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Overview 

After a series of experiments (Oersted, Arago, and Ampère) around 1820, it became 

clear that the magnetic moment is equivalent to a loop current. The macro-scale loop 

current consists of collective atomic-scale loop currents, since the atomic-scale currents 

inside the large loop current cancel out each other. The atomic-scale current is equivalent 

to the orbital angular momentum (spin angular momentum is also included). Quantum 

mechanically, this angular momentum is quantized in the units of the Planck constant ℏ . 

It follows that the origin of the bar magnet (or compass needle) is based on the quantum 

mechanics; magnetic moment = loop current, and atomic-scale loop current = orbital 

angular momentum. 

Here we discuss the origin of magnetic (dipole) moment from classical physics as well 

as quantum mechanics. Through the concept of the magnetic moment, as Faraday 

originally predicted, the electricity and magnetism are found to be closely related.  

 

The present article does not include any topics which are something new. We just 

collect interesting topics related to the magnetic moment. This article is helpful to 

undergraduate students who want to understand the physics of magnetic moment 

extensively from both classical physics and quantum mechanics.. 

 

((Note)) 

We use two kinds of notations for the magnetic moment; m (classical physics) and  

(quantum mechanics). 

________________________________________________________________________ 

Edward Mills Purcell (August 30, 1912 – March 7, 1997) was an American physicist who 

shared the 1952 Nobel Prize for Physics for his independent discovery (published 1946) of 

nuclear magnetic resonance in liquids and in solids. Nuclear magnetic resonance (NMR) 

has become widely used to study the molecular structure of pure materials and the 

composition of mixtures. Friends and colleagues knew him as Ed Purcell. 
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1. Maxwell’s equations 

Maxwell’s theory of electromagnetism can be summarized in beautiful four equations (SI 

units) 

 

(I)  
0

e


 E .   (Gauss’ law) 

 

(II)  
t


  


B

E .   (Faraday’s law of induction) 

 

(1II)  0  B .   (Absence of magnetic monopole) 

 

(IV)  
0 0( )

t
 


   


B J E . (Ampère-Maxwell’s law) 

 

where e  is the electric charge density and J is the current density. 

In electricity, the E-field simply radiates away from positive charges or converge 

towards negative charges, so they do not circulate. Although the magnetic monopole 

(single magnetic charge) was theoretically predicted by Dirac (1931), no isolated 

magnetic poles have been found in nature. So, the B-filed lines have neither beginning 

nor end. The relation 0  B  (III) expresses this fact. In an ideal situation, the lines of 

B are closed curves, in contrast to the lines of E, which must originate and terminate on 
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charges. The magnetic field B  appear” in the presence of currents from the Ampère’s 

law. Wherever there are currents, there are lines of magnetic field making loops around 

the currents. The Ampère’s law indicates that magnetism in matter is to be accounted 

for by a multitude of tiny rings of electric current distributed through the substance. The 

magnetic moment arises from loop current (Biot-Savart law).  

The magnetic moment m is proportional to the orbital angular momentum. In 

quantum mechanics, the z component of orbital angular momentum is quantized as 

zL n ℏ , where ℏ is the Planck constant and n is integer. We note that the angular 

momentum plays a significant role in quantum mechanics. There is a commutation 

relation in angular momentum. 

 

ˆ ˆ ˆ[ , ]
x y z

L L i L ℏ , ˆ ˆ ˆ[ , ]
y z x

L L i L ℏ , ˆ ˆ ˆ[ , ]
z x y

L L i L ℏ  

 

Note that there is also a spin magnetic moment, which is proportional to the spin angular 

momentum. The origin of the spin magnetic moment is rather different from that of orbital 

magnetic moment. 

 

((Note)) Chow (Electromagnetic theory) 

If the magnetic monopole exists in nature, the Maxwell’s equations (II) and (III) change as 

follows. while the Maxwell’s equations (I) and (II) remain unchanged. 

 

(II’)) 

 

0 m  B . 

 

(III’) 

 

0( )m
t




    


E B J . 

 

where m  is the magnetic charge density if it exists and mJ  is the magnetic current density. 

Since 0  E  (mathematically), we get the equation of continuity, 

 

0m m
t



   


J . 

 

Dirac showed that the existence of magnetic monopole would explain why electric charge 

is quantized. 
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2. B-field (magnetic moment) and E-field (electric dipole moment) 

Here, we consider (i) the electric field E (arising from the electric dipole moment), and 

(ii) the magnetic field B (arising from the magnetic (dipole) moment m). The electric field 

E and the magnetic field B are described simply in spherical polar coordinates: 

 

3

0

(2cos sin )
4

r

p

r
 


 E e e , 

 

and 

 

0

3
(2 cos sin )

4
r

m

r



 


 B e e , 

 

Figures 1-4 show the field distribution of B and E in the y-z plane. The magnetic field B 

close to a current loop is entirely different from the electric field close to a pair of separated 

positive and negative charges. Note that between the charges the electric field points down, 

while inside the current ring the magnetic field points up, although the far fields are alike. 

This reflects the fact that the magnetic field satisfies 

 

0  B , 

 

everywhere, even inside the source. The magnetic field lines do not end. By near and far 

we mean, of course, relative to the size of the current loop or the separation of the charges. 

If we imagine the current ring shrinking in size, the current meanwhile increasing, so that 

the magnetic moment remains constant. We approach the infinitesimal magnetic (dipole) 

moment, the counterpart of the infinitesimal electric dipole moment. 

We expressed the components in the y-z plane of the field E of an electric dipole 

moment p, which was situated exactly like our magnetic (dipole) moment m. The 

expressions are essentially identical, the only changes being  

 

p m  and  0

0

1



 . 

 

So, it is found that the magnetic field of a small current loop, has at remote points, the same 

form as the electric field of two separated charges.  
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Fig.1 StreamPlot (Mathematica Version 13). The magnetic field of a magnetic 

(dipole) moment in the y-z plane. The y-z plane. Far away the B-field 

becomes similar to the E-field of an electric dipole moment. The magnetic 

(dipole) moment along the z axis is located at the origin. Note that B is 

continuous around the origin, unlike the electric field from the electric 

dipole moment. The lines of constant magnetic scalar potential *

m are also 

shown. We use the magnetic scalar potential * 3

0( ) / (4 )m r   r m r , from 

the analogy of the electric potential due to the electric dipole moment. We 

use the Mathematica program (ContourPlot and Stream Plot).  
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Fig.2 VectorPlot of magnetic field B in the y-z plane (Mathematica version 13). 

The lines of constant magnetic scalar potential 
*

m are also shown. Note that 

B is continuous around the origin. 
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Fig.3 Magnetic field distribution from the magnetic moment at the origin, 

directed along the z axis, in the y-z plane. The magnetic field B is separated 

into the er-component and e-component in the y-z plane. 
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Fig.4 StreamPlot (Mathematica Version 13). The electric field E of a pair of equal 

and opposite charges. Far away the E-field becomes similar to the B-field 

of magnetic (dipole) moment. The electric dipole moment along the z axis 

is located around the origin. The electric field is directed from the positive 

charge to the negative charge (green) in the vicinity of the origin. In other 

words, the E-field is discontinuous there. The y-z plane. 

 

3. Historical views on magnetic moment of current loop (Isaac Asimov) 

((From the article written by Isaac Asimov)) 

In 1820, possibly during a lecture, Hans Christian Oersted (1777 – 1851). happened 

to move a compass near a wire that carried a current. He noticed that the compass’s needle 

jumped. People knew that compasses worked via magnetism and at the same time realized 

that current was flowing electricity. He had been using a strong battery in his lecture, and 

he closed by placing a current-carrying wire over a compass in such a way as to have the 

wire parallel to the north-south alignment of the compass needle. (It is not certain now 

what point he was trying to make in doing this). 

However, when he put the wire over the needle, the needle turned violently, as though, 

thanks to the presence of the current, it now wanted to orient itself east-west. Oersted, 

surprised, carried the matter further by inverting the flow of current – that is, he connected 

the wire to electrodes in reverse manner. Now the compass needle turned violently again, 

but in the opposite sense. 

As soon as Oersted announced this, physicists all over Europe began to carry out 

further experimentation, and it quickly became plain that electricity and magnetism were 
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intimately related, and that one might well speak of electromagnetism in referring to the 

manner in which one of the two forces gave rise to the other. 

 

 
 

Fig.5 Experiment of Oersted’s experiment. When the constant current flows 

through an electric wire, the axis of a compass needle (a kind of bar magnet) 

directed toward a direction normal to the direction of current. 

 

The French physicist Dominique François Jean Arago (1786-1853) showed almost 

at once that a wire carrying an electric current attracted not only magnetized needles but 

ordinary unmagnetized iron filings, just as a straightforward magnet would. A magnetic 

force, indistinguishable from that of ordinary magnets, originated in the electric current. 

Indeed, a flow of electric current was a magnet. 

To show this more dramatically, it was possible to do away with iron, either magnetized 

or unmagnetized, altogether. If two magnets attracted each other or repelled each other 

(depending on how their poles were oriented), then the same should be true of two wires, 

each carrying an electric current. This was indeed demonstrated in 1820 by the French 

physicist André-Marie Ampère, after whom the unit of current intensity was named. 

Ampère began with two parallel wires, each connected to a separate battery. One wire was 

fixed, while the other was capable of sliding toward its neighbor or away from it. When 

the current was travelling in the same direction in both wires, the movable wire slid toward 

the other, indicating an attraction between the wires. If the current traveled in opposite 

directions in the two wires, the movable wire slid away, indicating repulsion between the 

two wires. Furthermore, if Ampère arranged matters so that the movable wire was free to 

rotate, it did so when the current was in opposite directions, turning through 180° until the 

two wires were parallel again with the current in each now flowing in the same direction. 

(This is analogous to the manner in which, if the north pole of one small magnet is brought 
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near the north pole of another, the second magnet is brought near the north pole of another, 

the second magnet will flip so as to present its south pole end to the approaching north 

pole). 

Again, if a flowing current is a magnet, it should exhibit magnetic lines of force as an 

ordinary magnet does, and these lines of force should be followed by a compass needle. 

Since the compass needle tends to align itself in a direction perpendicular to that of the 

flow of current in the wire (whether the needle is held above or below the wire, or to either 

side), it would seem that the magnetic lines of force about a current-carrying wire appear 

in the form of concentric cylinders about the wire. If a cross section is taken perpendicularly 

through the wire, the lines of force will appear as concentric circles. This can be 

demonstrated by running a current-carrying wire upward through a small hole in a 

horizontal piece of cardboard. If iron filings are sprinkled on the cardboard and the 

cardboard is tapped, the filings will align themselves in a circular arrangement about the 

wire.  

In the case of an ordinary magnet, the lines of force are considered to have a direction 

– one that travels from a north pole to a south pole. Since the north pole of a compass 

needle always points to the south pole of a magnet, it always points in the conventionally 

accepted direction of the line of forces. The direction of the north pole of a compass needle 

also indicates the direction of the lines of force in the neighborhood of a current-carrying 

wire, and this turns out to depend on the direction of the current-flow. 

Ampère accepted Franklin’s convention of current-flow from the positive electrode to 

the negative electrode. If, using this convention, a wire were held so that the current flowed 

directly toward you, the lines of force, as explored by a compass needle, would be moving 

around the wire in counterclockwise circles. If the current is flowing directly away from 

you, the lines of force would be moving around the wire in clockwise circles. 

As an aid to memory, Ampère advanced what has ever since been called the “right-

hand screw rule.” Imagine yourself holding the current-carrying wire with your right hand; 

the fingers close about it and the thumb points along the wire in the direction in which the 

current is flowing. If you do that, then the sweep of the curving fingers, from palm to 

fingernails, indicates the direction of the magnetic lines of force. 

 

4. Equivalence between magnetic moment and loop current (Purcell and 

Morin) 
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Fig.6 A compass needle (a) and a coil of wire carrying current (b) are similarly 

influenced by current in a nearby conductor. The direction of the current I 

is understood to be that in which positive ions would be moving if they were 

the carriers of the current. In the earth’s magnetic field, the black end of the 

compass would point north (Purcell and Morin) 

 

 
 

Fig.7 The compass needle (magnetic moment) is equivalent to the solenoid coil 

with a flowing current Is. When the compass is perpendicular to the DC 

Magnetic moment
DC current
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current I (denoted by the blue straight line), the current direction of I 

becomes parallel to the current direction of Is (denoted by red), leading to 

the attractive force between them. 

 

 
 

Fig.8 Schematic diagram of Oersted’s experiment. This was discovered on 21 

April 1820 by Danish physicist Hans Christian Oersted (1777–1851), 

when he noticed that the needle of a compass next to a wire carrying current 

turned so that the needle was perpendicular to the wire. Oersted 

investigated and found the physical law describing the magnetic field, now 

known as Oersted's law. The direction of the current 0
I  in the loop current 

is parallel to the direction of the current I of the straight electric wire. The 

magnetic field is produced by the straight electric current wire at the center 

of compass, due to the Ampère’s law. The compass needle is equivalent to 

the magnetic moment. 

 

5. Bohr model for hydrogen atom 

We consider a hydrogen atom (one electron around one proton). 
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Fig.9 Hydrogen atom. Atomic number, Z = 1. Proton (+e charge, blue) and 

electron (-e charge, red). e>0.  

 

Newton’s second law: 

 
2 2

2

04
e

v e
m

r r
 .  (SI units) 

 

The orbital angular momentum along the z axis is quantized. 

 

z eL m vr n  ℏ   

 

which is equivalent to the de Broglie relation. 

 

2
e

h
p m v


 

  
ℏ

  

 

2 r
n




 ,  (n; integer) 

 

or 

 

2

2
( )

e

r
n

m v





ℏ

,  or z eL m vr n  ℏ   

Ze

-e

r
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From two equations, we have 

 

2 2

2

0
4

e

v e
m

r r
  or 

2
2

04
e

e
m v r


   (Newton’s second equation) 

 

em vr n ℏ   (Quantization of orbital angular momentum) 

 

we get the velocity 

 
2 2

0 0

1 1

4 4
n

e e
v c c

n n c n


 
  

ℏ ℏ
  (SI units) 

 

where n is a positive integer, and  is the fine structure constant, 

 
2

0

1
0.007297352

4 137

e

c



  

ℏ
  

 

When n = 1, the radius is called the Bohr radius, 

 
2

2B

e

a
m e


ℏ

= 5.29177210903(80)×10−11 m 

 

where em  is the electron mass, and the electron rest mass energy is 

 
2

em c  0.51099895000(15) MeV 

 

6. Quantization of magnetic moment from orbital motion of electron 
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Fig.10 Orbital magnetic moment () and orbital angular momentum of electron. 

The direction of the magnetic moment is antiparallel top that of the orbital 

angular momentum, since the charge of electron is negative as -e (e>0 in 

this note). 

 

According to the Bohr model, the magnetic moment of orbital electron which 

undergoes a circular motion is expressed by 

 

cl
Ia  ,  (SI units) 

 

where the charge of electron is -e (e>0), I is the loop current flowing around the perimeter 

of the circular orbit, and cla  is the area of the Bohr orbit. The current I is defined by 

 

2 2
( )

dQ e e ev
I

rdt T r

v

 
       , 
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where Q is the charge and T is the period, 
2 r

T
v


 . So that, the magnetic moment is 

obtained as 

 

2

2 2
cl

ev evr
Ia r

r
 


     . 

 

The orbital angular momentum Lz along the z axis is 

 

z eL m vr n  ℏ , 

 

where ℏ is the Planck’s constant, from the duality of wave and particle. From the de 

Broglie relation, the circumference of the circle orbit is related to the wavelength 

( / 2 / ( )eh p m v   ℏ  by 

 

2 r
n




  (integer)  (duality of wave and particle) 

 

where ep m v  is the linear momentum and v is the velocity.  

 

 
 

Fig.11 de Broglie relation. 2l r n   . 
2

ep m v



 
ℏ

. n = 6 in this case. 

 

r

l
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Fig.12 Stationary waves of electrons in the confinement of an atom. The electron 

wave fits an integral number of wavelength in each of the successive Bohr 

orbits. 2l r n   . n= 2 – 13. (n: integer) 

 

This is equivalent to the quantization of orbital angular momentum. Using these results, 

we have the magnetic moment 
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2 2 2

e z z z
z B

e e e

em vr eL L Le

m m m
        

ℏ

ℏ ℏ
 

 

where em  is the mass of electron, and 
2

B

e

e

m
 

ℏ
 (SI units) is the Bohr magneton. The 

gyromagnetic ratio is the ratio of 
z
  to

z
L . The Bohr magneton is the fundamental unit of 

magnetic moment; 

 

2
B

e

e

m
  

ℏ
 9.274009994(57) x 10-24 J/T  (SI units) 

 

2
B

e

e

m c
  

ℏ
 9.274009994(57) x 10-21 erg/G  (cgs units) 

 

We note that erg/G = emu (cgs unit). 

As shown in Fig.13(a) and (b), a thin slab of uniformly magnetized material, with the 

atomic-scale magnetic moments indicated by tiny current loops. All the internal currents 

cancel. At the boundary of the system, there is no adjacent current loop to do the canceling. 

As a result, the system is equivalent to s single ribbon of current I, flowing around the 

boundary. 

 

 
 

(a) 
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(b) 

 

Fig.13 (a) and (b) Circulating atomic-scale loop currents as seen in across-section 

of magnetic system in the z direction. The direction of the magnetic moment 

follows the right-hand rule. 

 

The orbital magnetic moment is related to the orbital angular momentum as 

 

O
2

B o

e

e

m
     

L L
μ L

ℏ

ℏ ℏ
  (orbital magnetic moment) 

 

Note that  o  is the gyromagnetic ratio. The negative sign of o
  arises from the fact that 

the charge of electron is negative. 

 

10 =- 8.7941 10
2

o

e

e

m
     ( 1 1s T  ). 

 

7. Spin magnetic moment and spin angular momentum (quantum mechanics) 
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The spin magnetic momentum 
s

μ  is related to the corresponding spin orbital 

momentum S , from the analogy of the relation between the orbital magnetic moment and 

the orbital angular momentum, as 

 

1
s e Bg  μ S

ℏ
, 

 

where 
eg  is the Landé g-factor,  

 

2.0023193043617(15)eg  . 

 

Conventionally, we use 2.0eg  . The derivation of this expression can be naturally 

obtained only from the Dirac relativistic electron theory. It is not possible from the classical 

theory. Using these results, we have the spin magnetic moment. The gyromagnetic ratio is 

the ratio of ( )s z  to 
zS   

 

s s sS  , 

 

with 

 

11 1 11.760859644(11) 10  s T
2

s s

e
g

m
         (SI units) 

 

The negative sign of s
  arises from the fact that the charge of electron is negative. 

We have the spin magnetic moment as 

 

S 2s B B Bg       
S S

μ σ≃
ℏ ℏ

.  (spin magnetic moment) 

 

where / 1 / 2S ℏ , and σ  is the Pauli operator. Thus, the minimum magnetic moment 

from spin is still
B
 . The Zeeman energy of the spin magnetic moment in the presence of 

magnetic field B is given by 

 

2 ˆˆ ˆ B
SH


    μ B S B

ℏ
, 

 

with 
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2 B
S


 μ S

ℏ
. 

 

We apply the inhomogeneous magnetic field along the z axis. The force is produced as 

 

z
z z

B
F

z






, 

 

(we will discuss below). Such a force is used for the experiment of Stern-Gerlach 

experiment with spin S = 1/2. 

 

11. Total magnetic moment and total angular momentum 

The total magnetic moment is a sum of the orbital magnetic moment and the spin 

magnetic moment. 

 

J ( 2 )B  μ L S
ℏ

. 

 

where we use 2eg  . The total angular momentum is 

 

 J L S . 

 

We note that 

 

J

2 2

2

( 2 ) ( )

( 2 3 )

B

B

B
Jg







     

    

  

μ J L S L S

L S L S

J

ℏ

ℏ

ℏ

  

 

and 

 
2 2 2 2( ) 2     J L S L S L S , 

 

or 

 

2 2 21
[ ( )]

2
   L S J L S , 
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where 

 

J
B

Jg


 μ J
ℏ

. 

 

We define the Landé g-factor, Jg as 

 

2

2 2

2 2 2 2 2

2 2 2

( 2 ) ( )

( 2 3 )

3
{ 2 [ ( )]}

2

1 3
[ ( ) ]
2 2

B B
J

B

B

B

g
 







     

    

     

    

J L S L S

L S L S

L S J L S

L S J

ℏ ℏ

ℏ

ℏ

ℏ

  

 
2 2

2

3 3 ( 1) ( 1)

2 2 2 2 ( 1)
J

s s l l
g

j j

   
   


S L

J
. 

 

We use the Dirac notation for the state ,j m , where , 1,  ........, j l s l s l s      and 

, 1, 2,....,m j j j j     

 

with 

 
2 2ˆ , ( 1) ,j m j j j m J ℏ ,  ˆ , ,zJ j m m j m ℏ , 

 

where 0,1,2,3...l    and s=1/2, 3/2,…. 



 

24 

 

 
 

Fig.14  Total angular momentum (J) and total magnetic moment ( Jμ ). 

 

8. Torque on a current-carrying loop (Young and Friedman) 

We now discuss a torque on rectangular current loop in the presence of a uniform 

magnetic field B from a viewpoint of classical physics. A current loop—or magnetic 

moment—not only produces magnetic fields, but will also experience forces when placed 

in the magnetic field of other currents. We will look first at the forces on a rectangular 

current loop in a uniform magnetic field. Let the z-axis be along the direction of the field, 

and the plane of the loop be placed through the y-axis, making the angle  with the x-y 

plane as in Fig.15. Then, the magnetic moment of the loop—which is normal to its plane—

will make the angle  with the magnetic field. 
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Fig.15 Finding the torque on the loop current carrying loop in a uniform magnetic 

field. The two pairs of forces acting on the loop (the b sides) cancel, so no 

net force acts on the loop. However, the forces on the a sides of the loop 

produces a torque.  is the angle between a vector normal to the loop and 

the magnetic field. We choose 30    in this figure. The area of 

rectangular current loop is cla ab . The magnitude of the magnetic 

moment is denoted by clm Ia . 

 

Here we have a rectangular loop of wire with side lengths a and b. The total force on 

the loop is zero but that there can be a net torque acting on the loop, with some interesting 

properties. A line perpendicular to the plane of the loop (i.e., a normal to the plane) makes 

an angle  with the direction of the magnetic field B, and the loop carriers a current I. The 

wires leading the current into and out of the loop and the source of emf are omitted to keep 

the diagram simple. The force F on the right side of the loop (length a) is to the right, in 

the +x-direction. On this side, B is perpendicular to the current direction and the force on 

this side has magnitude 

 

F IaB . 
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A force F  with the same magnitude but opposite direction acts on the opposite side of 

the loop. The sides with length b make an angle ( / 2  ) with the direction of B . The 

forces on these sides are the vectors 'F  and 'F ; their magnitude 'F  is given by 

 

' sin( ) cos
2

F IbB IbB


    . 

 

The lines of action of both forces lie along the y-axis. The total force on the loop is zero 

because the forces on opposite sides cancel out in pairs. The net force on a current loop in 

a uniform magnetic field is zero. However, the net torque is not in general equal to zero. 

The two forces 'F  and 'F  lie along the same line and so give rise to zero net torque 

with respect to any point. The two forces F  and F  lie along different lines, and each 

gives rise to a torque about the y-axis. According to the right-hand rule for determining the 

direction of torques, the vector torques due to F  and F  are both in the ±y-direction; 

hence the net vector torque τ  is in the +y-direction as well. The moment arm for each of 

these forces (equal to the perpendicular distance from the rotation axis to the line of the 

action of force) is ( / 2)sinb  . So, the torque due to each force has magnitude ( / 2) sinF b  . 

Thus, the torque is in a clockwise direction. Note that the magnitude of net torque is 

obtained as 

 

 sin  sin

2 2

 sin

sin

sin

( ) y

Fb Fb

Fb

IabB

mB

 







 







 m B

 

 

The torque is the greatest when / 2  . B is in the plane of the loop, and the normal to 

this plane is perpendicular to B. The torque is zero when  is 0  or   and the normal to the 

loop is parallel or antiparallel to the field. The value 0   is a stable equilibrium position 

because the torque is zero there, and when the loop is rotated slightly from this position, 

the resulting torque tends to rotate it back toward 0  . The position    is an unstable 

equilibrium position; if displaced slightly from this position, the loop tends to move farther 

away from  .  

The area of the loop is equal to 
cl

a ab . So, we get the torque 

 

( ) sinIab B  .  (magnitude of torque on a current loop). 
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((Right-hand rule)) 

The product Iab  is called the magnetic moment of the current loop, for which we use 

the symbol m (or the Greek letter  in the quantum mechanics). 

 

m Iab   

 

The right-hand rule determines the direction of the magnetic moment of a current-carrying 

loop. 

 

 
 

Fig.16 The right-hand rule determines the direction of the magnetic moment of a 

current-carrying loop. This is also the direction of the loop’s area vector 

cl
a ; cl

Im a  is a vector equation. cla ab   

 

((Note)) Mathematica 
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Fig.17 Torque on a current-carrying loop in a uniform field with various angle   

being changed as a parameter. 
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(a) 4    

 

 
 

(b) 10   . 
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(c) 15   . 
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(d) 30   . 
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(e) 45   . 

 

 
 

(f) 60   . 
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(g) 75   . 
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(h) 85   . 

 

Fig.18 Torque on a current-carrying loop in a uniform field with various angle  . 

(a) 4   , (b) 10   , (c) 15   , (d) 30   , (e) 45   , (f) 60   , 

(g) 75   , and (h) 85    

 

9. Work energy theorem for potential energy 

 

 
 

Fig.19 Magnetic moment vector m is related to the current by a right-hand rule. 

cl
m Ia  (SI units). where acl is the area of circle (current loop).  

 

The right-hand rule determines the direction of the magnetic moment m of a current-

carrying loop. This is also the direction of the loop’s area vector cla ; 

 

cl
Im a , 

 

is a vector equation. We can also define a vector magnetic moment m  with magnitude Iacl.           

The direction of m  is defined to be perpendicular to the plane of the current loop. with a 
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sense determined by a right-hand rule. Wrap the fingers of your right hand around the 

perimeter of the current loop in the direction of the current. Then extend your thumb so 

that it is perpendicular to the plane of the loop; its direction is the direction of m  (and of 

the vector area cl
a  of the loop). The torque is the greatest when m  and B  are 

perpendicular and is zero when they are parallel or antiparallel. In the stable equilibrium 

position, m  and B  are parallel. The torque τ  can be expressed by 

 

 τ m B .  (vector torque on a current loop) 

 

The direction of the magnetic moment is normal to the surface of the rectangular current 

loop. We use the work-energy theorem. 

 

K W U    . 

 

In this system, the work is expressed by 

 

0 0

( ) sin cosW d mB d mB

 

          , 

 

where the negative sign ( )  indicates the direction of the torque is in counterclockwise. 

Note that d  is in the counterclockwise. Then, the potential energy is derived as 

 

cosU mB     m B . 

 

This result is directly analogous to the result we found for the torque exerted by an electric 

field E  on an electric dipole with dipole moment p . 

When a magnetic dipole changes orientation in a magnetic field, the field does work 

on it. In an infinitesimal angular dependence d , the work dW  is given by d  , and 

there is a corresponding change in potential energy. As the above discussion suggests, the 

potential energy is least when m and B are parallel and greatest when they are antiparallel. 

To find an expression for the potential energy U as a function of orientation, we can make 

use of the beautiful symmetry between the electric and magnetic dipole interactions. The 

torque on a magnetic dipole in a magnetic field is  

 

 τ m B . 

 

So we can conclude that the corresponding energy is 

 

cosU mB     m B . 
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With this definition, U is zero when the magnetic dipole moment is perpendicular to the 

magnetic field. 

 

10. Torque on electric dipole moment in the presence of electric field 

The electric dipole is defined as 

 

.p ql  

 
 

Fig.20 Electric dipole moment. p ql . The direction of the electric dipole 

moment is along the z axis. 0q  . 

 

The torque on electric dipole moment in the presence of uniform electric field is 

 

Torque = 2 sin sin
2

d
qE qEd     (counterclockwise) 

 

The work energy theorem: 

 

K W U     
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sin cosW Eqd d Eqd       

 

Then, the potential energy is 

 

cosU W Eqd       p E . 

 

The torque is expressed by 

 

sin ( )ypE    τ p E e . 

 

 
 

Fig.21 Torque of electric dipole moment in the presence of constant electric field 

E along the z axis. 

 

11. The magnetic scalar potential *

2

cos

4
m

m

r





  

 

3

0

(2 cos sin )
4

r

p

r
 


 E e e , 
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or 

 

3 5

0

1 3( )
[ ]

4 r r


  
p p r r

E . 

 

This field can be expressed in terms of the electric potential PV  as 

 

e E , 

 

where 

 

2 3

0 0

cos
4 4

e

p

r r
 

 


 
p r

. 

 

Using this analogy, we have the magnetic scalar potential as 

 

*

2

cos

4
m

m

r





 . 

 

The magnetic field B can be evaluated as 

 
*

0

0 2

0

2

0

2 3

0

3

cos

4

cos

4

1
[ cos cos ]

4

( 2cos sin )
4

m

r

r

m

r

m

r

m

r r r

m

r





 





 



 
 


 



  

  

  

 
  

 

 

B

e e

e e

 

 

or 

 

0

3 5

3( )
[ ]

4 r r





  

m m r r
B . 

 

This equation shows that the magnetic field of a distance loop current does not depend on 

its detailed geometry, but only on its magnetic moment m. Because 
0
 B J  is not a 
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conserved field, and so it makes no sense to introduce a magnetic scalar potential in the 

same sense as we introduced an electrostatic potential. But 0 B  is zero whenever the 

current density J is zero. In this case, the magnetic field B in such a region, B can be 

written as the gradient of a magnetic scalar potential 

 
*

0 m   B . 

 

Since 0 B , we get the Laplace equation for
*

m
 .The curl of the magnetic induction 

is zero wherever the current density is zero. When this is the case, the magnetic induction 

in such regions can be written as the gradient of a scalar potential: 

 
*

0 m   B . 

 

However, the divergence of B is also zero, which means that 

 
2 *

0 0m     B . 

 

Thus 
*

m
 , which is called the magnetic scalar potential, satisfies Laplace’s equation. Much 

of the work of electrostatic can be taken over directly and used to evaluate 
*

m
  for various 

situations; however, care must be taken in applying the boundary conditions. The 

expression for the scalar potential of a magnetic moment is particular useful. In the present 

case, 
*

m
  can be obtained as 

 

*

3 3 2

cos cos
( )

4 4 4
m

mr m

r r r

 


  


  
m r

r . 

 

((Note)) The expression of 
*( )m r  in terms of the solid angle   
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Fig.22  Solid angle d ; 2
' cos

cl cl
r d a a     

 

We note that 

 

' cos
cl cl

a a  , 

 
2

' cos
cl cl

r d a a    . 

 

Thus, we get the expression 

as 

 

2 2

cos cos

4 4 4

cl
m

IaId m

r r

 


  


   , 

 

with cl
m Ia . 
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Fig.23 Magnetic scalar potential from a loop current (current I) with area acl. The 

magnetic moment is cl
m Ia .   is the solid angle. 

 

12. The discussion of the total mechanical energy (Feynman, Leighton, Sands) 

We can show for our rectangular loop that U  also corresponds to the mechanical work 

done in bringing the loop into the field. The total force on the loop is zero only in a uniform 

field; in a non-uniform field there are net forces on a current loop. In putting the loop into 

a region with a field, we must have gone through places where the field was not uniform, 

and so work was done. To make the calculation simple, we shall imagine that the loop is 

brought into the field with its moment pointing along the field. (It can be rotated to its final 

position after it is in place.) Imagine that we want to move the loop in the x-direction—
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toward a region of stronger field—and that the loop is oriented as shown in Fig.24. We 

start somewhere where the field is zero and integrate the force times the distance as we 

bring the loop into the field. 

 

 
 

Fig.24 A loop is carried along the x- direction through the field B, at right angles 

to x (Feynman, Leighton, Sands). 

 

First, let’s compute the work done on each side separately and then take the sum (rather 

than adding the forces before integrating). The forces on sides 3 and 4 are at right angles 

to the direction of motion, so no work is done on them. The force on side 2 is IbB(x) in the 

x-direction, and to get the work done against the magnetic forces we must integrate this 

from some x where the field is zero, say at x   , to 2x , its present position: 

 

2 2

2 2 ( )

x x

W F dx Ib B x dx
 

   . (1) 

 

Similarly, the work done against the forces on side 1 is 

 
2 2

1 1 ( )

x x

W F dx Ib B x dx
 

     . (2) 
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To find each integral, we need to know how B(x) depends on x. But notice that side 1 

follows along right behind side 2, so that its integral includes most of the work done on 

side 2. In fact, the sum of Eq.(1) and Eq.(2) is just 

 
2

1

1 2 ( )

x

x

W W W Ib B x dx     . (3) 

 

But if we are in a region where B is nearly the same on both sides 1 and 2, we can write 

the integral as 

 
2

1

2 1( ) ( )

x

x

B x dx x x B aB   , 

 

where B is the field at the center of the loop. The total mechanical energy we have put in 

is 

 

U W IabB mB        

 

using the work-energy theorem, where B is the field at the center of the loop.  

We would, of course, have gotten the same result if we had added the forces on the 

loop before integrating to find the work. If we let B1 be the field at side 1 and B2 be the 

field at side 2, then the total force in the x-direction is 

 

2 1( )xF Ib B B  . 

 

If the loop is small, that is, if 
2

B  and 
1

B  are not too different, we can write 

 

2 1

B
B B a

x


 


. 

 

by using the Taylor expansion. So, the force is obtained as 

 

x

B B
F Iab m

x x

 
 

 
. 

 

13. Discussion on force (Purcell and Morin) 
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Fig.25 StreamPlot3D (Mathematica, Version 13). A current ring in an 

inhomogeneous magnetic field. (The field of the ring itself is not shown). 

Because of the radial component of the field, B , there is a force on the ring 

as a whole (based on the textbook of Purcell and Morin). 

 



 

45 

 

 
 

Fig.26 Gauss’ theorem can be used to relate B  and zB

z




, leading to the relation 

( )
2

zB B z
z



 
 


. (Purcell and Morin). 

 

The force exerted on the ring current I is 

 

[ ( )

( )

z z

z z

d I d B B

I d B B

  

 

 

 

  

 

F e e e

e e
 

 

using the cylindrical coordinates. We note that 0 B . This can be done by 

 

( ) ( ) 0zB B z
z

 

 

 
 

  

 

or 

 

( )
2

zB B z
z



 
 


. 

 

where we assume that ( )
z

B z  depends only on z. This can be also derived form the 

Gauss’s law, applied on a pancake-like cylinder. We have 

 
3 2

0 ( ) [ ( ) ( )] 2z zd d B z dz B z dzB          B r B a . 

 

Since 
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( )
( ) ( ) z

z z

B z
B z dz B z dz

z


  


,  (Taylor expansion) 

 

we get 

 

( )

2

zB z
B

z


 
 


. 

 

The resultant force is directed along the z axis  

 

2

(2 )

( )
(2 )( )

2

( )

( )

z

z

z

z

F I B

B z
I

z

B z
I

z

B z
m

z

 


 



 


  












 

 

Note that because of the symmetry, the resultant force in the x-y plane is cancelled out. In 

general, this can be rewritten as 

 

( ) ( )U        F m B m B , 

 

and 

 

U   m B . 

 

14. Calculation of the force ( )  F m B  by using Mathematica 
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Fig.27 A rectangular loop of wire with the current I. The magnetic field is applied 

along the z axis. ( )z zB xB e . 

 

We consider a rectangular loop of wire with current I. The area of the square wire is 

cl
a a x . The magnetic moment is given by cl

m Ia Ia x  . Suppose that the magnetic 

field (which depends on the position coordinate x) is applied along the z axis; ( )z zB xB e . 

We find that the net force on the top side (Q) and bottom side (S) of the rectangular loop 

is zero. The force on the side (Q) cancels the force on the side (S). The force on the right 

side (P) is given by 

 

( ) ( ) ( )
2

x z

x
P aIB x


 F e , 

 

while the force on the left side (R) is given by 

 

( ) ( ) ( )
2

x z

x
R aIB x


  F e . 
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The net force exerted on the rectangular loop of the wire with current I is directed along 

the x axis, 

 

[ ( ) ( )]
2 2

( )

( )

x z z

z

z

x x
F aI B x B x

aI x B x
x

m B x
x

 



   










 

 

with the magnetic moment m 

 

m Ia x , 

 

 
 

Fig.28 A rectangular loop of wire with the current I. The magnetic field is applied 

along the z axis. ( )z zB yB e . 

 

We consider a rectangular loop of wire with current I. The area of the square wire is 

cla a y . The magnetic moment is given by 
clm Ia Ia y  . Suppose that the magnetic 
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field (which depends on the position coordinate y) is applied along the z axis; ( )z zB yB e . 

We find that the net force on the right side (P) and left side (R) is zero. The force on the 

right side (P) cancels the force on the left side (R). The force on the top side (Q) is given 

by 

 

( ) ( ) ( )
2

y z

y
Q aIB y


 F e , 

 

while the force on the bottom side (S) is given by 

 

( ) ( ) ( )
2

y z

y
R aIB y


  F e . 

 

The net force exerted on the rectangular loop of the wire with current I is directed along 

the y axis, 

 

[ ( ) ( )]
2 2

( )

( )

y z z

z

z

y y
F aI B y B y

aI y B y
y

m B y
y

 



   











 

 

with the magnetic moment m 

 

m Ia y . 

 

15. Feynman subscript notations (Mathematica) 

 

(a) 

We start with the vector identity. 

 

( ) [( ) ( )] [( ) ( )]

( ) ( )

           

   B m

m B m B m B B m B m

m B m B
  

 

Here, the Feynman subscript notations are defined as 

 

( ) ( ) ( )      B m B m B m B , 
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and 

 

( ) ( ) ( )      m m B B m B m . 

 

We realize that one may have some difficulty in calculating the terms such as ( )m B  and 

( )B m . Unlike the differential operators (div, grad, 2 , curl), these types of operators 

are not available in the Mathematica. Here, we define the Feynman subscript notations in 

the Mathematica program. 

First, we need to define the operator such that 

 

( )A B , 

 

where A and B are vectors defined by 

 

( ( , , ), ( , , ), ( , , ))x y zA x y z A x y z A x y zA , 

 

( ( , , ), ( , , ), ( , , ))x y zB x y z B x y z B x y zB , 

 

in the Cartesian coordinates. The operator ( )A B  (which is vector) can be expressed 

 

( ) ( )

( ) ( ) ( )

x y z

x y z

A A A
x y z

A A A
x y z

  
   

  

  
  

  

A B B

B B B

  

 

Correspondingly, we define by a differential operator in the Mathematica, 

 

[ _, _] : ( [[1]] [ , ] [[2]] [ , ] [[3]] D[ ,z])Pd A D x A D y A  A B B B B   

 

where 

 

[[1]] =A [ , , ]xA x y z , [[2]] =A [ , , ]yA x y z , [[3]] =A [ , , ]zA x y z   

 

If you want to calculate ( )A B  for the given forms of A and B, we can use the 

replacement using Function such that 
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2 2

2

{ [{ , , },  ], [{ , , },  3 ],

[{ , , },  ]

x y

z

ruleA A Function x y z x yz A Function x y z xyz

A Function x y z x y z

  

  
  

 
2 2

2

{ [{ , , },  ], [{ , , },  3 ],

[{ , , },  ]

x y

z

ruleB B Function x y z x y z B Function x y z x y z

B Function x y z xy z

      

 
 

 

Thus, we get 

 

[ , ] / . / .Pd ruleA ruleBA B  

 

(b) 

 

( ) ( ) ( ) ( ) ( )

[( ) ( )] [( ) ( )]

FIGS[ , ] FIGS[ , ]

           

         

 

A B A B A B B A B A

A B A B B A B A

A B B A

  

 

where 

 

FIGS[ , ] ( ) ( )    A B A B A B . 

 

FIGS[ , ] ( ) ( )    B A B A B A . 

 

((Mathematica)) 

Using the Mathematica program made above, we solve typical problems including the 

Feynman subscript notations. 
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16. Current density due to magnetization; M  J M  

If the magnetization is nonuniform, the cancellation is not complete. We consider the 

abrupt change of magnetization shown in Fig. It is evident that between the two broken 

lines there is more current moving down than that moving up. There is a resultant current 

in the interior. To find the relationship between MJ  and M  we consider two small volume 

elements located next to each other in the direction of the y-axis, each element of volume 

abc . If the magnetization in the first volume element is ( , , )x y zM , then the magnetization 

in the second volume is 

 

( , , )
( , , ) ...

x y z
x y z y

y


  


M

M   

 

The x-component of magnetic moment of the first element, ( , , )xM x y z abc , may be 

written in term of a circulating current, 'cI   

 

( ) 'x
x c

M
M abc I bc

y


 


. 
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Using the same argument, we have just made, you can show that this surface will contribute 

to yJ  the amount /xM z  . These are the only surfaces which can contribute to the y-

component of the current, so we have that the total current density in the y-direction is 

 

x z
y

M M
J

z x

 
 
 

. 

 

Working out the currents on the remaining faces of a cube—or using the fact that our z-
direction is completely arbitrary—we can conclude that the vector current density is indeed 

given by the equation 
 

b  J M . 

 

So if we choose to describe the magnetic situation in matter in terms of the average 
magnetic moment per unit volume M, we find that the circulating atomic currents are 

equivalent to an average current density in matter given by b  J M . 

 

(a) Current density along the x axis for axis for the system with non-uniform 

magnetization 

 

( )
yz

x x

MM
J

y z


   

 
M . 

 

 

 

(a) 
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(b) 

 

Fig.29 Equivalent Amperian current loops in a magnetized medium, showing 

cancellation effect on internal boundary. The current density xJ  from (a) 

/zdM dy and (b) /ydM dz . 
yz

x

MM
J

y z


 
 

. 

 

(b) Current density along the y axis for the system with non-uniform 

magnetization 

 

( ) x z
y y

M M
J

z x

 
    

 
M  
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Fig.30 The current density yJ  from (a) /xdM dz and (b) /zdM dx .

x z
y

M M
J

z x

 
 
 

. 

 

(c) Current density along the z axis for the system with non-uniform 

magnetization 

 

( )
y x

z z

M M
J

x y

 
   

 
M   

 

If the magnetization of two neighboring blocks is not the same, there is a net surface 

current in between. 

 

 

(a) 
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(b) 

 

Fig.31 The current density zJ  from (a) /ydM dx and (b) /xdM dy .

y x

z

M M
J

x y

 
 
 

. 

 

17. Surface current and magnetization 
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Fig.32 The magnetization M  is related to the magnetic moment m as 

cl cl
Ma t Ia   . The loop current I is I Mt ; ( )t t  I M n K . cla  is 

the area of cylinder. t is the thickness. 

 

( )
cl cl

m M a t Ia  . 

 

Mt I . 

 

( )t I M n . 

 

t
  

I
K M n ,   (surface current) 

 

where M is the magnetization (magnetic moment per unit volume). If the magnetization is 

uniform, the current in the loop tends to cancel each other out, and there is not net effect 

current in the interior of the system. But at the surface there are no adjacent currents to 

produce a cancellation, and because the currents in the whirls are all circulating in the same 

sense, the result in effect is that of a surface current circulating on the surface. 

Note that  K M n  is tangent to the surface because M  is perpendicular to n . All 

the internal currents cancel. At the edge there is no adjacent loop to do the cancelling . 

 

18. Vector potential of known current 

Here we discuss the vector potential A. To this end, we start with the Maxwell’s 

equations; 

 

0 B J , 

 

with  

 

 B A . 

 

So that, we have 

 

2

0

( )

( )

J

    

    



B A

A A   

 

We assume that 

 

0 A .  (Coulomb gauge) 
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So that we have 

 
2

0  A J . 

 

We use the three-dimensional Green function such that 

 
2 ( , ') ( ')G    r r r r ,  (we use the notation used by Arfken et al.) 

 

with 

 

1
( , ')

4 '
G





r r

r r
. 

 

So that, our solution for A is obtained as 

 
3

0

30

( ) ' ( , ') ( ')

( ')
'

4 | ' |

d G

d















A r r r r J r

J r
r

r r

  

 

Note that 

 
2 3 2

0

3

0

0

( ) ' ( , ') ( ')

' ( ') ( ')

( )

d G

d



 



  

  

 




A r r r r J r

r r r J r

J r

 

______________________________________________________________________ 

19. The magnetic field of a small current loop: definition of magnetic moment 

We start with the vector potential due to the current loop (two-dimension) 

 

0( )
4 | ' |

I
d





A r s

r r
. 

 

3

1 1

' 'cos

1 '
(1 cos )

1 1
( ')

r r

r

r r

r r






 



  

r r

r r

≃   

 

where 
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'
cos

'rr





r r
. 

 

Thus, we get 

 

0 0

3 3

1 1
( ) [ ( ')] ( ')

4 4

I
Id d

r r r

 
 

     A r s r r s r r . 

 

We note the two things. 

 

(a) 

 

[( ') '] ( ') ' ( ') '

( ) ' ( ')

d d d

d d

    

   

r r r r r r r r r

r s r r r s
  

 

and 

 

[( ') '] ( ) ' ( ') 0d d d       r r r r s r s r r� � �  

 

(b) 

 

( ' ) ( ) ' ( ')d d d     r r s r s r s r r  

 

( ') ( ' ) ( ) 'd d d     s r r r s r r s r  

 

( ') ( ' ) ( ) '

( ' ) ( ')

d d d

d d

     

    

  
 

s r r r s r r s r

r s r s r r

� � �

� �

 

 

or 

 

1
( ') ( ' )

2
d d    s r r r s r� �  

 

The magnetic moment: 

 

( ' )
2

cl

I
d I   r s a m  

 

with  
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1
( ' )  

2
cld  r s a  

 

Thus, the vector potential A is 

 

0

3
( ) ( )

4 r




 A r m r , 

 

where m is the magnetic moment located at the origin, along the z axis.  

 

The magnetic field B is evaluated as 

 

0

3

0

3 3

4

[ ( ) ( ) ]
4

r

r r






 

    
 

   

B A

r
m

r r
m m

  

 

Since 
3

0
r

  
r

, we have 

 

0 0

3 3 3

3( )
( ) [ ]

4 4r r r

 
 


     

r m m r r
B m . 
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Fig.33 Vector potential A ay a point far from the current loop (which is not always 

a circle loop). The magnetic moment m is cl
m Ia . acl  is the area of the 

current loop. 
1

| ' | ' cos ( ')r OH r r r
r

      r r r r≃ . 

 

((The interaction between magnetic moments)) 

The interaction between magnetic moments 1m  and 2m  is expressed by 

2

0 1 12 2 12
1 23 2

12 12

3( )( )
[ ]

4

in
H

r r




  

 
   

m B

m r m r
m m

 

 

where r12 is a position vector connecting between the moments 1m  and 2m . 
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Fig.34 The magnetic interaction between the magnetic moments 1m  and 2m . The 

magnetic moments are directed along the z axis. When the position vector 

12r  is perpendicular to the magnetic moments, the direction of 1m  is 

antiparallel to that of 2m . 0
1 23

12

( )
4

dipoleH
r




 m m , where 
1 12 0 m r  and 

2 12 0 m r . The Hamiltonian favors an antiferromagnetic alignment of 

adjacent magnetic moments. 

 

20. Vector potential and magnetic field due to magnetic moment; Stokes, theorem 

The vector potential at the position vector r due to the magnetic moment m along the z 

axis at the origin O, 

 

0 0

2 3
( ) ( )

4 4
r

r r

 
 

   A m e m r , 

 

where 

 

 
cl z

Iam e . 

 

In the spherical coordinate, the vector potential is 
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0 0

2 2

sin
( )

4 4
z r

m m

r r


  
 

  A e e e , 

 

where 

 

1
sin cos

sin
x y

r
  

 


   


r
e e e . 

 

In the cartesian coordinates, 

 

0 0 0

3 3 3
( ) 0 0 1 ( , ,0)

4 4 4

x y z

z

m m m
y x

r r r
x y z

  
  

    

e e e

A e r , 

 

where 

 
2 2 2 1/2( )r x y z   . 
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Fig.35 A magnetic moment m located at the origin. At every point far from the 

origin, the vector potential A is a vector parallel to the x-y plane, tangent to 

a circle around the z axis (the vector potential A denoted by red arrows. 

 

The magnetic field B is obtained as 

 

2 20

5

2 20

5

(3 ,  3 ,  3 )
4

[3 3 (3 ) )
4

x y z

m
zx yz z r

r

m
zx yz z r

r






 

 

   

B A

e e e

   (Cartesian coordinates) 

 

or 
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0

3
(2 cos sin )

4
r

m

r



 


 B e e .  (Spherical coordinates) 

 

Note that 

 

0  B , 0 B . 

 

We now apply the Stokes’ theorem for the magnetic field B from the magnetic moment. 

 
(a) 
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(b) 

 

Fig.36 (a) and (b), ( ) d d    A a A s� �  (Stokes’ theorem). ds  is the perimeter. 

The direction of da  for each rectangle is normal and out of the plane. The 

line integral of a vector field over a loop (a perimeter) is equal to the flux of 

its curl through the enclosed surface.  

 

We have the Stokes’ theorem for the vector potential A as 

 

( ) d d    A a A s� � , 

 

The magnetic flux is obtained as 

 

d d     B a A s� � . 
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We note that 

 
2

0

2

0

2

0

2

0

20

sin
( sin )

4

sin
sin

4

sin
2

m
d r d

r

m
r d

r

m

r



 



 
 



 
 






  





 



A s e e�

 

 

where  sind r d  s e . 

 

 
 

Fig.37 Evaluation of magnetic flux ( )
S

d d d         B a A a A s�   

 

Next, we calculate the surface integral 
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20

3

0

0

0

20

( )

cos
(2 sin )

2

sin 2
2

1
[1 cos(2 )]

2 2

sin
2

S

r r

S

d d

m
r d

r

m
d

r

m

r

m

r



 
  




 







   

 



 



 





A a B a

e e

�

 

 

So that the Stokes’ theorem is verified from this example. 

 

21. The B field from a magnetized system 
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Fig.38 Vector potential A  at the point r due to the magnetic moment at the source 

coordinates r’. 

 

0

3

( ')
( )

4 '




 




m r r
A r

r r
  

 
3

( ') 'dm M r r .  (magnetic noment) 

 

30

3

( ') ( ')
( ) '

4 '
d




 



M r r r

A r r
r r

. 

 

3

1 '
'

' '


 

 

r r

r r r r
. 

 

Using this relation, we get 

 

30 1
( ) ( ') ' '

4 '
d




 
A r M r r

r r
. 

 

Noting that 

 

1 1 ( ')
( ') ' ' ( ') '

' ' '
    

  
M r

M r M r
r r r r r r

. 

 

we have 

 

3 30 0

30 0

30 0

1 ( ')
( ) ' ( ') ' ' '

4 ' 4 '

1 1
' ( ') ' [ ( ') ]

4 ' 4 '

1 1
( ') ' ( ')

4 ' 4 '
b b

d d

d d

d da

 
 

 
 

 
 

     
 

    
 

 
 

 

 

 

M r
A r M r r r

r r r r

M r r M r a'
r r r r

J r r K r '
r r r r

 

 

with 

 

( )b  J M r   

 

( )b  K M r n   
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where n is the normal unit vector. We use the formula 

 

3( ') 1
' ' [ ( ') ]

' '
d d    

  
M r

r M r a'
r r r r

  (the proof is given below) 

 

and the relation 

 

1 1
[ ( ') ] [ ( ') ']

' '

1
( ')

'
b

d da

da

  
 




 



M r a' M r n '
r r r r

K r '
r r

  

 

Proof (Griffiths) 

 
3( )

V A
d d    v r v a . 

 

We assume that c is a constant vector.  

 

Gauss’s theorem: 

 
3( ) ( )

V A
d d      v c r v c a . 

 

Note that 

 

( ) ( ) ( )

( )

       

  

v c c v v c

c v
  

 

and 

 

( ) ( ) ( )d d d        a v c c a v c v a . 

 

The first term of Gauss’ theorem; 

 
3 3( ) ( )

V V
d d      v c r c v r . 

 

The second term of Gauss’ theorem: 

 

( )
A A

d d      v c a c v a . 



 

75 

 

 

Thus, we have 

 
3( )

V A
d d      c v r c v a , 

 

or 

 
3( )

V A
d d    v r v a . 

 

((Note)) Units of physical quantities 

 

m: magnetic moment 

M: magnetization (magnetic moment per unit volume) 

 
2

3
[ ]

Am A
M

m m
    

2
[ ]b

A
J

m
   

 

[ ]b

A
K

m
    

2[ ]m Am   

 

22. Vector potential and magnetic field from uniformly magnetized sphere 

(Griffiths) 
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Fig.39 The vector potential and the magnetic field at a point P (at the position 

vector r) from a sphere (with radius R) having the uniform magnetization 

M directed in the x-z plane. 

 

Here we discuss the vector potential and magnetic field from uniform magnetization inside 

a sphere with radius R. 

 

The magnetization vector of the sphere is in the x-z plane, 
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( sin ,0, cos )M M M   

 

The unit vectors: 

 

' (sin 'cos ',sin 'sin ',cos ')
r

    e   

 

Since ''
r

n e  the surface current due to the magnetization M, 

 

' '

sin 0 cos

sin 'cos ' sin 'sin ' cos '

cos sin 'sin ' ( sin cos ' cos sin 'cos ')

sin sin 'sin '

b

x y z

x y

z

M M

M M M

M

 
    

       

  

 



    



K M n

e e e

e e

e

  

 

We need to calculate the vector potential at the point P (0, 0, )rr . 

 

2 2 2 2' ' 2 ' 2 'cos 'r r r R rR        r r r r   

 

The vector potential: 

 

0 1
( ) ( ') '

4 '
b

S

da




A r K r

r r
, 

 

where 

 
2' sin ' ' 'da R d d   . 
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We note that 
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________________________________________________________________________ 

((Mathematica)) 

 

 
________________________________________________________________________ 

For r R  (outside of the sphere) 
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Note that at 0   and r R   
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For r R  (inside of the sphere) 
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which is constant  

 

 
 

Fig.40 StreamPlot (Mathematica version 13). Magnetic distribution from sphere 

with uniform magnetization M along the z axis. The magnetic field is 

constant; 
0

2

3
B M  along the z axis, inside the sphere. The normal 
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components of B on the surface of sphere is continuous since 0  B . The 

y-z plane. 

 
 

Fig.41 Boundary condition for the field B  inside (blue) and outside (green, red, 

purple) sphere with uniform magnetization M. The normal component of 

the field B  is continuous on the boundary of the sphere. 2B  (blue) is the 

resultant field inside the sphere. B1n (green) is the normal component of the 

field 2B  outside the sphere. B1t (red) is the tangential component of the field 

2B  outside the sphere. The boundary condition: 1 2n nB B . 

 

________________________________________________________________________ 

23. Boundary conditions of B  and auxiliary field H  

 

0  B ,  0 B J   

 

0 A   (Coulomb gauge)  
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Fig.42 Boundary condition for B. 0  B  (indicating no magnetic monopole 

exists in nature). The Gauss’ law leads to the boundary condition for the 

normal components 1 2n nB B . 

 

0 B . 

 
3

( ) 0d d    B r B a .  (Gauss’ law) 

 

1 2n nB B . 
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Fig.43 When the free current density Jf=0, we have the relation 0 H  for the 

auxiliary field H. The Stokes’ law leads to the boundary condition for the 

tangential components 1 2t t
H H . 

 

We define the auxiliary field H as  

 

b f f   J J J M J   

 

0 0 ( )b f    B J J J   

 

0

( ) f
  

B
M J   

 

We introduce the auxiliary field H as 

 

0 ( ) B M H . 

 

f H J   

 

When 0f J , we have 

 

0 H  
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( ) 0d d     H a H s� ,   (Stokes’ law) 

 

1 2t t
H H . 

 

We consider the auxiliary field H from the uniform magnetization from sphere. The 

auxiliary field H outside the sphere is expressed by 
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since M = 0 outside the sphere. The auxiliary field H is a magnetic field inside the magnetic 

system. At r = R, we have 
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1
(2 cos sin )

3
rM    H e e . 

 

0

0

0

1 2

3

1

3






 

 

 

B
H M

M M

M
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Fig.44 Boundary condition for the auxiliary field H inside (blue) and outside (green, 

red, purple) sphere with uniform magnetization M. The tangential 

component of the field H is continuous on the boundary of the sphere. H2 

(blue) is the resultant field inside the sphere. H1 (purple) is the resultant 

field outside the sphere. 1 2t t
H H . 

 

 

24. Vector potential and magnetic field from uniformly magnetized systems 

 

(a) The cylindrical uniform magnetization. 
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Fig.45 Ampère’s law for the surface current 
b  K M n  due to the cylindrical 

uniform magnetization. 

 

0b   J M . 

 

b M   K M n e   

 

The magnetic field B inside of the cylinder. We apply the Ampere’s law 

 

0 0bBL K L ML   , 

 

or 
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0B M . 

 

Note that the magnetic field outside the cylinder is zero. 

 

(b) Circular ring with uniform magnetization inside 

 

 
 

Fig.46 Ampère’s law for the surface current 
b  K M n  due to the circular ring 

with uniform magnetization. 

 

Ampère’s law  

 

0(2 ) (2 )bB R K R     

 

or 

 

0 0bB K M     

 

Because of 0 B , on the boundary, the component of B normal to the plane is 

continuous. 

 

(c) Cylindrical shell with uniform magnetization 
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Fig.47 Cylindrical shell with uniform magnetization M . Ampère’s law for the 

surface current 
b  K M n  due to the solenoid. N is the total number of 

turns.  

 

We apply the Ampère’s law; 

 

0B L N I ,  
0 0

N
B I M

L
   . 

 

The magnetic moment: 

 

m NIA   (Am2) 

 

The magnetization: 

 

m NIA NI
M

V AL L
      (A/m) 

 

25.  Summary 

All the essential properties of the electricity and magnetism are included in the beautiful 

four Maxwell’s equations. Mainly, we discussed the Maxwell’s equation (I) and (III) in the 

stationary state above, where no time dependence of E- and B-field is taken into account. 

The B- field lines cannot stop or start anywhere but must endlessly circulate in loops. The 
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situation may change when the time dependence of E- and B-field is considered in 

Maxwell’s equations (II) [the Faraday’s law] and (IV) [Ampere-Maxwell law]. The 

circulation of the E-field can be produced by the change of the B-field with time (Faraday’s 

law). The circulation of the B-field can be produced by the change of E-field with time, as 

well as an electrical current, flow of electric charge (Ampère’s law); 

 

(IV) 
0
 B J   (Ampere’s law) 

 

However, Maxwell realized that an extra term (the displacement current) should be inserted 

in the Ampere’s law, changing it as follows: 

 

(IV’) 0 0( )
t

 

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
E

B J  (Ampere-Maxwell’s law) 

 

This turned out to be the final piece of the jigsaw. It was already known that electricity 

and magnetism were connected. When we assume that  B A  and 
t


 


A

E  with 

  A  0, 0J  and 0   (in vacuum), we get the wave equation for the vector 

potential A as 
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leading to the wave equation for A as 

 
2

2

2 2

1
( ) 0

c t


  


A  

 

In other words, the light (transverse electromagnetic wave) propagates with the velocity 

0 01/c   , as was predicted first by Maxwell. The direction of the electric field (the 

polarization vector) is perpendicular to that of propagation of the wave. 

 

((Nomenclature)) 

 

A  Vector potential 
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M Magnetization (magnetic moment per unit volume) 

 

'r  Source coordinates 

 

b
 J M    Bound current density 

 

b
 K M n    Bound surface current density 

 

I   Circulating current (loop current) 

 

b f J J J    Total current density 

 

clm Ia    Magnetic moment 

 
*

m
    Magnetic scalar potential 

 

e
    Electric scalar potential 

 

0
 

B
H M    Auxiliary field 

 

0  B    Maxwell’s equation 

 

f H J    ( f
J ; free current density) 

 

0
t




E

    Displacement current 

________________________________________________________________________ 

TABLE-1 Comparison of properties between magnetic moment and electric 

dipole moment 

For comparison, here we show a list of the relation between the magnetic moment and 

electric dipole moment. 

 

Electric dipole moment  Magnetic moment 

 

p ql  clm Ia  

(electric dipole moment) (magnetic moment) 



 

91 

 

 

 τ p E    τ m B  

(torque) (torque) 

 

eU   p E   
m

U   m B   

(potential energy) (potential energy) 

 

 0

34 r







m r
A  

 (vector potential) 

 

e
 E  *

0 m
   B   

(electric field)  (magnetic field) 

 

 ( *

m
 H ) 

 

3

04
e

r






p r

 *

34
m

r






m r

 

(electric scalar potential) (magnetic scalar potential) 

 

0 E  0 B  

 

3 5

0

1 3( )
[ ]

4 r r


  
p p r r

E  0

3 5

3( )
[ ]

4 r r





    

m m r r
B A  

 

3

0

(2cos sin )
4

r

p

r
 


 E e e  0

3
(2 cos sin )

4
r

m

r



 


 B e e   

(Spherical coordinates) (Spherical coordinates) 

 

5

0

2 2 2

[3 3
4

( 2 ) ]

x y

z

p
zx yz

r

x y z


 

  

E e e

e

 

0

5

2 2 2

[3 3
4

( 2 ) ]

x y

z

m
zx yz

r

x y z




 

  

B e e

e

 

(Cartesian coordinates) (Cartesian coordinates) 

 

 

REFERENCES 

P.A.M. Dirac, Proc. Roy. Soc (London) A133, 60 (1931); Quantized Singulaities in the 

Electromagnetic Field. 



 

92 

 

R.P. Feynman, R.B. Leighton, M Sands, The Feynman Lectures on Physics, The New 

Millennium Edition, volume II (Basic Books, 2010). 

E.M. Purcell and D.J. Morin, Electricity and Magnetism, 3rd edition (Cambridge University, 

2013). 

R.J. Oppenheimer, Lectures on Electrodynamics (edited by Syu-ichi. Kusaka) [in 

Japanese, by Minoru Kobayashi (translation)]. 

Isaac Asimov, Understanding Physics, Volume II, Light, Magnetism, and Electricity 

(Dorset Press, 1988). 

M.H. Shamos, edited, Great Experiments in Physics: Firsthand Accounts from Galileo to 

Einstein (Dover, 2012). 

J.C. Slater and N.H. Frank, Electromagnetism, 2nd edition (Dover, 2011). 

J.D. Jackson, Classical Electrodynamics, 3rd edition (John Wiley & Sons, 1999). 

W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edition 

(Addison-Wesley, 1962). 

D.J. Griffiths, Introduction to Electrodynamics, 4th edition (Cambridge, 2017). 

H.C. Ohanian, Classical Electrodynamics (Allyn and Bacon, 1988). 

T. L. Chow, Introduction to Electromagnetic Theory: A Modern Perspective (Jones and 

Barnett, 2006). 

S.J. Blundell, Magnetism; A very Short Introduction (Oxford, 2012). 

H.D. Young and R.A. Friedman, University Physics with Modern Physics, 13-th edition 

(Pearson, 2012). 

J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 3rd edition (Cambridge, 

2021). 

J.S. Townsend, A Modern Approach to Quantum Mechanics, 2nd edition (University 

Science Book, 2012). 

D.J. Craik, Electricity, Relativity and Magnetism: A Unified Text (John Wiley & Sons, 

1999). 

G.B. Arfken, H.J. Weber, and F.E. Harris, Mathematical Methods for Physicists: A 

Comprehensive Guide, 7th edition (Elsevier, 2013). 

 

APPENDIX-I 

Vector potential A and magnetic field due to magnetic moment 

(Cartesian coordinates) Mathematica Program 
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APPENDIX-II 

Vector potential A and magnetic field due to magnetic moment 
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(Spherical coordinates) Mathematica Program 

 

 


