line in thermal equilibrium  

 
 
Fig.58 Phase diagram of vr vs tr where pr is changed as a parameter. The bimodal lines are 

denoted by red and blue lines. The spinodal lines are denoted by yellow and light blue 
lines.  
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Fig.59 Phase diagram of vr vs tr with pr = 0.80. The super-heated state (a→b) and the super-

cooled state (e→d), and the coexistence line are shown. The binodal lines are denoted by 
the red and blue lines. The spinodal lines are denoted by yellow (A-K) and light blue 
lines (B-K). The coexistence line (equilibrium liquid and gas phases) is denoted by the 
vertical red line (a-c-e). 

 
In the viewpoint of experiments, the thermal equilibrium is kept in the system for the sufficiently 

slow cooling, leading to the transition along the path Gas-g-e-c-a-l-liquid) including the coexistence line 
(path e-c-a). On the contrary, the rapid cooling (quenching) of the system from sufficiently high 
temperature side (the gas phase) promotes the super-cooled state (the metastable state, the path e-d). In 
this case, the system follows the path Gas-g-e-d. When a liquid first nucleates as small droplet on such a 
cooling, the surface to volume ratio is large, and the surface tension (surface energy) tends to prevent the 
liquid droplets from forming the bulk liquid phase. On further cooling below the temperature of the state 
d, there occurs the transition from the state d (metastable state) to the bulk liquid phase (the state l).  

The thermal equilibrium is kept in the system for the sufficiently slow heating, leading to the 
transition along the path Liquid-l-a-c-a-g-gas) including the coexistence line (path a-c-e). On the other 
hand, the rapid heating promotes the super-heated state (metastable states, the path a-b). The system 
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follows the path Liquid-l-a-b on the rapid increase of temperature. On further heating above the 
temperature of the state b, there occurs the transition from the state b (metastable state) to the bulk gas 
phase (the state g). 
 

 
 
Fig.60 Phase diagram of tr vs vr where pr is changed as a parameter. The super-heated state and 

the super-cooled state, and the coexistence line are shown for pr = 0.80. 
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Fig.61 Phase diagram of tr vs vr with pr = 0.80. The super-heated state and the super-cooled state, 

and the coexistence line are shown for pr = 0.80. The binodal lines are denoted by the red 
line and blue line. The spinodal lines are denoted by yellow (K-A) and light blue lines 
(K-B). The coexistence line (equilibrium liquid and gas phases) is denoted by the 
horizontal red line (path a-c-e). 

 
((Note)) Dynamics of First order phase transition (by Koch) 
nucleation in the metastable state, and spinodal decomposition in the unstable state 

The supersaturated vapor of a van der Waals system is a typical example of a metastable state. It 
may decay because of localized density fluctuations. These fluctuations must have a large amplitude and 
exceed a certain spatial extension. They are commonly called the critical droplets. The spontaneous 
formation of critical droplets is a typical example of a hetero-phase fluctuation. Localized liquid regions 
appear within the supersaturated vapor phase. These hetero-phase fluctuations are the origin of the finite 
lifetime of metastable states in equilibrium and non-equilibrium systems. 

On the other hand, even very small fluctuations are sufficient to initiate the decay of unstable states. 
A spatially homogeneous system within the spinodal region of its phase diagram decomposes because of 
infinitesimally small density fluctuations. This is the process of spinodal decomposition. Even though 
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they may be of infinitesimally small amplitude, these density fluctuation can intiate spinodal 
decomposition, provided they exceed a critical wavelength. This condition is connected with the 
increasing surface energy by forming a spatially inhomogeneous distribution. The surface energy has to 
be compensated by the energy gained by approaching the new equilibrium. The critical wavelength 
gives rise to the appearance of a characteristic precipitation pattern in the early stages of spinodal 
decomposition. 
 
20. Clapeyron equation (or Clausius-Clapeyron equation 

We make a plot of the reduced pressure p1 as a function of reduced temperature t1. The values of t1 
and p1 are listed in the APPENDIX. The critical point is at tr = 1 and pr = 1. The red line denotes the co-
existence boundary between the gas phase (lower p1) and the liquid phase (higher p1). 
 

 
 
Fig.62 Phase diagram of p1 vs t1, where p1 for each t1 is determined from the Maxwell 

construction. The values of p1 for each reduced temperature t1 are listed in the 
APPENDIX. 
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Fig.63 Phase diagram of p1 vs t1. The point A and the point B are in the liquid phase, while the 

point A’ and point B’ are in the gas phase. The critical line is denoted by the red line. 
 

Here we discuss the Clapeyron equation (or Clausius-Clapeyron) equation. The change of entropy 
between the liquid phase and the gas phase can be determined from this equation. To this end, we 
consider the four states; states A and A’ are coincident but corresponds to different phases, and states B 
and B’ are similar. 
 

'' ABAB PPPPdP  , '' ABAB TTTTdT  . 

 

The slope of the curve is 
dT

dP
. The phase equilibrium requires that 

 

'AA GG  , 'BB GG  . 

 
Thus we get 
 

'' BABA GGGG  . 

 
But 
 

VdPSdTGG BA  , 

 

dPVdTSGG BA ''''  . 
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Then we have 
 

dPVdTSVdPSdT ''  , 

 
or 
 

V

S

VV

SS

dT

dP









'

'
. 

 
The latent heat is given by STL  . Then we have  
 

VT

L

dT

dP


 .  (Clapeyron equation). 

 
21. The discontinuity of entropy on the coexistance line (the latent heat) 

Here we discuss the entropy of the system on the co-existence line between the gas phase and liquid 
phase in the P-V phase diagram with fixed temperature. The original discussions were given by A.B. 
Pippard (Elements of Classical Thermodynamics, p.53 Fig.10) and by H.B. Callen (Thermodynamics, 
p.157, Fig.9.8) 

We consider the Carnot cycle, consisting of the two isothermal processes and two adiabatic 
processes in the P-V phase diagram. W is the total work done on the system during the process. For 

convenience use sW  instead of W (= sW ). W is the work done on the system, while sW  is the work 

done by the system. 
 

LHs QQW   

 
 

 
 
Fig.64 Carnot cycle. 
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We have the relation 
 

H

H

L

L

T

Q

T

Q
  (Carnot cycle) 

 
The efficiency R is defined as 
 

H

L

H

LH

H

s
R T

T

Q

QQ

Q

W



 1  

 
It is dependent only on the temperatures TH and TL. The work Ws is equal to the area of the Carnot cycle. 
Then we have 
 

T

T

Q

A

Q

W

H

s 
  

 
where 
 

TTT LH  ,    TTH  ,   

 

AWs  ,    QQH   

 
In the T vs S diagram, the Carnot cycle is formed of the rectangle, consisting of the two isothermal 
processes and two adiabatic processes; 
 

STAWs   , STQ HH   ( STQ  ) 

 
Then we have 
 

T

T

Q

A 
  

 
The entropy is given by 
 

T

A
S


  . 
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Fig.65 Carnot cycle (P-V phase diagram), which consists of two isothermal processes and two 

adiabatic processes. 
 

 
 
Fig.66 Carnot cycle in the T-S plane, consisting of two isothermal processes and two adiabatic 

processes. 
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Fig.67 (a) (b) Carnot cycle for the van der Waals gas. The two neighboring isotherms of a liquid-gas 

co-existence. The path AD and path BC may not be the adiabatic path. This effect can be 
negligible since the temperature difference is very small. 

 
((A.B. Pippard)) The following discussion is made by Pippard Elements of Classical Thermodynamics. 

We shall now examine briefly a graphical method which is sometimes used to solve elementary 
thermodynamic problems. The substance (van der Waals gas) considered is imagined taken around a 
Carnot cycle between two neighboring temperatures T and TT  . If the area of the cycle in the 

indicator diagram is A and the heat absorbed at TTH  along the path A-B (isothermal process) is HQ , 

then the heat given out at TTTL  along the path C-D (isothermal process) is LQ . This process is a 

sort of Carnot cycle.  
 

L

L

H

H

T

Q

T

Q
 . 

 
The work done by the system is 
 

AQQW LHs   

 
which corresponds to the area ( A ) enclosed by the closed path (A-B-C-D-A). Then we have 
 

TT

AQ

T

Q







 ,  or 
T

T

Q

A 
 , 

 

where QQH  , AQQL  , TTH  , and TTTL  . 
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The Carnot cycle consists of two long isotherms AB and CD and two short adiabatic processes B-C and 
D-A. We suppose the variation from A to B to correspond to the evaporation at constant pressure P of 
unit mass of liquid, necessitating the absorption of heat equal to the latent heat per unit mass l. To find 

the area of the cycle we note that the length AB is lg VVVV  13  the difference in volume between 

vapor and liquid, while the vertical width of the Carnot cycle is  
 

T
dT

dP
P  






 , 

 
where P is the equilibrium vapor pressure. Thus we have 
 

T
dT

dP
VVPVVA lglg  






 )()( . 

 
Any difference in slope of AD and BC becomes negligible as 0T . Finally we get 
 

T
dT

dP
VVQ

T

T
A lg  






 )(  

 
or 
 

)( lg VVT

Q

dT

dP


  (1) 

 
which is the Clapeyron equation.  

In the phase diagram (T vs S plane), we have 
 

STQ HH  , STQ LL   (2) 

 

where TTH  , TTTL  , and QQH  . The work done by the system is 

 

STTdSPdVWA s     

 
since 
 

0  PdVTdSdE  

 
From Eqs.(1) and (2) we have 
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We make a plot of Bks /  a s function of tr, 

 

r

rr
rr

B dt

tdp
tvtv

k

s )(
)]()([

8

3
13 


 

 
Note that we have the tables for the values of v1, v3, and p1 for various tr below the critical temperatures. 

We can evaluate the derivative 
r

rr

dt

tdp )(
 using the derivative of the continuous function )( rr tp  which is 

constructed by using the interpolation of the pressure )( rr tp  at the discrete values. Using the 

Mathematica, we calculate  
 

r

r

B dt

tdp
vv

k

s )(
][

8

3 1
13 


. 
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Fig.68 (a), (b) 
Bk

s
 as a function of tr. The entropy decreases with increasing tr and reduces to zero at the 

critical temperature. 
 

As we approach cTT  , the discontinuity diminishes and gasliquid SS  . At the critical point we have a 

second order phase transition. Above the critical point, there is no sharp distinction between the gas 
phase and the liquid phase. 

Note that 
vr

r

t

p











 is proportional to tr for 1rt  as shown below in the Mathematica. So the critical 

behavior of Bks /  is the same as that of the difference )( 13 vv  . 

Here we note that 
 

4
13

8















rvr
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  around 1rt . 

 
Then we have 
 

2`/1
1313 66)]()([
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3)(
)]()([

8

3  

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B

tvtv
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tdp
tvtv

k

s
. 

 

In fact the entropy corresponds to the order parameter with the critical exponent ( = 1/2). 
 
((Callen H.B.)) The following discussion was made by Callen (Thermodynamics). 
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The change of entropy can be also obtained as follows. From the definition, the change of entropy is 
given by 
 

 







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 dV
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. 

 

Using the Maxwell’s relation: 
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along the isotherm path (a-c-b), which is the same as the result derived by Pippard. The latent heat is 
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The latent heat is obtained as 
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((Mathematica)) 
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Clear "Global` " ; p t , v :
3

v2

8
3

t

v 1
3

;

Eq1 t , v1 , v3 : p t, v1 p t, v3 ;

Eq2 t , v1 , v3
3

v1
3

v3
8
3

t Log 1 3 v1 Log 1 3 v3

p t, v1 v3 v1 ;

initial t ; t 1 :

Module v1m, v2m, v3m, v1, v2, v3, v, vi, eq11, eq12,

eq21, eq22, t1 , t1 t;

eq11 D p t1, v , v Simplify;

eq12 NSolve eq11 0, v ;

v1m v . eq12 1 ; v3m v . eq12 2 ;

eq21 NSolve p t1, v p t1,
v1m v3m

2
, v ;

eq22 Sort v . eq21 1 , v . eq21 2 , v . eq21 3 ,

1 2 & ;

vi eq22 1 , eq22 3

LG t ; t 1 : Module t1, eq1, v1, v3, v11, v13, p11 ,

t1 t;

v11, v13 initial t1 ;

eq1 FindRoot Evaluate Eq1 t, v1, v3 , Eq2 t, v1, v3 ,

v1, v11 , v3, v13 ;

v11 v1 . eq1 1 ;

v13 v3 . eq1 2 ;

p11 p t1, v11 ;

t1, p11, v11, v13
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h1 Table LG t , t, 0.85, 1, 0.0005 ;

h1

TableForm , TableHeadings

None, "tr", "p1", "v1", "v3" &;

h1 Table LG t 1 , LG t 2 , t, 0.85, 1, 0.0005 ;

g1 Table LG t 1 , LG t 3 , t, 0.85, 1, 0.0005 ;

g2 Table LG t 1 , LG t 4 , t, 0.85, 1, 0.0005 ;

f1 Interpolation h1 ; f1D D f1 x , x ;

g11 Interpolation g1 ;

g12 Interpolation g2 ;

k11 Plot
3
8

f1' x g12 x g11 x , x, 0.95, 1 ,

PlotStyle Red, Thick ;

k12

Graphics

Text Style "tr", Black, Italic, 15 , 0.998, 0.1 ,

Text Style " s kB", Black, Italic, 15 , 0.953, 1.2 ;

Show k11, k12
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22. Entropy on the coexistence boundary 

The entropy near the critical point is given by 
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The average entropy s is given by 
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The entropy is continuous at the critical point (second order phase transition at the critical point). We 
also calculate the difference of entropy as 
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which also reduces to zero on approaching the critical point with the critical exponent  (= 1/2). 
 
23. Summary 

Since the discovery of the van der Waals equation of state (1873), there have been so many excellent 

articles on the thermodynamic properties of van der Waals systems. Nevertheless, in our opinion, the 

essential points of the phase diagram of pr vs vr at various temperatures have not been systematically and 
extensively reported, partly because of restricted spaces in putting results of numerical calculations. It is 
well known that the van der Waals theory is one of the best examples of the mean field theory. The 
nature of the attractive interaction between particles changes drastically from short-range order to long 
range order below the critical temperature. The critical exponents satisfies the relation; 22    

predicted from the mean-field theory. The van der Waals systems provides one of typical examples for 
the phase transition and the critical behavior of the second order phase transition at the critical point as 
well as the first order phase transition on the coexistence boundary. The coexistence line can be 
determined from Maxwell construction and the double-tangent construction Because of the strong-
nonlinear nature in the van der Waals equation of state below the critical point, nevertheless, it is 
sometimes hard for students and even researchers to understand the essential properties of the 
coexistence line, critical behaviors, and so on. 

In spite of very interesting systems for us, our understanding is not sufficient on the nature of the 
coexistence line, partly because of nonlinearity in the van der Waals equation of state. We do not have a 
Mathematica program available for the evaluation of Maxwell construction. Recently we have found the 
Mathematica program (by P. Abbot) for solving the van der Waals equation of state below the critical 
point, which uses the FindRoot program with appropriate boundary (initial) conditions. Here we have 
revised the program, which is more convenient to our use, although the essential points are the same. 
Thanks to this program, it is much easier for one to understand the nonlinear effect of the van der Waals 
equation of state. 

During this work, we also noticed the article of Johnston on the thermodynamic properties of the van 
der Waals fluids in Los Alamos archive. This article is very useful to our understanding on the physics 
of van der Waals system. Here we have undertaken systematic numerical calculations on the critical 
behaviors and phase transitions of the van der Waals system near the critical point. Using the 
Mathematica, program (which we show), we have no difficulty in evaluating the Maxwell construction 
based on the Gibbs free energy and the double-tangent construction based on the Helmholtz free energy. 
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So we succeed in getting the visualization of the over-all phase diagram of the van der Waals equation 
of state. For convenience, here we show our Mathematica programs how to determine the numerical 
values of v1, v3, p1, and so on for each reduced temperature. We also show the Mathematica programs 
using the ParametricPlot, Plot3D, and ContourPlot to get the thermodynamic potentials of the Gibbs free 
energy and Helmholt. It is our hope that that this article may be useful for students and researchers 
studying the thermodynamic properties of these systems, although there is nothing new from a view 
point of research. 
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((Nomenclature) 
Adiabatic ( )   

Adiabatic compressibility 
Adiabatic expansion 
Binodal line 
Bubble point:  v1 
Carnot circle 
Clapeyron equation (or Clausius-Clapeyron equation) 
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Coexistence boundary 
Coexistence curve 
Compressibility 
Concave downwards (concave upwards) 
Concave bump 
Corresponding state 
Critical isobar ( 0  

Critical isochore ( = 0) 

Critical isotherm ( = 0) 
Critical point 
Critical pressure 
Critical volume 
Cusp 
Double-tangent line (Helmholtz free energy) 
Double-tangent construction 
Entropy 
First-order phase transition 
Gibbs free energy 
Helmholtz free energy 
Internal energy 
Isentropic 
Isotherm 
Isothermal compressibility 
Latent heat 
Law of corresponding state 
Legendre transformation 
Lever rule   volume, Helmholtz free energy 
Maxwell construction 
Maxwell relation 
Mean-field exponent 
Metastable gas 
Metastable liquid 
Metastable state 
Order parameter 
Primitive curve 
Rectilinear diameter:  locus of the mid-point 

Reduced pressure   rp  

Reduced temperature  rt  

Reduced volume  rv  

Saturation point:  v3 
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Scaling 
Scaling hypothesis 
Second-order transition 
Specific heat at constant pressure 
Specific heat at constant volume 
Spinodal decomposition 
Spinodal line   (AK, BK lines) 
Super-heated liquid 
Super-cooled vapor 
Thermal expansion 
Thermodynamically invisible bow tie (Gibbs free energy) 
Uustable state 
Universality 
van der Waals gas 
van der Waals fluid 
van der Waals system 
_________________________________________________________________________________ 
(a) Scaled van der Waals equation 
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(b) Coexistence line (approximation) 
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(c) Thermodynamic potential 
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____________________________________________________________________________________ 
APPENDIX-I 
Table The co-ordinates of the point a, b, c, d, and e in the pr-vr phase diagram for each reduced 

temperature tr = t1 (<1). a: (v1, p1), b: (vm1, pm1), c: (v2, p1), d: (vm3, pm3), and e: (v3, p1). Note that 
pm1 is negative for t1<0.843, due to the intrinsic structure of the van der Waals equation of state. 
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t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.85 0.504492 0.55336 0.0496296 0.67168 1.14531 0.620554 1.72093 3.12764
0.851 0.507129 0.554195 0.0575016 0.672496 1.14413 0.622478 1.71704 3.10987
0.852 0.509774 0.555034 0.0653546 0.673317 1.14297 0.624408 1.71315 3.09221
0.853 0.512429 0.555879 0.0731886 0.674141 1.1418 0.626344 1.70926 3.07464
0.854 0.515091 0.55673 0.0810037 0.67497 1.14064 0.628284 1.70537 3.05718
0.855 0.517763 0.557586 0.0887998 0.675803 1.13949 0.630231 1.70149 3.03982
0.856 0.520443 0.558448 0.0965769 0.67664 1.13833 0.632183 1.69761 3.02256
0.857 0.523131 0.559316 0.104335 0.677481 1.13718 0.63414 1.69373 3.0054
0.858 0.525829 0.56019 0.112074 0.678327 1.13603 0.636103 1.68986 2.98834
0.859 0.528534 0.561069 0.119794 0.679177 1.13489 0.638072 1.68599 2.97137

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.86 0.531249 0.561955 0.127495 0.680031 1.13375 0.640046 1.68212 2.9545
0.861 0.533972 0.562847 0.135177 0.68089 1.13261 0.642026 1.67825 2.93773
0.862 0.536704 0.563744 0.142841 0.681754 1.13147 0.644012 1.67439 2.92105
0.863 0.539444 0.564648 0.150485 0.682622 1.13034 0.646003 1.67053 2.90446
0.864 0.542193 0.565559 0.15811 0.683495 1.12921 0.648 1.66667 2.88797
0.865 0.544951 0.566476 0.165716 0.684373 1.12809 0.650003 1.66281 2.87157
0.866 0.547717 0.567399 0.173303 0.685255 1.12696 0.652012 1.65895 2.85526
0.867 0.550493 0.568329 0.180871 0.686142 1.12584 0.654026 1.6551 2.83904
0.868 0.553276 0.569265 0.188419 0.687034 1.12473 0.656047 1.65125 2.82291
0.869 0.556069 0.570209 0.195949 0.687931 1.12361 0.658073 1.6474 2.80686
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t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.87 0.55887 0.571159 0.20346 0.688833 1.1225 0.660105 1.64356 2.79091
0.871 0.56168 0.572116 0.210952 0.68974 1.12139 0.662144 1.63971 2.77504
0.872 0.564499 0.57308 0.218424 0.690653 1.12029 0.664188 1.63587 2.75925
0.873 0.567326 0.574052 0.225877 0.69157 1.11919 0.666238 1.63202 2.74355
0.874 0.570162 0.57503 0.233312 0.692493 1.11809 0.668295 1.62818 2.72794
0.875 0.573007 0.576016 0.240727 0.693421 1.11699 0.670357 1.62434 2.71241
0.876 0.575861 0.577009 0.248123 0.694355 1.1159 0.672426 1.62051 2.69696
0.877 0.578723 0.57801 0.2555 0.695294 1.11481 0.6745 1.61667 2.68159
0.878 0.581595 0.579019 0.262858 0.696238 1.11372 0.676582 1.61283 2.66631
0.879 0.584475 0.580035 0.270196 0.697188 1.11264 0.678669 1.609 2.6511

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.88 0.587363 0.581059 0.277515 0.698144 1.11156 0.680762 1.60517 2.63597
0.881 0.590261 0.582092 0.284816 0.699106 1.11048 0.682862 1.60133 2.62092
0.882 0.593168 0.583132 0.292096 0.700074 1.1094 0.684968 1.5975 2.60595
0.883 0.596083 0.584181 0.299358 0.701047 1.10833 0.687081 1.59367 2.59106
0.884 0.599007 0.585238 0.3066 0.702027 1.10726 0.6892 1.58984 2.57624
0.885 0.60194 0.586303 0.313824 0.703012 1.10619 0.691326 1.58601 2.56149
0.886 0.604881 0.587377 0.321027 0.704004 1.10513 0.693458 1.58218 2.54683
0.887 0.607832 0.58846 0.328212 0.705003 1.10407 0.695596 1.57834 2.53223
0.888 0.610791 0.589552 0.335377 0.706007 1.10301 0.697742 1.57451 2.51771
0.889 0.61376 0.590653 0.342523 0.707018 1.10196 0.699893 1.57068 2.50326

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.89 0.616737 0.591763 0.349649 0.708036 1.1009 0.702052 1.56685 2.48888
0.891 0.619723 0.592882 0.356756 0.70906 1.09985 0.704217 1.56302 2.47457
0.892 0.622718 0.594011 0.363844 0.710091 1.09881 0.706389 1.55919 2.46033
0.893 0.625722 0.595149 0.370912 0.711129 1.09776 0.708568 1.55536 2.44616
0.894 0.628735 0.596297 0.377961 0.712174 1.09672 0.710753 1.55152 2.43206
0.895 0.631756 0.597456 0.38499 0.713226 1.09568 0.712946 1.54769 2.41803
0.896 0.634787 0.598624 0.392 0.714286 1.09464 0.715145 1.54386 2.40406
0.897 0.637826 0.599802 0.39899 0.715352 1.09361 0.717352 1.54002 2.39016
0.898 0.640875 0.600992 0.405961 0.716426 1.09258 0.719565 1.53618 2.37632
0.899 0.643932 0.602191 0.412912 0.717508 1.09155 0.721786 1.53234 2.36255

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.9 0.646998 0.603402 0.419843 0.718597 1.09053 0.724013 1.5285 2.34884
0.901 0.650074 0.604624 0.426755 0.719694 1.0895 0.726248 1.52466 2.3352
0.902 0.653158 0.605856 0.433647 0.720799 1.08848 0.72849 1.52082 2.32161
0.903 0.656251 0.607101 0.44052 0.721912 1.08747 0.730739 1.51697 2.30809
0.904 0.659353 0.608356 0.447373 0.723033 1.08645 0.732996 1.51313 2.29463
0.905 0.662464 0.609624 0.454206 0.724163 1.08544 0.73526 1.50928 2.28123
0.906 0.665584 0.610904 0.461019 0.725301 1.08443 0.737531 1.50543 2.26789
0.907 0.668714 0.612196 0.467812 0.726448 1.08342 0.73981 1.50157 2.25461
0.908 0.671852 0.613501 0.474586 0.727603 1.08242 0.742097 1.49771 2.24138
0.909 0.674999 0.614818 0.481339 0.728767 1.08142 0.744391 1.49385 2.22821

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.91 0.678155 0.616148 0.488073 0.729941 1.08042 0.746692 1.48999 2.2151
0.911 0.68132 0.617492 0.494787 0.731124 1.07942 0.749002 1.48612 2.20205
0.912 0.684495 0.618849 0.50148 0.732316 1.07843 0.751319 1.48225 2.18904
0.913 0.687678 0.620219 0.508154 0.733517 1.07744 0.753644 1.47838 2.17609
0.914 0.69087 0.621604 0.514808 0.734729 1.07645 0.755976 1.4745 2.1632
0.915 0.694072 0.623003 0.521441 0.73595 1.07546 0.758317 1.47062 2.15036
0.916 0.697282 0.624417 0.528054 0.737182 1.07448 0.760666 1.46673 2.13756
0.917 0.700502 0.625846 0.534647 0.738423 1.0735 0.763023 1.46284 2.12482
0.918 0.70373 0.62729 0.54122 0.739676 1.07252 0.765388 1.45895 2.11213
0.919 0.706968 0.628749 0.547772 0.740939 1.07154 0.767761 1.45505 2.09949
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t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.92 0.710215 0.630225 0.554305 0.742213 1.07057 0.770143 1.45114 2.0869
0.921 0.71347 0.631716 0.560816 0.743498 1.0696 0.772532 1.44723 2.07435
0.922 0.716735 0.633224 0.567307 0.744795 1.06863 0.774931 1.44331 2.06185
0.923 0.72001 0.634749 0.573778 0.746103 1.06766 0.777337 1.43939 2.0494
0.924 0.723293 0.636292 0.580228 0.747423 1.0667 0.779752 1.43546 2.03699
0.925 0.726585 0.637852 0.586658 0.748755 1.06574 0.782176 1.43153 2.02462
0.926 0.729887 0.63943 0.593067 0.7501 1.06478 0.784609 1.42759 2.0123
0.927 0.733197 0.641027 0.599455 0.751457 1.06382 0.78705 1.42364 2.00002
0.928 0.736517 0.642642 0.605822 0.752828 1.06287 0.789501 1.41968 1.98778
0.929 0.739846 0.644277 0.612168 0.754211 1.06192 0.79196 1.41572 1.97559

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.93 0.743184 0.645932 0.618494 0.755608 1.06097 0.794428 1.41174 1.96343
0.931 0.746531 0.647608 0.624798 0.757019 1.06002 0.796905 1.40776 1.95131
0.932 0.749887 0.649304 0.631082 0.758444 1.05908 0.799392 1.40378 1.93923
0.933 0.753253 0.651021 0.637344 0.759883 1.05813 0.801888 1.39978 1.92719
0.934 0.756628 0.652761 0.643585 0.761338 1.05719 0.804393 1.39577 1.91518
0.935 0.760012 0.654523 0.649805 0.762807 1.05626 0.806908 1.39175 1.90321
0.936 0.763405 0.656308 0.656003 0.764292 1.05532 0.809432 1.38773 1.89127
0.937 0.766807 0.658117 0.662181 0.765793 1.05439 0.811966 1.38369 1.87936
0.938 0.770219 0.65995 0.668336 0.76731 1.05346 0.81451 1.37964 1.86749
0.939 0.77364 0.661808 0.67447 0.768845 1.05253 0.817063 1.37558 1.85564

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.94 0.77707 0.663692 0.680582 0.770396 1.0516 0.819627 1.37151 1.84383
0.941 0.780509 0.665602 0.686673 0.771965 1.05068 0.8222 1.36743 1.83205
0.942 0.783958 0.66754 0.692741 0.773552 1.04976 0.824784 1.36333 1.82029
0.943 0.787415 0.669505 0.698788 0.775158 1.04884 0.827379 1.35922 1.80856
0.944 0.790882 0.6715 0.704812 0.776783 1.04792 0.829983 1.3551 1.79685
0.945 0.794359 0.673524 0.710815 0.778427 1.04701 0.832598 1.35096 1.78517
0.946 0.797844 0.675578 0.716795 0.780092 1.0461 0.835224 1.34681 1.77351
0.947 0.801339 0.677664 0.722752 0.781778 1.04519 0.837861 1.34264 1.76187
0.948 0.804843 0.679783 0.728688 0.783486 1.04428 0.840508 1.33846 1.75025
0.949 0.808357 0.681935 0.7346 0.785215 1.04338 0.843167 1.33425 1.73865

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.95 0.811879 0.684122 0.74049 0.786967 1.04247 0.845837 1.33004 1.72707
0.951 0.815411 0.686345 0.746357 0.788743 1.04157 0.848518 1.3258 1.7155
0.952 0.818953 0.688605 0.752201 0.790543 1.04067 0.851211 1.32154 1.70395
0.953 0.822503 0.690903 0.758022 0.792369 1.03978 0.853915 1.31727 1.69241
0.954 0.826063 0.693241 0.76382 0.79422 1.03888 0.856631 1.31297 1.68088
0.955 0.829632 0.69562 0.769594 0.796098 1.03799 0.859359 1.30865 1.66936
0.956 0.833211 0.698042 0.775344 0.798004 1.0371 0.8621 1.30431 1.65784
0.957 0.836799 0.700508 0.781071 0.799939 1.03621 0.864852 1.29994 1.64633
0.958 0.840396 0.70302 0.786774 0.801904 1.03533 0.867617 1.29555 1.63482
0.959 0.844003 0.70558 0.792453 0.803899 1.03444 0.870395 1.29114 1.62332

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.96 0.847619 0.708189 0.798108 0.805927 1.03356 0.873186 1.28669 1.61181
0.961 0.851244 0.710851 0.803739 0.807988 1.03268 0.875989 1.28222 1.60029
0.962 0.854879 0.713566 0.809344 0.810084 1.03181 0.878806 1.27772 1.58878
0.963 0.858523 0.716338 0.814925 0.812217 1.03093 0.881637 1.27319 1.57725
0.964 0.862176 0.719169 0.820481 0.814387 1.03006 0.884481 1.26862 1.56571
0.965 0.865839 0.722061 0.826012 0.816596 1.02919 0.887339 1.26402 1.55415
0.966 0.869511 0.725018 0.831517 0.818847 1.02832 0.890211 1.25939 1.54258
0.967 0.873193 0.728042 0.836997 0.821141 1.02746 0.893098 1.25471 1.53098
0.968 0.876884 0.731138 0.842451 0.823479 1.02659 0.896 1.25 1.51936
0.969 0.880584 0.734308 0.847878 0.825866 1.02573 0.898917 1.24524 1.50771
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t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.97 0.884294 0.737556 0.853279 0.828302 1.02487 0.901849 1.24044 1.49603
0.971 0.888014 0.740887 0.858653 0.83079 1.02401 0.904796 1.23559 1.48431
0.972 0.891742 0.744306 0.864 0.833333 1.02316 0.90776 1.23069 1.47254
0.973 0.89548 0.747817 0.86932 0.835935 1.0223 0.91074 1.22574 1.46073
0.974 0.899228 0.751427 0.874611 0.838598 1.02145 0.913736 1.22073 1.44886
0.975 0.902985 0.755141 0.879875 0.841327 1.0206 0.91675 1.21566 1.43693
0.976 0.906752 0.758965 0.88511 0.844125 1.01975 0.919781 1.21053 1.42493
0.977 0.910528 0.762909 0.890316 0.846997 1.01891 0.92283 1.20533 1.41286
0.978 0.914313 0.766979 0.895493 0.849948 1.01806 0.925897 1.20005 1.40071
0.979 0.918108 0.771185 0.90064 0.852983 1.01722 0.928984 1.19469 1.38846

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.98 0.921912 0.775539 0.905756 0.856109 1.01638 0.932089 1.18925 1.3761
0.981 0.925726 0.78005 0.910841 0.859333 1.01554 0.935215 1.18371 1.36363
0.982 0.92955 0.784734 0.915895 0.862663 1.01471 0.938361 1.17808 1.35103
0.983 0.933383 0.789606 0.920917 0.866108 1.01387 0.941529 1.17233 1.33828
0.984 0.937225 0.794682 0.925905 0.869679 1.01304 0.944718 1.16646 1.32536
0.985 0.941077 0.799984 0.93086 0.873387 1.01221 0.947931 1.16046 1.31226
0.986 0.944938 0.805536 0.935781 0.877248 1.01139 0.951167 1.15431 1.29896
0.987 0.948809 0.811367 0.940665 0.881278 1.01056 0.954427 1.14799 1.28541
0.988 0.95269 0.817511 0.945514 0.885498 1.00974 0.957714 1.1415 1.27159
0.989 0.95658 0.824009 0.950324 0.889931 1.00891 0.961027 1.13479 1.25746

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.99 0.960479 0.830914 0.955095 0.894609 1.00809 0.964369 1.12784 1.24295
0.991 0.964388 0.83829 0.959826 0.899571 1.00728 0.967741 1.12061 1.22802
0.992 0.968307 0.846223 0.964513 0.904864 1.00646 0.971144 1.11306 1.21257
0.993 0.972235 0.854822 0.969156 0.910555 1.00565 0.974581 1.10511 1.19649
0.994 0.976173 0.864242 0.973752 0.916735 1.00483 0.978055 1.09668 1.17962
0.995 0.98012 0.874706 0.978297 0.923531 1.00402 0.981569 1.08764 1.16176
0.996 0.984077 0.886555 0.982787 0.931145 1.00321 0.985128 1.07778 1.14254
0.997 0.988043 0.900365 0.987216 0.939911 1.00241 0.988736 1.06678 1.1214
0.998 0.992019 0.917266 0.991576 0.950485 1.0016 0.992403 1.05397 1.09721
0.999 0.996005 0.940177 0.995851 0.964562 1.0008 0.996143 1.03766 1.06704

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.999 0.996005 0.940177 0.995851 0.964562 1.0008 0.996143 1.03766 1.06704
0.9991 0.996404 0.943088 0.996273 0.966329 1.00072 0.996523 1.03567 1.06341
0.9992 0.996803 0.946184 0.996694 0.968204 1.00064 0.996903 1.03358 1.05959
0.9993 0.997202 0.9495 0.997113 0.970207 1.00056 0.997284 1.03135 1.05555
0.9994 0.997602 0.953087 0.997531 0.972366 1.00048 0.997667 1.02897 1.05124
0.9995 0.998001 0.957015 0.997948 0.974723 1.0004 0.998051 1.02639 1.04659
0.9996 0.998401 0.961394 0.998363 0.977342 1.00032 0.998437 1.02355 1.04149
0.9997 0.9988 0.966409 0.998776 0.980328 1.00024 0.998824 1.02034 1.03575
0.9998 0.9992 0.972419 0.999187 0.983889 1.00016 0.999213 1.01656 1.02902
0.9999 0.9996 0.980354 0.999595 0.988563 1.00008 0.999605 1.01166 1.02037

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.9999 0.9996 0.980354 0.999595 0.988563 1.00008 0.999605 1.01166 1.02037
0.99991 0.99964 0.981345 0.999636 0.989145 1.00007 0.999644 1.01106 1.0193
0.99992 0.99968 0.982395 0.999677 0.98976 1.00006 0.999683 1.01042 1.01818
0.99993 0.99972 0.983515 0.999717 0.990416 1.00006 0.999723 1.00974 1.01699
0.99994 0.99976 0.984721 0.999758 0.991122 1.00005 0.999762 1.00901 1.01571
0.99995 0.9998 0.986036 0.999798 0.99189 1.00004 0.999802 1.00822 1.01432
0.99996 0.99984 0.987493 0.999839 0.992741 1.00003 0.999841 1.00735 1.01279
0.99997 0.99988 0.989153 0.999879 0.993709 1.00002 0.999881 1.00636 1.01106
0.99998 0.99992 0.991127 0.99992 0.994858 1.00002 0.99992 1.00519 1.00902
0.99999 0.99996 0.993711 0.99996 0.99636 1.00001 0.99996 1.00366 1.00636
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_______________________________________________________________________________ 
 
APPENDIX-II 
Reduced pressure pr vs reduced volume vr at fixed temperature tr 
 
Fig. pr vs vr at fixed reduced temperature tr. The line AK and Line KB are the spinodal lines. The line 

a-c-e is the co-existence line between the gas phase and liquid phase. The area a-b-c-a is the 
same as the area c-d-e-b (Maxwell construction). tr = 0.85 – 0.99. 

 

 
 

t1 p1 v1 pm1 vm1 v2 pm3 vm3 v3
0.99999 0.99996 0.993711 0.99996 0.99636 1.00001 0.99996 1.00366 1.00636
0.999991 0.999964 0.994032 0.999964 0.996546 1.00001 0.999964 1.00347 1.00603
0.999992 0.999968 0.994372 0.999968 0.996743 1.00001 0.999968 1.00327 1.00569
0.999993 0.999972 0.994734 0.999972 0.996953 1.00001 0.999972 1.00306 1.00532
0.999994 0.999976 0.995123 0.999976 0.997178 1. 0.999976 1.00284 1.00492
0.999995 0.99998 0.995546 0.99998 0.997424 1. 0.99998 1.00259 1.00449
0.999996 0.999984 0.996014 0.999984 0.997695 1. 0.999984 1.00231 1.00401
0.999997 0.999988 0.996547 0.999988 0.998003 1. 0.999988 1.002 1.00347
0.999998 0.999992 0.997179 0.999992 0.998369 1. 0.999992 1.00164 1.00284
0.999999 0.999996 0.998004 0.999996 0.998846 1. 0.999996 1.00116 1.002
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_______________________________________________________________________ 
APPENDIX-III 
Reduced pressure pr vs reduced volume vr at fixed temperature tr 
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_______________________________________________________________________ 
APPENDIX-V 
The reduced volume vs the reduced pressure pr at fixed reduced temperatures (tr<1) 
 
Fig. vr vs pr at fixed reduced temperature tr. The line a-c-e is the co-existence line between the gas 

phase and liquid phase. The area a-b-c-a is the same as the area c-d-e-b (Maxwell construction). 
tr = 0.85 – 0.99. 
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__________________________________________________________________________________ 
APPENDIX-V 
Reduced Gibbs free energy f vs reduced pressure pr at fixed reduced temperature tr 
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_________________________________________________________________________________ 
APPENDIX-V 
Reduced Helmholtz free energy f vs reduced volume vr at fixed reduced temperature tr 
 
Fig. f  vs vr where tr is fixed. The states a, b, c, d, and e correspond to the same states in the pr-vr 

phase diagram. The double tangent line (linear term denoted by black line) between the states a 
and e is the co-existence line between the gas phase and liquid phase.  
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___________________________________________________________________________ 
APPENDIX. Argon 
[N. Hashitsume] 
 
For Argon, Z = 0.29, 
 

vc = 7.42706 x 10-5 m3/mol 
Tc = 150.87 K 
Pc = 4.898 x 106 Pa, 
m = 39.948 u = 6.63352 x 10-26 kg for Ar atomic mass 

 
a = 1.363 (L2 bar/mol2), b = 0.03219 (L/mol)  for Argon 

b

a
 = 42.3423 (L bar/mol) = 4234.23 J/mol 
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Fig. Phase diagram for Argon. 

http://media-1.web.britannica.com/eb-media/95/2395-004-4F69A001.jpg 
 

m = 39.948 u = 6.63352 x 10-26 kg 
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vc = 75.3 cm3/mol = 7.53 x 10-5 m3/mol 
Tc = 150.7 K 
m = 66.31 x 10-24 g = 6.631 x 10-26 kg 

Bk

s0  =11.80 

 


