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Leonhard Euler (15 April 1707 — 18 September 1783) was a pioneering Swiss mathematician
and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and
graph theory. He also introduced much of the modern mathematical terminology and notation,
particularly for mathematical analysis, such as the notion of a mathematical function. He is also

renowned for his work in mechanics, fluid dynamics, optics, and astronomy.

http://en.wikipedia.org/wiki/Leonhard Euler




Joseph-Louis Lagrange (25 January 1736, Turin, Piedmont — 10 April 1813, Paris), born
Giuseppe Lodovico (Luigi) Lagrangia, was an Italian-born mathematician and astronomer,
who lived part of his life in Prussia and part in France, making significant contributions to all
fields of analysis, to number theory, and to classical and celestial mechanics. On the
recommendation of Euler and d'Alembert, in 1766 Lagrange succeeded Euler as the director of
mathematics at the Prussian Academy of Sciences in Berlin, where he stayed for over twenty
years, producing a large body of work and winning several prizes of the French Academy of

Sciences..

http://en.wikipedia.org/wiki/Joseph Louis Lagrange

This note was written in part for the Classical mechanics, and is revised for the present course.

13.1 Line integral

We start to discuss the calculus of variations with an integral given by the form

3= [ v,y 0dx,
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where y' = dy/dx. The problem is to find has a stationary function y(X) so as to minimize the
value of the integral J. The minimization process can be accomplished by introducing a

parameter &.
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((Fundamental lemma))
If

TM (X)n(x)dx=0

X

for all arbitrary function 7(X) continuous through the second derivative, then M(X) must

identically vanish in the interval X, <X<X,.

From this fundamental lemma of variational and Eq.(1), we have Euler equation
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(= 2
5 d(5') 2)



J can have an stationary value only if the Euler equation is valid. The Euler equation clearly
resembles the Lagrange's equation.

In summary,

J=[f(y.yxdx.

X
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gy dx oy’

13.2 Euler- Lagrange's equations

Now we consider the calculus of variation for the integral
‘J = J‘ f (yla y27"') yna yl'a yzva"'a yn" X)dx

We may introduce & by setting

Y = Yi(X)+éen(x),
Y, = Y,(X) +&n,(X),

Yo = Yo (X) + &77,(X)
where Y,(X), ¥,(X), ..., are the solutions of the problem,

m(x)=m,(%)=...=n,(x)=0,
(%) =m,(%)=...=1,(X)=0.

J has a minimum at £= 0,
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Formally, this can be written as

o of d o of
A = — ——(—)]oy,dx=0
Pi L o o
This is the assertion that J is stationary for the correct path. dy, is the virtual displacement. By an

obvious extension of the fundamental lemma, we have
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13.3 Hamilton's principle

William Rowan Hamilton (4 August 1805 — 2 September 1865) was an Irish physicist,
astronomer, and mathematician, who made important contributions to classical mechanics, optics,
and algebra. His studies of mechanical and optical systems led him to discover new
mathematical concepts and techniques. His greatest contribution is perhaps the reformulation of
Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the

modern study of classical field theories such as electromagnetism, and to the development of

quantum mechanics.

http://en.wikipedia.org/wiki/William Rowan Hamilton

Hamilton's principle
Hamilton's principle states that the physical path taken by a particle system moving between
two fixed points in configuration space is one for which the action integral is stationary under a

virtual variation of the path. The action (action integral) is defined as

2
J.L(qpqzrna qnaqlanr-'aqnat)dt .
1



The Hamilton's principle is sometimes also called the principle of least action.
The instantaneous configuration of a system is described by the values of the n generated co-

ordinates

(q15q27q3a---aqn)

and corresponds to a particular point in the configuration space.

t+dt
(QI"'d(h,QZ*'dQZam, On

ath of the motion of the system

(qlqua-'-a qn)

Fig.  Configurational space
The Lagrangian of monogenic system is defined by
L=T-V

where T is the kinetic energy and V is a potential energy of the system. Here we define the line

integral as

t
I = j L(qlaqzr'-: qnan5q27'--aQn ,t)dt .
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The motion of the system from time t; to time t, is such that the line integral has a stationary
value for the actual path of the motion. We can summarize the Hamilton's principle by saying

that the motion is such that the variation of the line integral | for fixed t; and t; is zero,

t,
A = 5[ L), Gy Gy Gy, G, ) = 0.

t

When the system constraints are holonomic, Hamiltonian's principle is both a necessary and

sufficient condition for Lagrange's equation,

d oL, oL
() - =0.
dt og,” oq;
Hamilton's principle = Lagrange's equation
t
5JLdt=0, i(a_lj)_ﬂzo
dt oq,” oq;

t

Then the Euler-Lagrange's equation corresponding to | becomes the Lagrange's equation of

motion.

13.4 Derivation of Lagrange's equation.

We consider the Hamilton's principle with

t
I = I L(qlanr--’ qnanaqza'--:qnat)dq s

t

_a
oa

t
Sl da = 5[ L0, 000y Gy Gy eors G, )AL = 0,
4

where



ql = (jl(t) + anl(t) s
0, = q, (1) +an, (1),

g, = qn(t) +an, (t) R

and
G =aM®+an'®),
G, =G, (t) +an,' (),
P
with

nt)=nt)=..=n,)=0

771(t2) = ﬂz(tz) =..= nn(tz) =0

q;j(t2)

t)
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| has a minimum at o = 0.
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Here we note that
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where &; is a virtual displacement.

((Note)) Formulation

Formally we can describe the Hamilton's principle as follows (formulation).

t2
A = 5[ L@, 8yrr-rr Gy Gy Gy o G D

&

o o
:daa_jL(qlaqza"':qn:qlﬁqza""qn’t)dt
at

t,
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4

Here
t, . t,
J‘&%dt - J‘ii(%jdt
; 04, 0 ;04 dt\ oa
oq oL, ‘toq d (oL
[aq a0 ]t1 _J.i_ T~ dt
d; i Oa dt{ aq,
P Oa dt 8q
with

da%:&]ia () =a(t,)=0.
(24

Then we have
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leading to the Lagrange's equation

13.5 Definition of cyclic
If the Lagrangian of a system does not contain a given co-ordinate ;, then the coordinate is
said to be "cyclic" or "igonorable".

The Lagrange equation of the motion is given by

dfa) a_
dt{oq, ) oq,
The momentum associated with the coordinate qj is defined as

S
i aqj :

The terms canonical momentum and conjugate momentum are often also used for p;. using the

expression for p;, the Lagrange's equation can be rewritten as

dp; _ oL
dt  og;

For a cyclic coordinate,

13



=20 (gj is not included in L)
iy,
dt

This means that

p; = const.

((Conservation theorem))

The generalized momentum conjugate to a cyclic co-ordinate is conserved. If the system is
invariant under the translation along a given direction, the corresponding linear momentum is
conserved. If the system is invariant under the rotation about the given axis, the corresponding
angular momentum is conserved. Thus the momentum conservation theorems are closely

connected with the symmetry properties of the system.

13.6 Example
13.6.1 Free falling

14



y=Ypatt=0

y=0att =t

At t = 0, the particle is at y = Y,. The particle starts to undergo the motion of free falling and
reaches Y = 0 at t =t,. The value of Y is related to ty by

2

1
Yo =Egt0 .

What is the time dependence of y(t) such that the line integral | over the Lagrangian L takes a

minimum?
|
L =§m[y(t)] —mgy(t),

15



| =tledt.
0

((Solution))

We assume that
y(t) = a+bt +ct?,
with

2

1
y(0) =y, =a=59to )

y(t,)=a+bt, +ct,’=0.
The value of | can be calculated as

mt,’

I(c)zT(c2 +Cg —%gz).

Taking the derivative of | with respect to ¢, we have a local minimum such that

ae _,
oc

or

16



which leads to b = 0. Finally we have

g

y(t) = Yo _E

((Mathematica))
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1 - 2
L= my’[t]"-mg y[t];

Y[t ] := Al +Blt +C1t%;
L1=L/.y->Y//Simplify;
0
11 - r L1dt // Simplify;
0
y[t 1=Y[t];
_ =2 402 .
eql = Solve[{y[O] =3 t0°, y[t0] = } {AL, Bl}]

g t0?

1
{{5195 (-2C1t0-gto), Al >

)

12=11/.eql[[1]] // Expand // Collect[#, C1] &

L c1?meods Zcigmeod- L g2 mtod
6 6 8

eq2 = Solve[D[12, C1] == 0, C1];

Al =Al1/.eql[[1]]

g 102
2

Bl1=B1/.eql[[1]] /-eq2[[1]]
0

Cl=Cl/.eq2[[1]]
g

2

13.6.2 Approximation: trial function for simple harmonics

We consider the Lagrangian for the simple harmonics,

18



L =%m|292 —mgl(1-cos®).

For 6= 0,

2 4
cos0=1—€—+9—+...
21 4

0> o

1 .
L=—ml*¢* —mgl(— - ).
2 9(2 24)

The Lagrange's equation is given by

1(6_Lj=a_t
dt\og) 066

Since
a—L. =ml%g. and
00
we have
.. 93
mI249+mgI(49—?) =0,
or
3
é+a)02(e—‘9—) =0,
6
where

oL

00

93
= _mgl(e _?) s
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When

=1, E= (>0)

6

we get

X+ @, Xx—ex’ =0,
L=t - x)+Ext
2 ’ 4
We now consider the integral

t
= L%yt

tl
When ¢=0,

X = A, sin(a,t)

20



P X

>t

T/w

For small £ (= 0), we assume that

X = Asin(awt) (trial function)

X = Awcos(at)

Here A and o are unknown parameters. We choose

t1 = O, t2 = 2—7[ .
w

X(t)=0, X(t,)=0 (fixed).
27/ @ P 27/ @ P

Idtsinzwt=—, Idtcosza)t=—

0 w 0 w
2rlw

J.dt sin’ wt = 3—7[

)

0

Using these results, we have

21



| :lA2£( z_ @, )+£§£A4
2 o 44w

| is a function of A.

Ly )+3—8£4A3
oA o 16 @

e R

When ﬂ=0, we have
OA

8§A2 —w, -0,
4
or
o=0,(1-—~ A = g (l-—— ),
8 16
since
2
S
6

Then the period is obtained as

T.z:za AY).
0



13.7 VariationalD (Mathematica program)

We suppose that the functional is given by f(y,y',x) . Using the VariationalD

[Mathematica], one can calculate

of d of

()

oy dx oy’

b

where the variation of the integral J is defined as

tof d of
& = j 5y~ ax oy
VariationalD

VariationalD[f, u[x], X]
returns the variational derivative of the integral ff d x with respect to U [X], where the integrand f is
a function of U, its derivatives, and X.

VariationalD[f, u(x, y, ...1, {X, ¥, ...}]
returns the variational derivative of the multiple integral ff dXxdy...with respectto U[X, Y, ...],
where f is a function of U, its derivatives and the coordinates X, Y, ...

VariationalD[f, (U[X, ¥V, ...]5 VX, Vs o]y oouds (X5 Yy oon)]
gives a list of variational derivatives with respectto U, V, ....

13.8 EulerEquations (Mathematica program)
Using the EulerEquations [Mathematica], one can derive the Euler (Lagrange, in physics)

equation given by

o d of
5 oy (1)

23



EulerEquations

EulerEquations[f, u[(x], X]
returns the Euler—Lagrange differential equation obeyed by U [X] derived from the functional f,
where f depends on the function U [X] and its derivatives as well as the independent variable X.

EulerEquations[f, u(x, ¥, ...]1, {X, ¥, ...}]
returns the Euler—Lagrange differential equation obeyed by U [X, Y, ...].

EulerEquations[f, {U[X, ¥, ...], VX, ¥, ...]5 o)y (X, Y, -0
returns a list of Euler—Lagrange differential equations obeyed by U [X, Y, ...], V[X, ¥, ...],

13.9 Firstintegral (Mathematica program)

Here we note that the Euler (Lagrange) equation can be rewritten as

of d of

———(f-y=)=0, 2
x dx( yay') 2)
since
A _d o A df d
ox dx yay' ox dx dx yay'
or
L S A B S LA B L AR R
ox dx oy ox ox oy~ oy oy' dx oy’

S B/ A ML N 4

oy dx " oy' oy dx oy’

(a) The case when f is independent of X.

Since éﬂ =0 in Eq.(2), we have
X

24



d ,of
—(f-y'—)=0,
dx oy
or
f— y'i =constant. 3)
oy
Thus, when f is independent of x, FirstIntegrals[f, y(X), X] leads to the calculation of f — y'%.

This corresponds to the Hamiltonian (or energy function) in the physics.

(b) The case when f is independent of'y.

Since a =0 in Eq.(1), we have

i =constant. 4)
oy

When f is independent of y, FirstIntegrals[f, y(x), x] leads to the calculation of %

((Note))

When you use FirstIntegrals[f, y(X), X] in your Mathematica program, yo do not have to check
in advance whether f is independent of y or f is independent of X. The Mathematica will check for

you automatically. In this sense, the FirstIntegrals are a very convenient program.

25



Firstintegrals

Firstintegrals[f, x[t], t]
returns a list of first integrals corresponding to the coordinate X[t] and independent variable t of the
integrand f.

Firstintegrals[f, {x[t], y[t], ...}, 1]
returns a list of first integrals corresponding to the coordinates X, Y, ... and independent variable t.

((Mathematica))

Here is an example of the simple harmonics. The Lagrangian is given by

L(x,%,t) = L —Lie
2 2

Needs["VariationalMethods "] ;

1
L=—mx"[t]? - Ekx[t]z;

N

EulerEquations[L, x[t], t]
~kx[t] -mXx”"[t] =0

Firstintegrals[L, x[t], t]

2

{Firstlntegral[t] e% (kx[t] +mx’[t]2)}

VariationalD[L, x[t], t]

-k Xx[t] -mX"’[t]

13.10 Shortest distance between two points in a plane

26



Y2

Y1

X1 X2

Fig.  Varied paths of the function of y(x) in the one dimensional extremum problem.

2
ds = \/dx* +dy* =dx 1+(%] = dxy/1+y"
\ X

The total length of any curve going between points 1 and 2 is

| = des = def (y,y',x),

X X

with

f(y,y,x)=41+y".

We calculate the Euler equation

27



a2 T=0
oy x' oy

Since

we have
y'=a (= constant).
or
y=ax+b,
which is the equation of the straight line. The constants a and b are determined by the condition
that the curve passes through the two end points (X, Y1) and (X2, Y2).
In general, curves that give the shortest distance between two points on a given surface are

called the geodesics of the surface.

((Mathematica))
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Clear["Global "]

<< "VariationalMethods™™

F=\/1+y’[x]2

1+y [x]?

eql = VariationalD[F, y[X], X]

y” [X]
(1+y [x]

2)3/2

eq2 = EulerEquations[F, y[X], X]

oYX

<1+y/ [X]2)3/2

eq3 = Firstintegrals[F, y[X], X]

{Firstlntegral yl - - Y [X] , Firstintegral [X] - - ;
1+y[x]? 1+y[x]2
2
" [X
oqh - Yy’ [x] _ 2
14y [x]?
, 2
Y’ [X] 2
14y [x]?
egb = Solve[eqg4, v " [X]]
C C
YIX] »-——=1, (Y [X] > ——
( S s )

Since y'[x] is constant, y[x] is a straight line.

13.11 Minimum surface of revolution

29



Suppose we form a surface of revolution by taking some curve passing between two fixed end
points, and revolving it about the y axis. The problem is to find the curve for which the surface

area iS a minimum.

ds = /(dx)* + (dy)* = dx/1+y"

The area of a strip of the surface is

27xds = 27x+/1 + y™? dx

A= [ (y,y,xdx

X

with

f=1f(y,y,x) =2m/1+y"”

Since

30



of _ 0. of

ay ,
we have

2 %) ~o0.
or

V= % ) xza— a’
Then we get

y-af 2
or

X = acosh(y_b),

= aarccos h(g) +b,

which is the equation of a catenary.

((Mathematica))
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Clear["Global " %"]

<< "VariationalMethods ™"

F=xV1+y~[x]?
X\/1+y’[x]2

eql = VariationalD[F, y[X], X]

Sy [X] -y [X]8 - Xy [X]
<1+y/[x]2>3/2

eq2 = EulerEquations[F, y[X], X]

Y IX] -y X3 o xyIx]
<1+y/[x]2>3/2

eqg3 = Firstintegrals[F, y[X], X]

{Firstintegral [y] > Xy
1+y[x)?
2
Xy’ [X
eq4= # == 2
V1+y [x]2
2y w12
XTY'IX]T 2
1+y'[x)?
egb = Solve[eqg4, vy~ [X]]
{{y' ) > -} [y X
a“ +

egbl = eqg5[[2]] /- Rule » Equal

32



eqg6 = egb1[[1]]
y’ [XJ - L
—a2+x2

eq7 = DSolve[{eq6, y[a] == b}, y[x], x] // Simplify
{{yIx] >b-alog[a] +alog|x+ PG 111
eq8 =Y ==y[Xx] /. eq7[[1]]
Y=b-alogla] +alog|x+ ~a? + x? |
eq9 = Solve[eq8, x] // Expand
b Y b.Y
[x- % acaa- % aeaall
eql0=X==x/.eq9[[1]] /- {a-»1, b2}
e2-Y 24

X = +
2

ContourPlot[Evaluate[eql0], {X, 0, 5}, {Y, -1, 5}, ContourStyle - {Red, Thick},
Background - LightGray]

5[ : : : : ]

13.12 The brachistochrone problem

33



The brachistochrone problem was one of the earliest problems posed in the calculus of
variations. Newton was challenged to solve the problem in 1696, and did so the very next day. In
fact, the solution, which is a segment of a cycloid, was found by Leibniz, L'Hospital, Newton,
and the two Bernoullis. Johann Bernoulli solved the problem using the analogous one of
considering the path of light refracted by transparent layers of varying density. Actually, Johann
Bernoulli had originally found an incorrect proof that the curve is a cycloid, and challenged his
brother Jacob to find the required curve. When Jacob correctly did so, Johann tried to substitute
the proof for his own.

BRACHIS = SHORT
CHRONOS = TIME

The well-known problem is to find the curve joining two points, along which a particle
falling from rest under the influence of gravity travels from the higher to lower point in the least

time.

Y

ds

ds = /1+ y”?dx

34



If'y is measured down from the initial point of release,
1o
5 mv-—mgy =0,

or

V=4,209y.

Then the time t;, is given by

t12=j Lry dx = Jj' Ly dx,

2oy 29

and f(y, y', X) is defined as

2

I+y'

f(y,y,x) = 7y

Euler-Lagrange equation;

dfof)_of
dx\oy') oy’

Since

35



of P P of 1 y' y'
_ = 1 20 - , o _ _ ’

we have

E{ﬂgzﬂ__gL__
dx(dy') dx \Jy+y?)
{y!(l + va)+ yzyv yn}
yn y(l + y|2 ) _ y,
24y(d+y"”)
y(l + yv2 )
_2y"y(+y?) - yR 1+ yR+2yy")
Z[y(l + y|2 )]3/2
_ 2yny_ yv2 (1+ y,z)
2[ y(l + y12 )]3/2

Then we get

L a2y =ytley)
372 y =
2y Ay +y?)]

_#WyNZ(l_i_ y12)3/2 _[2y"y_ y'2(1+ y'z)]zo

_(1+ y12)2_2yny+y12(1+y,2)]:0

—(I+y?*)=2y"y=0

Thus we find
1
I+y" 2y

36



or

yH
I+y

0

1 1 1
Yo,

or
lln(l +y?)+ Lin y = const
2 2 '

((Mathematica))

Brachistrochrone prblem

~

<< "VariationalMethods

- 1 +y"[x]? ;
y [X]

egl = VariationalD[F, y[x], X]

~1-y [X]%-2y[X] Yy [X]

3 [ 1y x)2 | 3/2
2 y[X] (—ym )

eg2 = Firstintegrals[F, y[X], X]

{Firstintegral [x] - -

eg3 = Firstintegral [X] /. eq2[[1]]
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1y’ [x]2
yIx] Yy [X]
eq4 = eq3? == — // Simplify

1 1
yix] +y[x]y [x]? 2a

eg5 = Solve[eq4, v " [X]]

(y'1x) >t %]”X] 1L [y (x] -

eqé =y " [X] - (Y"[X] /- eq5[[2]]) ==

Civ/-2a+ry[x] v Ix] =
VY I[X]

V2a-y[X]

eq’ = - +Y [X] =0;
VYI[X]

This equation can be solved as

dx , Y
dy_ 2a-y

or

u
Xz‘J‘y dlu
0 2a-u

38




, u
eq7=SimpIify[J(;y P du, {O<y<2a, a>0}]

VJy (-2a+y)+2a+/2a-y ArcTan[;]

1.2a

2a-y

rulel = {y - 2aSin[e]2};

Y=y /. rulel

2aSin[6]2

T
eqg8 = FullSimpIify[eq? /. rulel, a>08&0<6 < 5]
2a (6-Cos[e] SIn[a])

Xl1=eq8 /. {a-»1,6->¢/2} // Simplify
¢ -Sin[¢]

Yi1=Y/.{a-»1,6->¢/2}

2 Sin[?]2
2
ParametricPlot[{X1, Y1}, {¢, O, 6},
PlotStyle » {Hue[0], Thickness[0.01]},
Background -» GrayLevel [0.7],
AspectRatio -» Automatic, AxeslLabel -» {""'x", "y'"}]

2.0
1.3
1.0
0.5
: - - X
0 5 10 15
13.13 Cycloid

The cycloid is the locus of a point on the rim of a circle of radius rolling along a straight line.
It was studied and named by Galileo in 1599. Galileo attempted to find the area by weighing
pieces of metal cut into the shape of the cycloid. Torricelli, Fermat, and Descartes all found the
area. The cycloid was also studied by Roberval in 1634, Wren in 1658, Huygens in 1673, and
Johann Bernoulli in 1696. Roberval and Wren found the arc length (MacTutor Archive). Gear

39



teeth were also made out of cycloids, as first proposed by Desargues in the 1630s (Cundy and
Rollett 1989).

((Mathematica))

FTRRT N
()

el XL

A
A B C
,/'T \\ »X
/, : \\
Il [0) : \\
'Y ! » |
0 \ -0 ,
/7
P N /,
AB = (R¢.0)
AP = (R(¢ —sin$),R(1- cosg))
Arc(PB)=R¢

13.14 The branchistochrone problem with initial velocity
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C : : o 1
When the particle is projected with a kinetic energy Emvo2 , we have

lmvz—-mgy—lmv2—mgz
2 2

where

then we have

=\29(y+2)

oYL

1+Y'2

where

Y=y+12

Euler-Lagrange's equation

Y(1+Y?)=2a
or

= (=

dx (Y )
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Forx=0,Y =z,

x:J' 2au—udu

z

= a[arccos(l — i) —sin[arccos(l — i)] —afarccos(l — E) —sin[arccos(l — E)]
a a a a
arccos(l — %) = arccos(l — %) =0

arccos(l — E) =0,
a

cos@ozl—i, cosﬁzl—u,
a a
VZ
=0, z=-—"=a(l-cos§,
y 29 ( )

X=a[(d —sinf) — (6, —sinb,)]
y=a[(l-cosd)—(1-cosb,)]

Fig.  Cycloid motion with the initial velocity at y = 0 which is changed as a parameter.
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V, = y/20R(1 - cos8,) , where & = 0, 76, 2/3, 72, 24/3, 576, and ~.

http://www.sewanee.edu/physics/ TAAPT/TAAPTTALK html?x=47&vy=53

http://mathworld.wolfram.com/BrachistochroneProblem.html

http://curvebank.calstatela.edu/brach/brach.htm

13.15 Simple pendulum

We consider a simple harmonics
Y 1 .02
L=L(4,0,t)= Eml2 ¢ —mgl(1—cos®)

L is independent of t.

Lagrange equation

é+%sin920,

with

First Integral: L is independent of t.
0* + 2w,” (1 - cos @) = const

Initial condition: (0) =v(0) and (0)=0
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2
%6}2 +w,"(1-cosf) :V(%

2
u@)= w02(1 —cos®) is a potential and % 1s the total energy. When v(0) = 2w, is the critical

angular velocity. For

For v(0) < 2w, , a sinusoidal oscillation is observed.
For v(0) < 2w, , a continuous rotation occurs. In other words, d monotonically increases with

increasing t.

See the lecture note on the physics of simple pendulum in much more detail.

http://www?2.binghamton.edu/physics/docs/physics-of-simple-pendulum-9-15-08.pdf

((Mathematica))
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Clear["Global "]

<< "VariationalMethods™""

1
L=Em/ze'[t]z—mgf(1—COS[9[t]])

—gm¢ (1-Cos[o[t]]) +%m/29’[t]2

eql = VariationalD[L, e[t], t]
-m/ (gSin[e[t]] +7/6”7[t])

eg2 = EulerEquations[L, e[t], t]
-m/ (gSIn[o[t]] +/67 [t]) =
eqg3 = Firstintegrals[L, e[t], t] // Simplify

{Firstintegral [t] > % m¢(-2g (-1+Cos[o[t]]) +/9’[t]2)}

eg4 = Solve[eq2, e""[t]]

gSin[o[t]]
~gsinioltlly)

{{9”[t] BN

egs = e [t] - (67 [t] /. eqd[[1]]) =

gSin[o[t]]
?

+0"7 [t] =

eq6 = eqg5 /.- {g - (sz} // Simplify

w0? Sin[o[t]] +6" [t] =
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phase[{e0_, vO_}, «0_, tmax_, opts__ ] :=
Module[{numsol, numgraph},
numsol =
NDSolve[{ «0? Sin[e[t]] +V"[t] =0, V[t] == 6" [t], 6[0] = &0, V[0] = vO},
{e[t], v[t]l}, {t, O, tmax}] // Flatten;
numgraph = Plot[Evaluate[e[t] /. numsol], {t, O, tmax}, opts,
DisplayFunction - Identity] ]

phlist =
phase[{0, #}, 1, 20, PlotStyle » Hue[5 (#-0.1)], AxesLabel » {"t", "e"},
Prolog -» AbsoluteThickness[2], Background - GrayLevel [0.5],
PlotRange » All, Ticks » { Range[0, 10], = Range[-3, 3]},
DisplayFunction -» Identity] & /@Range[0.1, 2.0, 0.1];
Show[phlist, DisplayFunction - $DisplayFunction]

- Graphics -

phlist =
phase[{0, #}, 1, 20, PlotStyle » Hue[2 (#-1.9)], AxesLabel -» {"t", "6"},
Prolog -» AbsoluteThickness[2], Background - GrayLevel [0.5],
PlotRange -» All, Ticks » { Range[0, 20], = Range[O, 8]},
DisplayFunction - Identity] & /@Range[1.9, 2.3, 0.02];
Show[phlist, DisplayFunction - $DisplayFunction]
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- Graphics -

phlist =
phase[{0, #}, 1, 40, PlotStyle -» Hue[10000 (# -2)], AxesLabel -» {"t", "o"},
Prolog -» AbsoluteThickness[2], Background - GrayLevel [0.5],
PlotRange -» All, Ticks » { Range[O, 20], = Range[O, 81},
DisplayFunction - Identity] & /@eRange[2, 2.0001, 0.0000017] ;
Show[phlist, DisplayFunction -» $DisplayFunction]

13.16 Ginzburg-Landau equation for superconductivity

We introduce the order parameter y/(r) with the property that

v (Ny(r) =n,(r).
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which is the local concentration of superconducting electrons. We first set up a form of the free

energy density Fy(r),

2 2

+—,

1
’ 87

2m

h *
Cv-4 Ay
| C

1
F.(r)=F, +aly| + Bly|" +

where £ is positive and the sign of « is dependent on temperature. We must minimize the free

energy with respect to the order parameter y(r) and the vector potential A(r). We set
I= j F(r)dr,

where the integral is extending over the volume of the system. If we vary
y(r) >y (r)+oy(r), A(r) = A(r) +0A(r),

we obtain the variation in the free energy such that

. 2
2 1 (A
ay + Bly| Vo [TV—%AJ y =0,

and the current density

* %2

h *. *
d Sy Ve —yWVy |l-——A,
2mi mc

S

or
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*

3=y GV =L Ay (-2 =LAy ]
m | C | C

At a free surface of the system we must choose the gauge to satisfy the boundary condition that

no current flows out of the superconductor into the vacuum.

=0

((Mathematica))
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Derivation of Ginzburg Landau equation

Clear["Global "]

S~

<< "VariationalMethods
Needs["VectorAnalysis "]
SetCoordinates[Cartesian([X, Y, z]1];

A={Al[X, Y, z], A2[X, VY, z], A3[X, VY, Z]1};
1
edl =a (¥ [x, ¥, 21 ¥CIX, ¥, 2]) + = B (¥X, ¥, 212 yc[x, y, z]%) +

1 A q
—_ ((— Grad[¢¥[X, YV, 2]1] - — A ¥[X, VY, z])-
2m i c

A
(— - Grad[yc[X, Y, z]] - S A yc[Xx, VY, z]]) // Expand;
i C

1

eg2 = VariationalD[eql, yc[X, Yy, z], {X, VY, z}] // Expand

2 2
auix, y, z] s TALDG Y, ZITVIX, Y, 2]

2c?m
o’ A2[x, y, z]2¥[x, y, 2]  Q*A3[X,y, Z)%U[X,y, Z]
202m 2C2m
BUIx, Y, z12yc[x, y Z]+iQEwM,y,Z]A3@ﬁﬂwx,y,z]+

2cm

iqhA3[x,y, z] 00D x,y, z] 7n2y0.0.2) (x,y, 7]

cm B 2m "
iqay[x,y, z] A20:1.0)x vy, z] +thA2w,y,z]waﬁHx,y,ﬂ

2cm cm
n?y 20 (x, y, z] iqnyix,y, z] ALO9 [x, y, 7]

2m 2cm

iqhAl(x,y, z] 100 (x,y, z] 7n2y20.0 (x, y, z]

cm B 2m

+
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We need to calculate the following

A

OP1 := - D[#, x] - = Al[X, Y, z] # &
1
h q

OP2 = |- D[#, y] - — A2[X, Yy, Z] # &
i o
h q

OP3 := |- D[#, z] - — A3[X, Y, Z] # &
i C

eqg3 =

a¥[X, Y, z] +BY[X, Y, z12¥C[X, Y, 2] +
1
2_ (opl[opl[lﬁ[x’ Y, Z]]] +OP2[OP2[dI[X1 Y, Z]]] +
m

OP3[OP3[¥[X, ¥V, z]11]1) // Expand

g’ AL(X, y, z]? ¥ [X, Yy, Z]
2¢c?m :
Q2 A2[X, Y, Z]2Y[X, Y, Z] . o? A3[X, Y, Z]%2 Y [X, Y, Z] .
2¢?m 2¢%m
2 igqny(x,y,z] A3®0Y(x, y, z]
BY[X, Y, Z]"YC[X, Y, Z] + +
2cm
iqaA3x,y, 2]y (x,y, 2] n?y002 (x,y, 2]
cm 2m

iqayx,y, z] A20.1.0) (x, vy, z] . iqaA2[x,y, z] ¥010 [x, vy, z]

aY[X, y, zZ] +

2cm cm
w220 (x,y, z] iqnylx,y,z] ALLO0x, y, z]
2m 2cm
iqnrAL[x,y, z] ¢ 500 [x,y, z] 72200 [x, y, 7]
cm ) 2m

eq2 -eq3 // Simplify
0

13.17 Fermat theorem (optics)
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<

6,

05) N

o1 ni

Fermat’s principle in geometrical optics states that a ray of light travelling in a region of variable
refractive index follows a path such that the total optical path length (physical path length) is

stationary.

We can derive Snell’s law of refraction at an interface.

ds = dxy/1+[y'(0OF .

Suppose that the index of refraction n depends only on y. The total time T is
t1
T :j—n(y) 1+ y”dx.
»C
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Since the integrand does not contain the independent variable x explicitly, we use the first

integral

f=n(y)}W1+y?,

of
f-y—=0,
oy’

or

N(YW1+Y? - yn(y)——=n(y)———
for o

where K is constant. y’ is the tangent of the angle ¢ between the instantaneous direction of the ray

and the X axis.

Since y'=tang,

Ly
) = g s

or

N, cosg =n,cosg,,
or
Snell’s law
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/s 7
n, COS(E -6)=n, COS(E -0,) '

n,sing, = n,sin6,

13.18 Extension of Hamiltonian's principle to nonholonomic systems

It is possible to extend Hamiltonian's principle, at least in a formal sense, to cover certain
types of nonholonomic systems. With nonholonomic systems the generalized co-ordinates are
not independent of each other, and it is not possible to reduce them further by means of Egs. of

constraint of the form,;

f(q,,0;,..-.0,,t) =0.

It appears that a resonably straightforward treatment of nonholonomic systems by a variational

principle is possible, only when Eqgs. of constraint can be put in the form

> a,dg, +adt=0,
k=1

a linear relation connecting the differentials of q's. Note that aj and a; may be functions of g's

and t.
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Ok (t2)

)

89y

t

The constraint Eqgs. valid for the virtual displacement are
z a =0, (1)
k=1

where t = const. We can use Eq.(1) to reduce the number of virtual displacements ti independent

ones.

13.19 Method of Lagrange undetermined multipliers
If Eq.(1) holds, then we have

ﬂlialk&qk =0. (2)

where /4 are undetermined quantities;
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ﬂq = ﬂ1(q19q2="" qn’t)

In addition, we have Hamilton's principle given by
t2
sfLdt=o0,
t1

is assumed for the nonholonomic system.

t
f ., 0L d ol

A= |dt) (————)H =0 3)
Jl kZ oq, dtog,

From Eq.(2)

t

[dtY" 28, =0, (4)

t kI

The sum of Eq.(3) and (4) then yields the relation

t

2 oL dal {&

dtY (= - Y Aa,)&, =0
Gy Tarog, &R

The &, 's are still not independent. They are connected by the m relations.
> a, &, =0 (1=1,2,..,m).
k=1

or
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a0, +a,00, +....... +a,,, =
a,q, +a,,q, +....... +a,,00,=0

| é‘qlaa:]za ----- 7mn—m>| 5qn—m+1’5qm+2’ """ ’é‘qn |

The first (n - m) of these may be chosen independently.

t
f.Em oL d oL m

Ay (5= = o=t Y A2,)
tjl éaqk dt &g, .zﬂ‘ o

t
f - oL d oL m
A2, (G o T &AM =0

E[ k:g:ml 6qk dt aqk %‘411 1k K

Suppose that we now choose the A's to be such that

fork=n-m+1,n-m+2,..., n. With the 4, determined above, we can write as

t
. ok doL &

Aty (oo Y 48,)8, =0
f( kZ} aqk dt aqk |Z:1: i “

where & is independent. Here it follows that

_____+Z,11a|k:0, withk=1,2,.....,n-m.

Finally, we have
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oL doL I

L _ 8% N e, =0
oq,  dt ad, éﬂ” «

fork=1,2,...,n.

((Note))

We have now (n + m) unknown parameters

(qla 0z, ... ’ qn),
(A1, A2y ey Am),

The additional equations needed are exactly the equations of constraint liking up the 's

> a,d, +a,=0 1=1,2,..,m)

k=1

13.20
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2 2

2

X +y*=r

The Lagrangian L;

A

<

xdx+ ydy =0

L=T-V :%m(x2 +y?)—mgy

Lagrange multiplier

d oL

— &) -E=x

dt ox

oL
OX

MX = AX

59
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d oL. oL
—(—)——=1 My+mg=A1
dt(i') oy y y g=4y

((Note))

ZFychosH—mgzN%—mg:my

> F =Nsing =N =mx

with

2 2 2

X*+yl=r XX+ Yy =0,

XK+ YW+X+y> =0

U\
MXX = —XX.
r

N
myy =—
;

yy —mgy .

MK+ YY) =~ (X + yy) —mgy
or

d1 .o .
—[—m(X"+y°)+mgy]=0
dt[2 ( y©)+may]
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%m()'(2 +Yy’)+mgy=mgr (energy conservation)

What is the normal force N?

mix = — x>

N
mjy =-~y* ~mgy .
or
o N,
MR+ Jy) =~ (x" + y*) —mgy
S22 N 2
~MX 4+ YT ==X +yT) - moy
Since X’ +y’ =r?,
N 2 2
—2mg(r—y):T(x +Yy")—mgy = Nr —mgy
or
N=mg(3%—2)

When N =0,
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l—gzcosﬁ.
r 3

13.21 Example: Rolling of hollow cylinder on the incline

M

Equation of rolling constraint,
OA=x=r6, or —dx+rdé=0.
Lagrangian L is given by

L=%M)’(2+%I92—Mg(l—x)sin¢,

where | is the moment of inertia and is given by | = Mr? for the hollow cylinder.

A Lagrange multiplier
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d oL, oL

at o ox gsing+
i(a_l_.)_a_L:/” Mr20 —Ar =0
dt 06" 00

with the equation of constraint

X=r0.

These equations constitute three equations for three unknown 6, X, and A.

- gsin¢’
2

G gsin¢,
2r

(friction force of constraint)

13.22 Example: Constraint

A uniform hoop of mass m and radius r rolls without slipping on a fixed cylinder of radius R.
The only external force is that of a gravity. If the smaller cylinder starts rolling from rest on top of
the larger cylinder, use the method of Lagrange multipliers to find the point at which the hoop falls
off the cylinder.
Lagrangian:

L :%m(x2 + y2)+%mr2¢32 —mgy .

The first term is the kinetic energy for the translation of the center of mass. The second term is the
rotational energy around the center of mass, where the moment of inertia for the hoop is

| =mr?.
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Equation of constraint:

X' +y’=(R+r1)"

or
xdx+ ydy =0.
tanﬁzi,
or
_ 2 2
sec’ @ = ydx 2Xdy = (x +2y )d<9,
y y
or

ydx — xdy = (x> + y*)d@ =(R+r)*d6.

Then we have

- ydx — xdy .
(R+r)’
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/ 0' (x,y)
O,
The condition for the rolling without slip:
RO=rg, or rdg —Rdé =0
or
rdg — dx — xdy) =0
¢ R+1) (y y)
Thus the constraint of equation is
rdg — dx —xdy)=0
¢ R+1) (y y) (1)
and
xdx + ydy =0 )

We introduce Lagrange's undetermined multipliers,

. R
mx:/io[(RJr—ry)z]Jr/@x: N, , for 6 3)
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o RX
my+mg:io[m]+lly:Ny, f0r5y

mrig=Ar=N,, for o

where Ny is the torque of the hoop around its center. Note that

r

N, = XN, —yN,).

1) R+I’( y y x)

— — — — R —

OP=00'+0'P, OP = oo'
R+r

Then we have

O'Px(Ne,+N,e,)=-¢N,
.
=— . (xe, + yey)x(NXeX + Nyey)
r

R+r

(XNy - ny)ez

Eq.(3) x X + Eq.(4) xy +Eq.(5) x¢

R(xy = Xy)

MXX + MYy + mgy + mr’gg = A,[rd + RAr) 1+ A XX+ 4,yY)
~0
or
lm>'<2 +lmy2 +mgy +lmr2¢52 =mg(R+r),
2 2 2
or
X+ yr+20y +r’¢? =2g(R+r)
From Egs.(1) and (2),
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r=—(yx-x))

(R+r)2
or
252 ’ .2
r'¢ —m(yx Xy)
R2 2.2 S 2.2
:(R+r)4(y X" = 2XXYY + X°y7)
2
:(R )4[(y2>'(2—2x>'<yy+x2y2)+(x2>‘<2+2x>'(yy+y2y2)]
+r
R2 -2 .2 2 2
:(R+r)4(x +YI)X+ YY)
R® ., .
T (R+r) (X +¥7)
since
XX+ Yy =0.
Thus we get
g =R y) )
" (R+r1)? )

The energy conservation law can be rewritten as

2

R
(R+r1)°

(x> + yH)[1+ ]+2gy =2g(R+Tr). 9)

At the point where the hoop falls off the cylinder, the component of N along the normal direction is
equal to zero.

N, cosd + NxsinH:L(Nyy+ N x)=0,
R+r
or
N,y+N,x=0.

Eq.(3) x X+ Eq.(4) x
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G . Rxy - Rxy 2, \,2
MOX+ Yy +gy) = ﬂo[—(R N r)2]+ ﬂo[—(R N r)2]+/11(x +Y7)

=40 +y)=4((R+r)
=(N, X+ Nyy)

We note that

o:%(xx+yy)=x>'<+x2+yy+y2.

Then we have
m(=%* —y* +gy) = (N X+ N y) = 4 (R+1)". (10)
From Egs.(9) and (10),

X2+y2=29 (R+r|;2_y
I+
(R+7)
(N, X+ Nyy)=/11(R+r)2
=m(-X" -y + gy)
_2(R+r)—2y+

=mg| Y]
1+ —
(R+1)?
Then we have
2(R+r
yo X Rz)
34—
(R+7r)?

from the condition

N,x+N,y=0.

((Another method))

A cylinder of radius r and mass m on top of a fixed sphere of radius R. The first sphere is
slightly displaced so that it rolls (without slipping) down the second sphere. What is the angle q at
which the first sphere loses a contact with the second sphere.
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Energy-conservation law
_ 1 2 15,
mg(R+r)=mg(R+ r)cos¢9+5mvCm +5mr @

The condition for no slipping:

ds . r.
Ven = 3r = (RENI=(R+1N) =g =

cm

r(R+r)w
R
RO=r¢
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s=(R+r)g

where ¢ is the rotation angle of the ball

(R+r)

RZ

g(R+r)(1—cosd) =[ +1]%r2a)2

Newton’s second law (centripetal acceleration)

2 2 2
\Y; I r"(R+r) >

mgcosd—N=m—"—=m >
R+r R+r R

When N =0,

gcosd=r’w’ RR+2 r

From Egs.(1) and (2), we have

(R+r1)*(1-cosb) =%[(R +1)* +R*]cosd

or
2
cosf = (R+2r) = 22
3(R+r)” R R
—+— 3+
2 2 (R+r1)
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R+r
mr’e®* ——
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or

2(R+T)
R
(R+r)?

y=(R+r)cosd=
3+

13.23 Energy function

Consider a general Lagrangian
L:L(qlaqpqzn """ 0T PO FOe PR 9qnat)

dt jaqj it aq] i

From the Lagrange's equation

dL
dt oq,” oq;
Then
d 6L oL oL
dt Zoit an Z,:a_qjq’ El
LTS
Jd c’iqJ ot
or

oL
(Z Q,—L)+E—

T 0q;
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We define the energy function given by

oL
h(qaqat):zq__ L
™ og,
where
@+%=0.
dt ot

If the Lagrangian L is not an explicit function of t, then

dn =0— his conserved
dt
For a conserved system, V =V(q,,q,,...0,) -
o Lo
'oq ;04

oT
h(qaqat): q . -L
Zj: ' og,

=2T-(T-V)=T+V =E
where E corresponds to the total energy of the system.

13.24 Hamiltonian H
The Hamiltonian is described by

H=H (ql,qza---aqn, Pis Pyseees pn’t) = z quj -L >
i
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which then has to be rewritten by eliminating all the generalized velocities in favor of the
generalized momenta

Normally, the Hamiltonian for each problem should be constructed via the Lagrangian
formulation.

(1) Choose a set of generalized co-ordinate qi, and construct
L(9;, 0555015 Gy5--5 Gy D) -

(2) Define the conjugate momenta as a function of q,,0,,...,4d;,d,,..,q,,t .

oL(g,9)
g

pi = pi(qaq)z pi(qlaqz""’qlaqz""’qn) =

(3)  Use the energy function

0= 0((0), Gy Gy Gyees G D) = 2 PG = L0 Oy G Gens B 1) -

and construct h((qlaq25'--aQI>q25'--aqnat) :
4) Obtain ¢, as a function of (q,,0,,....0,, P;> Pyseess Pys1) -

(5) Construct H(Q,,0,,..,0,, P> Payseees Prot) -

Note that The Hamiltonian H is constructed in the same manner as the energy function. But they

are functions of different variables.

13.25 Hamilton’s equation

dL - z<—dq. dq)+—dt—z<pidqi+pidqi>+%dt

aq,
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where

o oL oL
'ooag, aq,

We define the Hamiltonian H as

H=H(,p,t)= z p.g; — L(g.q,t). (Legendre transformation)

dH = Z(qidpi + pidqi)_dl—
. . oL ; .
= Z(qidpi + pidqi)_Edt _Z(pidqi + pidqi)
= Z(qidpi - piin)__

which means that p and q are independent variables.

Consider a function of g, p, and t only. Then we have

dH = —d M 4ny 4 Mg
Z( q.+8p P+

which is compared with
dH = (4dp; - pda;) - —dt

Then we have canonical equations of Hamiltonian

oH . H  H_ AL

qi:a_pa Pi 8q ot ot
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13.26 Example

(1) Simple harmonics

I o 1,
L=~ mg* - —k
2q 2q

8_L_p_ q
aq
h(g,d,t) = pg - L
oo, 1,
=mgq—(=mqg°- —=k
qq (2 q 2Q)
1 ) 1 2
=—mqg~ +—=k
2 q 2q
Note that
@+%:O. and i:0
dt ot ot
or
h = const.

Construction of the Hamiltonian:
. P
=—
m

1 1 ]
H(q: p:t) :Em%"'aqu :;_m'i'ama)zqz

where
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k=mow

(2) Particle (mass m and charge Q) in the presence of electromagnetic field
|-
Lzzmv —-q¢+gA-v

pza—Lzmv+qA
ov

or
mv=p-gA
H=p-v-L
:(mv+qA)-v—(%mv2—q¢+qA-v)
or

H :%mv2 +Q¢

1 1
=5mﬁgm—qAY+q¢

1
:mem%w
m

13.26 Derivation of Lorentz force from the Lagrangian
The Lagrangian for a particle with charge g in an electromagnetic field described by scalar

potential ¢ and vector potential A is
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L:%mvz—q¢+qA-v

Find the equation of motion of the charged particle.

mi=q(E+vxB)

where

((Mathematica))

B=VxA.
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Derivation of Lorentz force

<< "VariationalMethods™"

Needs["'VectorAnalysis "]

SetCoordinates[Cartesian[X, Y, z]11;

r={x[t], y[t], z[t]};

A= {Al[x[t], y[t], z[t]], A2[x[t], y[t], z[t]], A3[X[t], y[t], Z[t]]};
v={x"[t], y"[t], z"[t]};

eql = % V.v-q ¢[x[t], y[t], z[t]]+ g A.v // Expand;

eg2 = VariationalD[eql, {x[t], Y[t], z[t]}, t] // Simplify

[-mx"[t] -q (yrt] (ALY xre), yre], zit)) - A2000 (x1e, yit], z[t]]) +
21t (ALOOY [xrt), yit], zit]] - A3 00 (x(t], yit), z(t]]) -
o000 xt), yrty), z(t)7),
7my”[t} q (Z’[t} (AZ(O’O'I) [X[t} ) y[t] . Z[t}} 7A3(0,l,0) [X[t} ’ Y[t} ’ Z[t} J) +
¢ @10 xt), yit], z(t)] +
(-A1 @0 xre), yie), zie) ] - A2000 (x(e), v, z(E]])),
-mz’[t] -q (0 %%V (x(t], y[t), z[t]] +
(-A20-0Y (xrey, yie), zie]] + ARO[t yit), z(t]]) ¢
(AL 00D x (e, yrer, 2ty + A3 (x(a, y (), z(1]])) )

eq3 = Firstintegrals[eql, {x[t], y[t], z[t]}, t] // Simplify

{Firstlntegral [t] e% (29¢[x[t], y[t], z[t]] +m (X [E]

rulel = {Xx-> x[t], y-Vy[t], z->z[t]};

AA = {Al[X, Y, z], A2[X, Y, z], A3[X, Y, Z]};

B = Curl [AA] /. rulel;

Cross[v, B] // Simplify;

El=-CGrad[¢[X, ¥V, z]] /- rulel // Simplify;

egd4 = -mD[r, {t, 2}] +gqE1 +q Cross[v, B] // Simplify

[-mx"[t] -q (yrt) (ALO10 xe), yit], z(t)) - A2000 (xt), yit], z(t)]) +
z (1) (A0 xre), yit), zit]) - A3 00 (x ey, yit], z[€]]) +
om0 xt], yrty, z[t]]),
-my”[t] -q (2 [t] (A200D x(t), yit], z(t]) - A3OH0 xt, yie], z[t)]) +
¢ OO0 xre], yrt], z(t]] +
x [t] (-ALOL0 ey, yiey, zie]) + A2000 ix ey, yitl, zie]7)),
-mz'[t] -q (¢ @0V x[t), yt], z[t]] +
(-A200 1 xt), yit], z(t)] + A0 (x(ty, yit], z[t)]) +
(-A1@0D ey, yit), z(e]) - A0 (x (e, yit), z(t)])))

eq2-eqg4 // Simplify
{0, 0, 0}
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13.27 Relativistic-covariant Lagrangian formalism
A Lagrangian L (simple case)
Proper time

(dxﬂ')2 =a,a,,dx,dx, =4,.dx,dx, = (dxﬂ)2
We define the proper time as

(ds)’ = c2(dt)® — (dx,)* — (dx,)* — (dx,)* = c*(dt")* — (dx,")* — (dx,")* — (dx,")?

2_ 2 2 _i %2 %2 %2 — 2 2 _12
(ds)’ =c’(dt)’ {1 S+ +C I =c @’ a- )

or

b
where 7 is a proper time and U is the velocity of the particle in the frame S. The integral .[ds

a
taken between a given pair of world points has its maximum value if it is taken along the straight
line joining two points.

b t, 2 t,
S :—ozjds:—azc.[d'g/l—u—2 =j'Ldt,
a t, c t,
2
L:—occwfl—u—2 .
C

Nonrelativistic case:

where

2 2
L =—ac(l— 2" = —ge(l —%) AT
C

ac .
c2

In the classical mechanics,
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m
—=— or a=mc.
2

Therefore the Lagrangian L is given by

2
L — _mCZ(l_Lé_z)l/Z.

The momentum p is defined by

p—a—L— M mu (u)—mﬂ—mﬁﬂ
ou 2 dz dtdr’
-
((Note))

This momentum coincides with the components of four-vector momentum p, defined by

p — m%
: dr
_ dXZ
} dr
dx,
=MN——-
Py dr
B. Hamiltonian

The Hamiltonian H is defined by

H=p-u-L=yumu’+mc’

2 2 2
1 :;/(u) mu- +mc — Huyme’ = m _E,
y(u) r(u) u’

or
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We have

E’ m%
T T ¥ =m’c’ +p°.
1-— 1-—
c? c?
C. Lagrangian form in the presence of an electromagnetic field

The action function for a charge in an electromagnetic field
b
S= I(—mcds +0A,dx,),
a
where the second term is invariant under the Lorentz transformation.
1 .
A, = (A,IE(/ﬁ), and  dx, = (dx,,dx,,dx,,icdt).
Then we have

b b 2
S= J'(—mcds+ qA,dx )= j[—mcﬂ/l—i—z +q(A-u—g¢)]dt.

The integrand in the Lagrangian function of a charge (q) in the electromagnetic field,

Lo ome 1= 4 g(A-u-

where
3 .1
A# =(A,i E¢).

The Hamiltonian H is given by
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2 2
H=p-u-L=—1"+eA-u—(-mc’ |1~ +gA-u-gq¢).
u C

e
or
mu’ u’
H=p-u-L= —+eA-u—(-mc’,[1-—5 +gA-u-qg),
u c
e
2
H=—""+q¢.
u
e
or
u2
*(1-—)+m’u’
H— 2 m7c( 5
[ q¢j — C . :m2C2+(p_qA)2.
c u
e
D. Another expression for the Lagrangian

Here we use drinstead of dt in the expression of Lagrangian.
ds=cdr

1, 1s a four-dimensional velocity defined by

dx dt dx

— H

M= " ds dt" = (y(Wu,, y(U)u,, y(U)us,icy (U)).

An,=An+An, +An +An, =yu)u-A-g).

since

_dtdx,

1
A =(AI1-9), = =ic—,
W = (ATC) TS0 dt - de

b b
S= I(—mcds +0A,dx,) = J‘(—mc2 +0A, -n,)dz,
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2
L=-mc” +aA7,.

E. Lagrangian and Hamiltonian

F,F,=2(B’+B + B;)—%(El2 +E’+E7).
C

uvouv

This is invariant under the Lorentz transformation. We may try the Lagrangian density

1

L= F R+ A,

uveouv
0
By regarding each component of A, as an independent field, we find that

the Lagrange equation

oL 0 [ oL ]
B oA
oA, OX, oy
OX

is equivalent to

oF

uv

OX

i

:luo‘],u‘

The Hamiltonian density Hepy for the free Maxwell field can be evaluated as follows.

Lem == FIV v
4 o 2 M
O0A F
Hem :ala‘—;r\n_/l_ Lem =_i(F4/1 +%)_ : (82 _LZEZ),
PN oX, Hy OX," 24, c
oX,
or
o =lgOE2+ B’-¢E Vg,
2 2u,

1 S _1 2, L o
jHemdr_Ej(goE +2—ﬂOB )dr—jgo(E-w)dr_Ej(goE +EB )dr .

0
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((Note))

[(E-Vg)dr=[[V-(Eg)— ¢V -Eldr = [V-(Eg)dr = [(E¢)-da=0,

where E¢ vanishes sufficiently rapidly at infinity.

v.E=L -0 (in this case).
€y
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