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Chapter 13 

Calculus of variations 

Masatsugu Sei Suzuki 

Department of Physics, State University of New York at Binghamton 

(Date: November 3, 2010) 

 

________________________________________________________________________ 

Leonhard Euler (15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician 

and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and 

graph theory. He also introduced much of the modern mathematical terminology and notation, 

particularly for mathematical analysis, such as the notion of a mathematical function. He is also 

renowned for his work in mechanics, fluid dynamics, optics, and astronomy. 

 

 

http://en.wikipedia.org/wiki/Leonhard_Euler 

________________________________________________________________________ 
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Joseph-Louis Lagrange (25 January 1736, Turin, Piedmont – 10 April 1813, Paris), born 

Giuseppe Lodovico (Luigi) Lagrangia, was an Italian-born mathematician and astronomer, 

who lived part of his life in Prussia and part in France, making significant contributions to all 

fields of analysis, to number theory, and to classical and celestial mechanics. On the 

recommendation of Euler and d'Alembert, in 1766 Lagrange succeeded Euler as the director of 

mathematics at the Prussian Academy of Sciences in Berlin, where he stayed for over twenty 

years, producing a large body of work and winning several prizes of the French Academy of 

Sciences.. 

 

 

http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange 

________________________________________________________________________ 

This note was written in part for the Classical mechanics, and is revised for the present course.  

 

13.1 Line integral 

We start to discuss the calculus of variations with an integral given by the form 
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where y' = dy/dx. The problem is to find has a stationary function )(xy  so as to minimize the 

value of the integral J. The minimization process can be accomplished by introducing a 

parameter .  
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________________________________________________________________________ 

((Fundamental lemma)) 

If 
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for all arbitrary function (x) continuous through the second derivative, then M(x) must 

identically vanish in the interval 21 xxx  .  

________________________________________________________________________ 

From this fundamental lemma of variational and Eq.(1), we have Euler equation 
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J can have an stationary value only if the Euler equation is valid. The Euler equation clearly 

resembles the Lagrange's equation. 

In summary,  
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13.2 Euler- Lagrange's equations 

Now we consider the calculus of variation for the integral 
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We may introduce  by setting 
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where )(1 xy , )(2 xy , ..., are the solutions of the problem, 
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Formally, this can be written as 
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This is the assertion that J is stationary for the correct path. iy  is the virtual displacement. By an 

obvious extension of the fundamental lemma, we have 
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(i = 1, 2, ..., n). 

 

________________________________________________________________________ 

13.3 Hamilton's principle 

William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish physicist, 

astronomer, and mathematician, who made important contributions to classical mechanics, optics, 

and algebra. His studies of mechanical and optical systems led him to discover new 

mathematical concepts and techniques. His greatest contribution is perhaps the reformulation of 

Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the 

modern study of classical field theories such as electromagnetism, and to the development of 

quantum mechanics.  

 

http://en.wikipedia.org/wiki/William_Rowan_Hamilton 

______________________________________________________________________________ 

Hamilton's principle 

Hamilton's principle states that the physical path taken by a particle system moving between 

two fixed points in configuration space is one for which the action integral is stationary under a 

virtual variation of the path. The action (action integral) is defined as 
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The Hamilton's principle is sometimes also called the principle of least action. 

The instantaneous configuration of a system is described by the values of the n generated co-

ordinates  

 

),...,,,( 321 nqqqq  

 

and corresponds to a particular point in the configuration space. 

 

t q1,q2,..., qn

t+dt

q1+dq1,q2+dq2,..., qn+dqn

Path of the motion of the system

 

 

Fig. Configurational space 

 

The Lagrangian of monogenic system is defined by 
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where T is the kinetic energy and V is a potential energy of the system. Here we define the line 

integral as  
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The motion of the system from time t1 to time t2 is such that the line integral has a stationary 

value for the actual path of the motion. We can summarize the Hamilton's principle by saying 

that the motion is such that the variation of the line integral I for fixed t1 and t2 is zero, 
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When the system constraints are holonomic, Hamiltonian's principle is both a necessary and 

sufficient condition for Lagrange's equation, 
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Then the Euler-Lagrange's equation corresponding to I becomes the Lagrange's equation of 

motion. 

 

13.4 Derivation of Lagrange's equation. 

We consider the Hamilton's principle with 
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I has a minimum at  = 0. 
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Here we note that 
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Then we have the form of 
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where qi is a virtual displacement. 

 

((Note)) Formulation 

Formally we can describe the Hamilton's principle as follows (formulation). 
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leading to the Lagrange's equation 
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13.5  Definition of cyclic 

If the Lagrangian of a system does not contain a given co-ordinate qj, then the coordinate is 

said to be "cyclic" or "igonorable". 

The Lagrange equation of the motion is given by 
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The momentum associated with the coordinate qj is defined as 

 

j
j q

L
p




 . 

 

The terms canonical momentum and conjugate momentum are often also used for pj. using the 

expression for pj, the Lagrange's equation can be rewritten as 
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For a cyclic coordinate, 
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L
 (qj is not included in L) 

 

0
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dp j . 

 

This means that  

 

pj = const. 

 

((Conservation theorem)) 

The generalized momentum conjugate to a cyclic co-ordinate is conserved. If the system is 

invariant under the translation along a given direction, the corresponding linear momentum is 

conserved. If the system is invariant under the rotation about the given axis, the corresponding 

angular momentum is conserved. Thus the momentum conservation theorems are closely 

connected with the symmetry properties of the system. 

 

13.6 Example 

13.6.1 Free falling 
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y=0 at t = t0

y=y0 at t = 0

yt

 

 

At t = 0, the particle is at y = y0. The particle starts to undergo the motion of free falling and 

reaches y = 0 at t = t0. The value of y0 is related to t0 by 
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What is the time dependence of y(t) such that the line integral I over the Lagrangian L takes a 

minimum? 
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((Solution)) 

We assume that 
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The value of I can be calculated as 
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Taking the derivative of I with respect to c, we have a local minimum such that 
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which leads to b = 0. Finally we have 

 

2
0 2

)( t
g

yty   

 

((Mathematica)) 
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L1  L . y  Y  Simplify;
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L1 t  Simplify;

yt_  Yt;
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13.6.2 Approximation: trial function for simple harmonics 

We consider the Lagrangian for the simple harmonics, 
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The Lagrange's equation is given by 
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For small  (≈ 0), we assume that 
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I is a function of A. 
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13.7 VariationalD (Mathematica program) 

We suppose that the functional is given by ),',( xyyf . Using the VariationalD 

[Mathematica], one can calculate 
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where the variation of the integral J is defined as 
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VariationalD

VariationalD f , ux, x
returns the variational derivative of the integral  f „ x with respect to ux, where the integrand f  is 
a function of u, its derivatives, and x.

VariationalD f , ux, y, …, x, y, … 
returns the variational derivative of the multiple integral  f „ x„ y… with respect to ux, y, …, 
where f  is a function of u, its derivatives and the coordinates x, y, ….

VariationalD f , ux, y, …, vx, y, …, …, x, y, … 
gives a list of variational derivatives with respect to u, v, ….

 

 

13.8 EulerEquations (Mathematica program) 

Using the EulerEquations [Mathematica], one can derive the Euler (Lagrange, in physics) 

equation given by 
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EulerEquations

EulerEquations f , ux, x
returns the Euler–Lagrange differential equation obeyed by ux derived from the functional f , 
where f  depends on the function ux and its derivatives as well as the independent variable x.

EulerEquations f , ux, y, …, x, y, … 
returns the Euler–Lagrange differential equation obeyed by ux, y, ….

EulerEquations f , ux, y, …, vx, y, …, …, x, y, …
returns a list of Euler–Lagrange differential equations obeyed by ux, y, …, vx, y, …, ….

 

 

13.9 FirstIntegral (Mathematica program) 

Here we note that the Euler (Lagrange) equation can be rewritten as 
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(a) The case when f is independent of x.  

Since 0
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f
 in Eq.(2), we have 
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Thus, when f is independent of x, FirstIntegrals[f, y(x), x] leads to the calculation of 
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This corresponds to the Hamiltonian (or energy function) in the physics. 

 

(b) The case when f is independent of y.  

Since 0
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f
 in Eq.(1), we have 
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When f is independent of y, FirstIntegrals[f, y(x), x] leads to the calculation of 
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f




 

 

((Note)) 

When you use FirstIntegrals[f, y(x), x] in your Mathematica program, yo do not have to check 

in advance whether f is independent of y or f is independent of x. The Mathematica will check for 

you automatically. In this sense, the FirstIntegrals are a very convenient program. 
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FirstIntegrals

FirstIntegrals f , xt, t
returns a list of first integrals corresponding to the coordinate xt and independent variable t of the 
integrand f .

FirstIntegrals f , xt, yt, …, t 
returns a list of first integrals corresponding to the coordinates x, y, … and independent variable t.

 

 

((Mathematica))  

Here is an example of the simple harmonics. The Lagrangian is given by 
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Needs"VariationalMethods`";

L 
1

2
m x't2 

1

2
k xt2;

EulerEquationsL, xt, t
k xt  m xt  0

FirstIntegralsL, xt, t
FirstIntegralt 

1

2
k xt2  m xt2

VariationalDL, xt, t
k xt  m xt  

______________________________________________________________________ 

13.10 Shortest distance between two points in a plane 
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Fig. Varied paths of the function of y(x) in the one dimensional extremum problem. 
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The total length of any curve going between points 1 and 2 is 
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We calculate the Euler equation 
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we have 

 

ay '  (= constant). 

 

or 

 

baxy  , 

 

which is the equation of the straight line. The constants a and b are determined by the condition 

that the curve passes through the two end points (x1, y1) and (x2, y2). 

In general, curves that give the shortest distance between two points on a given surface are 

called the geodesics of the surface. 

 

((Mathematica)) 
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Clear"Global`"
 "VariationalMethods`"

F  1  yx2

1  yx2

eq1  VariationalDF, yx, x


yx
1  yx232

eq2  EulerEquationsF, yx, x


yx
1  yx232

 0

eq3  FirstIntegralsF, yx, x
FirstIntegraly  

yx
1  yx2

, FirstIntegralx  
1

1  yx2


eq4 
yx

1  yx2

2

 c2

yx2

1  yx2
 c2

eq5  Solveeq4, y'x
yx  

c

1  c2
, yx 

c

1  c2


Since y'[x] is constant, y[x] is a straight line.

 

 

13.11 Minimum surface of revolution 
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Suppose we form a surface of revolution by taking some curve passing between two fixed end 

points, and revolving it about the y axis. The problem is to find the curve for which the surface 

area is a minimum. 
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which is the equation of a catenary. 

 

((Mathematica)) 
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Clear"Global`"
 "VariationalMethods`"

F  x 1  y'x2

x 1  yx2

eq1  VariationalDF, yx, x
yx  yx3  x yx

1  yx232

eq2  EulerEquationsF, yx, x
yx  yx3  x yx

1  yx232
 0

eq3  FirstIntegralsF, yx, x
FirstIntegraly  

x yx
1  yx2
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x2 yx2

1  yx2
 a2

eq5  Solveeq4, y'x
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, yx 

a

a2  x2


eq51  eq52 . Rule  Equal  
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eq6  eq511
yx 

a

a2  x2

eq7  DSolveeq6, ya  b, yx, x  Simplify

yx  b  a Loga  a Logx  a2  x2 

eq8  Y  yx . eq71
Y  b  a Loga  a Logx  a2  x2 

eq9  Solveeq8, x  Expand

x 
1

2
a 

b
a
Y

a 
1

2
a 

b
a
Y

a 

eq10  X  x . eq91 . a  1, b  2

X 
2Y

2

2Y

2

ContourPlotEvaluateeq10, X, 0, 5, Y, 1, 5, ContourStyle  Red, Thick,

Background  LightGray
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13.12 The brachistochrone problem 
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The brachistochrone problem was one of the earliest problems posed in the calculus of 

variations. Newton was challenged to solve the problem in 1696, and did so the very next day. In 

fact, the solution, which is a segment of a cycloid, was found by Leibniz, L'Hospital, Newton, 

and the two Bernoullis. Johann Bernoulli solved the problem using the analogous one of 

considering the path of light refracted by transparent layers of varying density. Actually, Johann 

Bernoulli had originally found an incorrect proof that the curve is a cycloid, and challenged his 

brother Jacob to find the required curve. When Jacob correctly did so, Johann tried to substitute 

the proof for his own. 

BRACHIS = SHORT 

CHRONOS = TIME 

 

The well-known problem is to find the curve joining two points, along which a particle 

falling from rest under the influence of gravity travels from the higher to lower point in the least 

time. 
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If y is measured down from the initial point of release, 
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Euler-Lagrange equation; 
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or 
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2

1 2 . 

 

((Mathematica)) 

Brachistrochrone prblem

 "VariationalMethods`"

F 
1  y'x2

yx ;

eq1  VariationalDF, yx, x
1  yx2  2 yx yx

2 yx3  1yx2

yx 32

eq2  FirstIntegralsF, yx, x

FirstIntegralx  
1

yx 1yx2

yx



eq3  FirstIntegralx . eq21  
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1

yx 1yx2
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eq4  eq32 
1

2 a
 Simplify

1

yx  yx yx2


1

2 a

eq5  Solveeq4, y'x

yx  
 2 a  yx

yx , yx 
 2 a  yx

yx 

eq6  y'x  y'x . eq52  0


 2 a  yx

yx  yx  0

eq7  
2 a  yx

yx
 yx  0;

This equation can be solved as
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0
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eq7  Simplify
0

y u

2 a  u
u, 0  y  2 a, a  0

y 2 a  y  2 a 2 a  y ArcTan 1

1 2 a
y



2 a  y

rule1  y  2 a Sin2;

Y  y . rule1

2 a Sin2

eq8  FullSimplifyeq7 . rule1, a  0 && 0   


2


2 a   Cos Sin

X1  eq8 . a  1,   2  Simplify

  Sin

Y1  Y . a  1,    2
2 Sin 

2
2

ParametricPlotX1, Y1, , 0, 6 ,

PlotStyle  Hue0, Thickness0.01,

Background  GrayLevel0.7,

AspectRatio  Automatic, AxesLabel  "x", "y"
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_______________________________________________________________________ 

13.13 Cycloid 
The cycloid is the locus of a point on the rim of a circle of radius rolling along a straight line. 

It was studied and named by Galileo in 1599. Galileo attempted to find the area by weighing 
pieces of metal cut into the shape of the cycloid. Torricelli, Fermat, and Descartes all found the 
area. The cycloid was also studied by Roberval in 1634, Wren in 1658, Huygens in 1673, and 
Johann Bernoulli in 1696. Roberval and Wren found the arc length (MacTutor Archive). Gear 
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teeth were also made out of cycloids, as first proposed by Desargues in the 1630s (Cundy and 
Rollett 1989).  
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13.14 The branchistochrone problem with initial velocity 
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When the particle is projected with a kinetic energy 2
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1
mv , we have 
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For x = 0, Y = z,  
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Fig. Cycloid motion with the initial velocity at y = 0 which is changed as a parameter. 
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)cos1(2 00  gRv , where 0 = 0, /6, /3, /2, 2/3, 5/6, and . 

 

____________________________________________________________ 

http://www.sewanee.edu/physics/TAAPT/TAAPTTALK.html?x=47&y=53 

http://mathworld.wolfram.com/BrachistochroneProblem.html 

http://curvebank.calstatela.edu/brach/brach.htm 

____________________________________________________________________ 

13.15 Simple pendulum 

We consider a simple harmonics 

 

)cos1(
2

1
),,(

2
2  



mglmltLL  

 

L is independent of t. 

 

Lagrange equation 

 

0sin  
l

g , 

 

with 
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g
2

0  

 

First Integral: L is independent of t. 

 

const )cos1(2 2
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Initial condition: )0()0( v  and 0)0(   
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2
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1 2
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2 v

   

 

)cos1()( 2
0  U  is a potential and 

2

)0( 2v
 is the total energy. When 02)0( v  is the critical 

angular velocity. For 

 

For 02)0( v , a sinusoidal oscillation is observed. 

For 02)0( v , a continuous rotation occurs. In other words,  monotonically increases with 

increasing t. 

 

See the lecture note on the physics of simple pendulum in much more detail.  

http://www2.binghamton.edu/physics/docs/physics-of-simple-pendulum-9-15-08.pdf 

 

((Mathematica)) 
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Clear"Global`"
 "VariationalMethods`"
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m {2 't2  m g { 1  Cost
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m {2 t2

eq1  VariationalDL, t, t
m { g Sint  { t

eq2  EulerEquationsL, t, t
m { g Sint  { t  0

eq3  FirstIntegralsL, t, t  Simplify

FirstIntegralt 
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m { 2 g 1  Cost  { t2

eq4  Solveeq2, ''t
t  

g Sint
{ 

eq5  t  t . eq41  0

g Sint
{  t  0

eq6  eq5 . g  { 02  Simplify

02 Sint  t  0  
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phase0_, v0_, 0_, tmax_, opts__ :

Modulenumso1, numgraph,

numso1 

NDSolve 02 Sint  v't  0, vt  't, 0  0, v0  v0,

t, vt, t, 0, tmax  Flatten;

numgraph  PlotEvaluatet . numso1, t, 0, tmax, opts,

DisplayFunction  Identity
phlist 

phase0, , 1, 20, PlotStyle  Hue5   0.1, AxesLabel  "t", "",

Prolog  AbsoluteThickness2, Background  GrayLevel0.5,

PlotRange  All, Ticks   Range0, 10,  Range3, 3,

DisplayFunction  Identity &  Range0.1, 2.0, 0.1;

Showphlist, DisplayFunction  $DisplayFunction

1 2 3 4 5 6 7 8 9 10
t



2 


 Graphics 

phlist 

phase0, , 1, 20, PlotStyle  Hue2   1.9, AxesLabel  "t", "",

Prolog  AbsoluteThickness2, Background  GrayLevel0.5,

PlotRange  All, Ticks   Range0, 20,  Range0, 8,

DisplayFunction  Identity &  Range1.9, 2.3, 0.02;

Showphlist, DisplayFunction  $DisplayFunction  
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 Graphics 

phlist 

phase0,  , 1, 40, PlotStyle  Hue10 000   2, AxesLabel  "t", "",

Prolog  AbsoluteThickness2, Background  GrayLevel0.5,

PlotRange  All, Ticks   Range0, 20,  Range0, 8,

DisplayFunction  Identity &  Range2, 2.0001, 0.000001;

Showphlist, DisplayFunction  $DisplayFunction
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13.16 Ginzburg-Landau equation for superconductivity 

We introduce the order parameter )(r  with the property that 

 

)()()(* rrr sn . 
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which is the local concentration of superconducting electrons. We first set up a form of the free 

energy density Fs(r), 
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where  is positive and the sign of  is dependent on temperature. We must minimize the free 

energy with respect to the order parameter (r) and the vector potential A(r). We set  

 

drFs )(r  

 

where the integral is extending over the volume of the system. If we vary 
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we obtain the variation in the free energy such that 
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0
2

1
2*

*

2 







  A

c

q

im


, 

 

and the current density 

 

AJ
cm

q

im

q
s *

22*
**

*

*

][
2


 


, 

 

or 



49 
 

 

])()([
2

*
**

*
*

*

 AAJ
c

q

ic

q

im

q
s 


 

 

At a free surface of the system we must choose the gauge to satisfy the boundary condition that 

no current flows out of the superconductor into the vacuum. 

 

0 sJn  

 

((Mathematica)) 
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Derivation of Ginzburg Landau equation

Clear"Global`"
 "VariationalMethods`"

Needs"VectorAnalysis`"
SetCoordinatesCartesianx, y, z;

A  A1x, y, z, A2x, y, z, A3x, y, z;

eq1    x, y, z cx, y, z   1

2
 x, y, z2 cx, y, z2  

1

2 m

—


Gradx, y, z  q

c
A x, y, z .


—


Gradcx, y, z  q

c
A cx, y, z  Expand;

eq2  VariationalDeq1, cx, y, z, x, y, z  Expand

 x, y, z  q2 A1x, y, z2 x, y, z
2 c2 m



q2 A2x, y, z2 x, y, z
2 c2 m


q2 A3x, y, z2 x, y, z

2 c2 m


 x, y, z2 cx, y, z   q — x, y, z A30,0,1x, y, z
2 c m



 q — A3x, y, z 0,0,1x, y, z
c m


—2 0,0,2x, y, z

2 m


 q — x, y, z A20,1,0x, y, z
2 c m


 q — A2x, y, z 0,1,0x, y, z

c m


—2 0,2,0x, y, z
2 m


 q — x, y, z A11,0,0x, y, z

2 c m


 q — A1x, y, z 1,0,0x, y, z
c m


—2 2,0,0x, y, z

2 m  
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We need to calculate the following

OP1 :
—


D, x  q

c
A1x, y, z  &

OP2 :
—


D, y  q

c
A2x, y, z  &

OP3 :
—


D, z  q

c
A3x, y, z  &

eq3 

 x, y, z   x, y, z2 cx, y, z 
1

2 m
OP1OP1x, y, z  OP2OP2x, y, z 

OP3OP3x, y, z  Expand

 x, y, z  q2 A1x, y, z2 x, y, z
2 c2 m



q2 A2x, y, z2 x, y, z
2 c2 m


q2 A3x, y, z2 x, y, z

2 c2 m


 x, y, z2 cx, y, z   q — x, y, z A30,0,1x, y, z
2 c m



 q — A3x, y, z 0,0,1x, y, z
c m


—2 0,0,2x, y, z

2 m


 q — x, y, z A20,1,0x, y, z
2 c m


 q — A2x, y, z 0,1,0x, y, z

c m


—2 0,2,0x, y, z
2 m


 q — x, y, z A11,0,0x, y, z

2 c m


 q — A1x, y, z 1,0,0x, y, z
c m


—2 2,0,0x, y, z

2 m

eq2  eq3  Simplify

0  

 

13.17 Fermat theorem (optics) 
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Fermat’s principle in geometrical optics states that a ray of light travelling in a region of variable 

refractive index follows a path such that the total optical path length (physical path length) is 

stationary. 

 

We can derive Snell’s law of refraction at an interface. 

 

 2)('1 xydxds  . 

 

Suppose that the index of refraction n depends only on y. The total time T is 
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Since the integrand does not contain the independent variable x explicitly, we use the first 

integral 
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where k is constant. y’ is the tangent of the angle  between the instantaneous direction of the ray 

and the x axis. 

 

Since tan'y , 
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Snell’s law 
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_____________________________________________________________________+ 

13.18 Extension of Hamiltonian's principle to nonholonomic systems 

It is possible to extend Hamiltonian's principle, at least in a formal sense, to cover certain 

types of nonholonomic systems. With nonholonomic systems the generalized co-ordinates are 

not independent of each other, and it is not possible to reduce them further by means of Eqs. of 

constraint of the form; 

 

0),,...,,( 21 tqqqf n . 

 

It appears that a resonably straightforward treatment of nonholonomic systems by a variational 

principle is possible, only when Eqs. of constraint can be put in the form 

 

0
1




dtadqa lt

n

k
klk , 

 

(l = 1, 2, ..., m.) 

 

a linear relation connecting the differentials of q's. Note that alk and alt may be functions of q's 

and t. 
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qk t2

qk t
dqk
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The constraint Eqs. valid for the virtual displacement are 
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n

k
klk qa  , (1) 

 

where t = const. We can use Eq.(1) to reduce the number of virtual displacements ti independent 

ones. 

 

13.19 Method of Lagrange undetermined multipliers 

If Eq.(1) holds, then we have 

 

0
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n

k
klkl qa  . (2) 

(l = 1, 2, ....., m). 

 

where l are undetermined quantities; 
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In addition, we have Hamilton's principle given by 

 

0
2

1


t

t

Ldt , 

 

is assumed for the nonholonomic system. 
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From Eq.(2) 
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The sum of Eq.(3) and (4) then yields the relation 
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The kq 's are still not independent. They are connected by the m relations. 
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The first (n - m) of these may be chosen independently. 
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Suppose that we now choose the l's to be such that 
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for k = n - m+1, n - m + 2,..., n. With the l determined above, we can write as 
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where qk is independent. Here it follows that 
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Finally, we have 
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for k = 1, 2, ...., n. 

 

((Note)) 

We have now (n + m) unknown parameters 

 

(q1, q2, ....., qn), 

(1, 2, ...., m), 

 

The additional equations needed are exactly the equations of constraint liking up the qk's 
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((Note)) 
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mgrmgyyxm  )(
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1 22   (energy conservation) 

 

What is the normal force N? 
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13.21 Example: Rolling of hollow cylinder on the incline 
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Equation of rolling constraint, 

 

rxOA  , or 0 rddx . 

 

Lagrangian L is given by 
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1 22 xlMgIxML   , 

 

where I is the moment of inertia and is given by I = Mr2 for the hollow cylinder. 



: Lagrange multiplier 
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with the equation of constraint 

 

 rx  . 

 

These equations constitute three equations for three unknown , x, and . 

 

2

sing
x  , 

 

r

g

2

sin  , 

 

2

sin Mg
xM   .  (friction force of constraint) 

 

______________________________________________________________________________ 

13.22 Example: Constraint 
A uniform hoop of mass m and radius r rolls without slipping on a fixed cylinder of radius R. 

The only external force is that of a gravity. If the smaller cylinder starts rolling from rest on top of 
the larger cylinder, use the method of Lagrange multipliers to find the point at which the hoop falls 
off the cylinder. 
Lagrangian: 
 

mgymryxmL  2222

2

1
)(

2

1  . 

 
The first term is the kinetic energy for the translation of the center of mass. The second term is the 
rotational energy around the center of mass, where the moment of inertia for the hoop is 
 

2mrI  . 



64 
 

 
Equation of constraint: 
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The condition for the rolling without slip: 
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We introduce Lagrange's undetermined multipliers, 
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where N is the torque of the hoop around its center. Note that 
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Thus we get 
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The energy conservation law can be rewritten as 
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At the point where the hoop falls off the cylinder, the component of N along the normal direction is 
equal to zero. 
 

0)(
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sincos 


 xNyN
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or 
 

0 xNyN xy . 

 
Eq.(3) x x + Eq.(4) x y: 
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We note that 
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Then we have 
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from the condition 
 

0 yNxN yx . 

 
_____________________________________________________________________ 
((Another method)) 

A cylinder of radius r and mass m on top of a fixed sphere of radius R. The first sphere is 
slightly displaced so that it rolls (without slipping) down the second sphere. What is the angle q at 
which the first sphere loses a contact with the second sphere. 
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Energy-conservation law 
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The condition for no slipping: 
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where  is the rotation angle of the ball 
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Newton’s second law (centripetal acceleration) 
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When N = 0, 
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From Eqs.(1) and (2), we have 
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_____________________________________________________________________ 

13.23 Energy function 

Consider a general Lagrangian  
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From the Lagrange's equation 

 

jj q

L

q

L

dt

d








)(


. 

 

Then 

 

t

L
q

q

L

dt

d

t

L
q

q

L
q

q

L

dt

d

dt

dL

j
j

j

j
j

jj
j

j



























])[(

)(










 

 

or 

 

0)( 





 t

L
Lq

q

L

dt

d

j
j

j




 



72 
 

 

We define the energy function given by 
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where 
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L

dt
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If the Lagrangian L is not an explicit function of t, then 

 

0
dt

dh
→ h is conserved 

 

For a conserved system,  ),...,( 21 nqqqVV  . 
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where E corresponds to the total energy of the system. 

 

13.24 Hamiltonian H 

The Hamiltonian is described by 

 

LqptpppqqqHH
j

jjnn   ),,...,,,,...,,( 2121 , 
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which then has to be rewritten by eliminating all the generalized velocities in favor of the 

generalized momenta 

Normally, the Hamiltonian for each problem should be constructed via the Lagrangian 

formulation. 

(1) Choose a set of generalized co-ordinate qi, and construct  

 

),,...,,,...,,( 2121 tqqqqqL n . 

 

(2) Define the conjugate momenta as a function of tqqqqq n ,,...,,,...,, 2121  . 
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),...,,,...,,(),( 2121 . 

(3) Use the energy function 
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and construct ),,...,,,...,,(( 2121 tqqqqqh n . 

(4) Obtain iq  as a function of ),,...,,,,...,,( 2121 tpppqqq nn . 

(5) Construct ),,...,,,,...,,( 2121 tpppqqqH nn . 

 

Note that The Hamiltonian H is constructed in the same manner as the energy function. But they 

are functions of different variables. 

 

____________________________________________________________________ 

13.25 Hamilton’s equation 
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where 
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We define the Hamiltonian H as 
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ii    .  (Legendre transformation) 
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which means that p and q are independent variables. 

Consider a function of q, p, and t only. Then we have 
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which is compared with 
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Then we have canonical equations of Hamiltonian 
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13.26 Example 

(1) Simple harmonics 
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Note that 
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h = const. 

 

Construction of the Hamiltonian: 
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2mk   

 

(2) Particle (mass m and charge q) in the presence of electromagnetic field 
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13.26 Derivation of Lorentz force from the Lagrangian 

The Lagrangian for a particle with charge q in an electromagnetic field described by scalar 

potential  and vector potential A is  
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Find the equation of motion of the charged particle. 

 

)( BvEr  qm   

 

where 
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A

E  ,  AB . 

 

((Mathematica)) 
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Derivation of Lorentz force

 "VariationalMethods`"

Needs"VectorAnalysis`"
SetCoordinatesCartesianx, y, z;

r  xt, yt, zt;

A  A1xt, yt, zt, A2xt, yt, zt, A3xt, yt, zt;

v  x't, y't, z't;

eq1 
m

2
v.v  q xt, yt, zt  q A.v  Expand;

eq2  VariationalDeq1, xt, yt, zt, t  Simplify

m xt  q yt A10,1,0xt, yt, zt  A21,0,0xt, yt, zt 
zt A10,0,1xt, yt, zt  A31,0,0xt, yt, zt 
1,0,0xt, yt, zt,

m yt  q zt A20,0,1xt, yt, zt  A30,1,0xt, yt, zt 
0,1,0xt, yt, zt 
xt A10,1,0xt, yt, zt  A21,0,0xt, yt, zt,

m zt  q 0,0,1xt, yt, zt 
yt A20,0,1xt, yt, zt  A30,1,0xt, yt, zt 
xt A10,0,1xt, yt, zt  A31,0,0xt, yt, zt

eq3  FirstIntegralseq1, xt, yt, zt, t  Simplify

FirstIntegralt 
1

2
2 q xt, yt, zt  m xt2  yt2  zt2

rule1  x  xt, y  yt, z  zt;

AA  A1x, y, z, A2x, y, z, A3x, y, z;

B  CurlAA . rule1;

Crossv, B  Simplify;

E1  Gradx, y, z . rule1  Simplify;

eq4  m Dr, t, 2  q E1  q Crossv, B  Simplify

m xt  q yt A10,1,0xt, yt, zt  A21,0,0xt, yt, zt 
zt A10,0,1xt, yt, zt  A31,0,0xt, yt, zt 
1,0,0xt, yt, zt,

m yt  q zt A20,0,1xt, yt, zt  A30,1,0xt, yt, zt 
0,1,0xt, yt, zt 
xt A10,1,0xt, yt, zt  A21,0,0xt, yt, zt,

m zt  q 0,0,1xt, yt, zt 
yt A20,0,1xt, yt, zt  A30,1,0xt, yt, zt 
xt A10,0,1xt, yt, zt  A31,0,0xt, yt, zt

eq2  eq4  Simplify

0, 0, 0  
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13.27 Relativistic-covariant Lagrangian formalism 
 
A. Lagrangian L (simple case) 
 
Proper time 
 

   22'   dxdxdxdxdxaadx   

 
We define the proper time as 
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where  is a proper time and u is the velocity of the particle in the frame S. The integral 
b

a

ds  

taken between a given pair of world points has its maximum value if it is taken along the straight 
line joining two points.  
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Nonrelativistic case: 
 

c
cc

c
c

cL   2
2

2
2/1

2

2

2
)

2
1()1( u

uu
. 

 
In the classical mechanics, 
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Therefore the Lagrangian L is given by 
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((Note)) 
 
This momentum coincides with the components of four-vector momentum p  defined by 
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B. Hamiltonian 
 
The Hamiltonian H is defined by 
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We have 
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C. Lagrangian form in the presence of an electromagnetic field 
 
The action function for a charge in an electromagnetic field 
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where the second term is invariant under the Lorentz transformation. 
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The integrand in the Lagrangian function of a charge (q) in the electromagnetic field, 
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The Hamiltonian H is given by 
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D. Another expression for the Lagrangian 

Here we use d instead of dt in the expression of Lagrangian. 
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  is a four-dimensional velocity defined by 
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E. Lagrangian and Hamiltonian 
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This is invariant under the Lorentz transformation. We may try the Lagrangian density 
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By regarding each component of A  as an independent field, we find that 
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The Hamiltonian density Hem for the free Maxwell field can be evaluated as follows. 
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((Note)) 
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where E  vanishes sufficiently rapidly at infinity. 
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E  (in this case). 
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