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George Green (14 July 1793 – 31 May 1841) was a British mathematician and 
physicist, who wrote An Essay on the Application of Mathematical Analysis to the 
Theories of Electricity and Magnetism (Green, 1828). The essay introduced several 
important concepts, among them a theorem similar to the modern Green's theorem, the 
idea of potential functions as currently used in physics, and the concept of what are now 
called Green's functions. George Green was the first person to create a mathematical 
theory of electricity and magnetism and his theory formed the foundation for the work of 
other scientists such as James Clerk Maxwell, William Thomson, and others. His work 
ran parallel to that of the great mathematician Gauss (potential theory). 
 
http://en.wikipedia.org/wiki/George_Green 
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14.1 What is a Green's function? 

We now consider the equation 
 

0)(  xfyLx , 

 
where Lx is the self-adjoint differential operator, 
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The solution of this equation is given by 
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Here the Green's function is defined by 
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and 
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((Proof)) 
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We need to find an explicit form of G(x, ). 
 
______________________________________________________________________ 
14.2 Construction of Green’s function 
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where Lx is the self-adjoint differential operator. The Green's function satisfies the 
differential equation given by 
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(i) We define the Green's function 
 

)()( 1 xGxG  ,   for a≤x<  
 

)()( 2 xGxG  .  for a≤ <x≤b 
 
(ii) G1(x) and G2(x) satisfy the following equations, 
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0)(2 xGLx .   for a≤ <x≤b 

 
(iii) 
 
At x = a, G1(x) satisfies the homogeneous boundary condition; 
 

G1(a) = 0 or G1’(a) = 0 or  G1(a) +  G1'(a) = 0. 
 
Similarly, at x = b, G2(x) satisfies the homogeneous boundary condition; 
 

G2(b) = 0 or G2’(b) = 0 or  G2(b) +  G2'(b) = 0. 
 
(iv) Continuity at x = . 
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where  →0 (>0). 
 
(v) We require that G’(x) be discontinuous at x = , 
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((Proof)) 
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The second term is equal to zero in the limit of →0 since the integrant is continuous at x 
=  . 
 
Then we have 
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14.3 The symmetric nature in G(x,  ) 

We assume that 
 

0)( xuLx  for a≤x<   with the homogeneous boundary condition at x = a. 

 
0)( xvLx  for  <x<b with the homogeneous boundary condition at x = b. 

 
Then the Green's function is expressed by 
 

G(x, ) = c1 u(x) for a≤x< ,  
 

G(x, ) = c2 v(x) for  <x≤b, 
 
where c1 and c2 are constants. 
 
(i) The continuity of G(x, ) at x =  ; 
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(ii) The discontinuity in G(x, ) at x = , 
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This equation is closely related to the Wronskian determinant (see Chapter 5). The 
Wronskian determinant is defined as  
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We take the derivative, 
 

)''(
1

)''(
1

)()(

)(")("

)()(
)(' qvvp

p
quup

p

vu

vu

vu
W 






 , 

 
or 
 

)(
'

)(')('

)()('
)(' 




 W
p

p

vu

vu

p

p
W  . 

 
Then we have 
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for the independence u(x) and v(x), where A is constant. Then we have the following 
equations, 
 

)(

1
)(')(' 21 


p

vcuc  , 

 
0)()( 21   vcuc , 

 
Here we define A as 
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From these equations, we have 
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Thus we have 
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We find that 
 

),(),( xGxG   . (Symmetry property) 
 
14.4 The check of the solution 

Using the Green's function G(x, ), we get the solution of  
 

0)(  xfyLx , 

 
where Lx is the self-adjoint differential operator, and is given by 
 

yxqyxp
dx

d
yLx )(]')([  .  (self-adjoint) 

 
The boundary condition (homogeneous) is given by 
 

 y(a) +  y'(a) = 0,   y(b) +  y'(b) = 0.  
 
The solution of this equation is obtained as 
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Here we firm that this is a solution of the differential equation. 
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For y'(x), we have 
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For y"(x), we also have 
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From Eqs.(1), (2), and (3), we obtain 
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14.5 Boundary condition for the Green’s function 

We consider the Green's function G(x, ) with the homogeneous boundary condition 
at x = a and b.  
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The values of y(a), y'(a), y(b) and y'(b) are obtained as  
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Then we have 
 

)](')([)(')( 1 auaucayay    
 
and 
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where  and  are constants. Thus the boundary conditions for the Green's function are 
given by the same boundary condition as y(x), 
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In conclusion, given the linear differential operator Lx (acting on the variable x), the 
solution y(x) of the differential equation )()( xfxyLx   can be obtained from the 

Green’s function G(x, ) by  
 






  dfxGxy )(),()( .  

 
The Green's function obeys the differential equation 
 

)(),(   xxGLx . 

 
with the same boundary condition as the solution y(x).  
 
___________________________________________________________________ 
14.6 Example: homogeneous boundary condition 

Show that  
 

)1(),(   xxG  for  x0 , 
 

)1(),( xxG   for 0< 1 x , 
 
is the Green's function for  
 

"yyLx  , 

 
where 
 

y(0) = 0,  y(1) = 0. 
 
((Solution)) 
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Boundary condition: 
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The continuity of ),( xG  at x : 
 

)1(11   cc . 
 
The discontinuity of dxxdG /),(   at x : 
 

1' 11 cc . 
 
Then we have 
 

c1 = 1-, and  c1' = -. 
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((Mathematica)) 
 
Clear"Global`";

eq1  DSolveG''x  DiracDeltax  , G0  0, G1  0, Gx, x  Simplify

Gx  x  x  HeavisideTheta1   
x   HeavisideThetax    1  x  HeavisideTheta

Gx_  Gx . eq11;

SimplifyGx, 1  x    0  Factor
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14.7 Example: boundary condition 
 

"yyLx  , 

 
with 
 

y(0) + y(1) =0, and y’(0) + y’(1) = 0 
 
The Green's function is obtained as 
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((Solution)) 
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Boundary condition: 
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Continuity of ),( xG  at x : 
 

'' 2121 cccc   . 
 
Discontinuity of dxxdG /),(   at x : 
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((Mathematica)) 
 
Clear"Global`"
eq1  G''x  DiracDeltax  ;

eq2  DSolveeq1, G0  G1  0, G'0  G'1  0, Gx, x 
Simplify

Gx 
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4
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14.8 Example: inhomogeneous boundary condition 
 
Arfken 10.5.1 

Find the Green's function for  
 

yyLx  , 

 
with 
 

0)0( y , 0)1( y . 
 
((Solution)) 
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Continuity of ),( xG  at x : 
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Discontinuity of dxxdG /),(   at x : 
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((Mathematica)) 
Clear"Global`";

eq1  G''x  DiracDeltax    Simplify;

eq2  DSolveeq1, G0  0, G'1  0, Gx, x  Simplify;

Gx_  Gx . eq21
x HeavisideTheta1    x   HeavisideThetax     HeavisideTheta

eq3  FullSimplifyGx, 0  x    1
x

eq4  SimplifyGx, 0    x  1
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14.9 Example: homogeneous boundary condition 

Find the Green's function for  
 

,")( yyxyLx   

 
with the boundary condition, 
 

y(0) = 0, and y(1) = 0. 
 
The Green's function is obtained as 
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((Mathematica)) 
 

Clear"Global`";

eq1  G''x  Gx   DiracDeltax  ;

eq2  DSolveeq1, G0  0, G1  0, Gx, x;

Gx_  Gx . eq21;

G1  SimplifyGx, 1  x    0  TrigFactor

Csc1 Sin1  x Sin

G2  SimplifyGx, 0  x    1  TrigFactor

Csc1 Sinx Sin1    
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14.10 Example: inhomogeneous boundar condition 
Arfken 10.5.2 (a) 

Find the Green's function for  
 

yyyLx  , 

 
with 
 

0)0( y , 0)1( y . 
 
((Solution)) 
(i) 

 xuLx 0     0  

 
0 uu  

 
xcxcu cossin 21   

 
with the boundary condition 
 

0)0( u ,  
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(ii) 
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with the boundary condition, 
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(iii) Continuity of ),( xG  at x : 
 

 cossinsin 211 ccc  . (2) 
 
(iv) Discontinuity of dxxdG /),(   at x  
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From Eq.(1) , we have 
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or 
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((Mathematica)) 
 

Clear"Global`";

eq1  G''x  Gx   DiracDeltax  ;

eq2  DSolveeq1, G0  0, G'1  0, Gx, x;

Gx_  Gx . eq21;

G1  SimplifyGx, 1  x    0  TrigFactor

Cos1  x Sec1 Sin

G2  SimplifyGx, 0  x    1  TrigFactor
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14.11 Eigenfunction and Green's function 

We assume that 



 
0 nnnx wuuL  

 
where Lx is the Sturm-Liouville differential operator, {un} is the eigenfunction, n is the 
eigenvalue, and w is the weight function. 
 
We now consider the problem  
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Since the eigenfunctions of L forms a complete set, y may be written as a superposition of 
eigenfunction; 
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If we work with normalized un(x), so that 
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This is a Green's function. As a sanity check, we have 
 

)(

)()()(

)]()()[(
1

)()(
1

),(

*

*

*



























x

xuxu

xuxu

xLuuxLG

n
nn

n
nnn

n

n
nn

n

 

 
((Note)) 
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For any arbitrary function )(x , we have 
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From the definition of the delta function, 
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14.12 Example 

Find an appropriate Green’s function for the equation  
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with the boundary condition 0)()0(  yy  
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We put 
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We have a solution for un(x) 
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The Green’s function is 
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This should be equal to 
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((Mathematica)) 

The Green's function can be derived using the Mathematica as follows. 
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with 0)0( G , and 0)( G . 
 
 



Clear"Global`";
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1
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14.13 A useful generalization 
 
We now consider a more generalized equation 
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The function f(x) can be described by 
 


n

nn xuaxf )()(  

 
with 
 


b

a

nn dfwua  )()()(*  

 
or 
 

 
b

a

b

a n
nn dfxdfxuwuxf  )()()()()()(*)(  

 



where 
 


n

nn xuwux )()()()( *   

 
Here we assume that 
 


n

nn xucxy )()(  

 
0)()()()(   xfxucxwxucL

n
nn

n
nnx   

 
or 
 

0)()(*)()()()()(  
b

a

n
n

n
n

nn
n

nxn dfuxuxwxucxwxuLc   

 
Since 0)()()(  xuxwxuL nnnx  , we have 

 

0)()(*)()()()()(  
b

a

n
n

n
n

nnn dfuxuxwxucxw   

 

Multiplying 
b

a

m xdxu )(*  

 

0)()(*)()()()()()()( **   
n

b

a

b

a

nnm
n

b

a

nnnm dfudxxuxwxucdxxuxwxu   

 
or 
 

0)()(*)( ,.   
n

b

a

nmn
n

nnmn dfuc   

 
or 
 

0)()(*)(  
b

a

mmm dfuc   

 
or 
 



)(

)()(*









n

b

a

n

n

dfu

c . 

 
Hence the solution is given by 
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where the Green’s function is defined by 
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___________________________________________________________________ 
14.14 Physical meaning of the Green function 
 

We consider the impulse (Green’s function) method for getting solutions for the 
harmonic oscillator with an arbitrary time dependent driving force. We write the solution 
as a superposition of solutions with zero initial displacement but velocities given by the 
impulses acting on the oscillator due to the external force. An arbitrary driving force is 
written as a sum of impulses, The single impulse x(t) responses are added together in the 
form of a continuous integral. 

We are going to work out a general expression for the response of a damped mass-
spring system to an arbitrary force as a function of time making some very clever uses of 
Superposition. We will view the force as a sum of rectangular infinitesimal impulses and 
add the x(t) solutions for each impulsive force. For an initially quiescent oscillator each 
impulse produces a solution equivalent to a free oscillator with initial velocity. The 
solution becomes a sum (integral) over such impulse responses. 
 
________________________________________________________________________ 
14.15 Damped oscillator in Green function 
 

We suppose that a damped harmonic oscillator is subjected to an external force f(t) 
with finite duration and is at rest before the onset of the force. The displacement satisfies 
a differential equation of the form, 
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where m is a mass, g is the damping factor, and w0 is the natural angular frequency. 
 
Using the Green function G(t, t), we have 
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where G(t, t) satisfies 
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G(t = 0, t) = G'(t = 0, t) = 0. 
 
The form of G(t, ) is given by 
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((Note))  = 0 for un-damped oscillator 
 
The Green function is given by 
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where G(t, t) satisfies 
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with 
 

G(t = 0, t) = G'(t = 0, t) = 0 
 
 
__________________________________________________________________ 

We assume that f(t) is a continuous function of t. This function consists of the 
combination of the square impulses with the time width . 
 
 

 
 
14.16 Example-1: one pulse 
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Suppose an impulse with a height f(tn) at t = tn. This impulse can be defined by 
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Then we have 
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where G(t, tn) is equal to zero for t<tn. 
 
14.17 Example-2: many pulses 
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When there are many impulses at different times, x(t) can be described by 
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14.18 Response to a step function 

We consider the response x(t) to the external force f(t) which is given by the form 
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The response x(t) is obtained as 
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We calculate the response using the Mathematica. 
 
((Mathematica)) 
 
Clear"Global`";

Gt_, _  
Exp  t  

d
Sint   d UnitStept  ;

ft_  a UnitStept  t0;

xt_  IntegrateGt,  f, , ,  . 2  d2  02  Simplify

a d  tt0  d Cost  t0 d   Sint  t0 d UnitStept  t0
02 d

rule1  t0  0, a  1, 0  1, d  02  2 ;

f1  PlotEvaluateTablext . rule1, , 0, 0.8, 0.1, t, 0, 30,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10, PlotRange  All,

AxesLabel  "t", "xt";

f2  GraphicsTextStyle"0", Black, 12, 3, 2.1,

TextStyle"0.4", Black, 12, 3.5, 1.25,

TextStyle"0.8", Black, 12, 4, 0.95;

Showf1, f2  
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Fig. Step response for 0 =1, a = 1, t0 = 0, 2
0

2  d ,  is changed as a 

parameter.  = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 
 
14.19 Square pulse (I) 
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What is the response to the square pulse given by 
 
external force; 
 

)]()([)( 10 ttttatf  , 

 
where a is the amplitude and t = t1 - t0 is the pulse width. 
 
((Mathematica)) 
 
Clear"Global`";

Gt_, _  
Exp  t  

d
Sint   d UnitStept  ;

ft_  a UnitStept  t0  UnitStept  t1;

xt_  IntegrateGt,  f, , ,  . 2  d2  02  Simplify

1

02 d
a d  tt0  d Cost  t0 d   Sint  t0 d UnitStept  t0 

d  tt1  d Cost  t1 d   Sint  t1 d UnitStept  t1

rule1  t0  0, t1  10, a  1, 0  2, d  02  2 ;

f1  PlotEvaluateTablext . rule1, , 0, 0.8, 0.1, t, 5, 30,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10, PlotRange  All,

AxesLabel  "t", "xt";

f2  GraphicsTextStyle"0", Black, 12, 2, 0.5,

TextStyle"0.4", Black, 12, 2, 0.4,

TextStyle"0.8", Black, 12, 2, 0.3;

Showf1, f2  
 
Response: 



 

g=0

g=0.4

g=0.8

-5 5 10 15 20 25 30
t

-0.2

0.2

0.4

xt

 
 
14.20 Square pulse: Dirac delta function 
 

)]()([)( 10 ttttatf  , 

 
with 
 

attab  )( 01 = const, 

 
in the limit of a  ∞ and  0. In the limit, the f(t) can be described by a Dirac delta 
function, 
 
External force: 
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The response function is obtained as 
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Response: 
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Fig. Response to the Dirac delta function for 0 =2, b = 1, t0 = 0, 2
0

2  d ,  
is changed as a parameter.  = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 

 
14.21 Step response (II) 
 
External force: 
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Response: 
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14.22 Exponential decay with time 
 
External force; 
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and response: 
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14.23 Exponential decay with time 
 

)()( 0/
0 teftf tt    

 
f(t) is approximated by the superposition of square pulses with a width , 
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14.24 Example 

Four square impulses with constant height f0 at different times 
 



Clear"Global`";

Gt_, _  
Exp  t  


Sint    UnitStept  ;

rule1  f0  1,   0.2, 0  1,   1  0.22 ;

t_, t0_  Gt, t0 f0;

1t_, t0_  t, t0 . rule1;

g1  1t, 1.1  1t, 2.1  1t, 4.6  1t, 5.6;

g2  1t, 1.1;

g3  1t, 1.1  1t, 2.1;

g4  1t, 1.1  1t, 2.1  1t, 4.6;

pl1  Plotg1, g2, g3, g4, t, 0, 10,

PlotStyle  Red, Thick, Green, Thick, Blue, Thick, Black, Thick,

Background  LightGray;

Impulset_, t0_, t1_   Whicht  t0, 0, t0  t  t1, 1, t1  t, 0;

pl2 

PlotEvaluateImpulset, 1.1, 1.3, Impulset, 2.1, 2.3,

Impulset, 4.6, 4.8, Impulset, 5.6, 5.8, t, 0, 10,

PlotStyle  Blue, Thick, Blue, Thick, Blue, Thick, Blue, Thick ,

Background  LightGray;

Showpl1, pl2  
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__________________________________________________________________ 
14.25 Mathematica: Derivation of Green's function 
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for the damped oscillator. 
 
((Mathematica)) 
 
Clear"Global`";

eq11  G''t  2  G't  02 Gt  DiracDeltat  ;

eq12  DSolveeq11, G0  0, G'0  0, Gt, t  Simplify

Gt  
1

2 2  02

t  202

1  2 t 202 HeavisideThetat    HeavisideTheta

eq13  eq12 .  2  02     Simplify;

eq14  eq13 .  1

2  02





;

G11t_, _  Gt . eq141  Simplify, 0  t   &

0

G22t_, _  Gt . eq141  FullSimplify, t    0 &

 t   1  2  t 
2 

G22t,  Exp t    ExpToTrig  Simplify


Sint   



Gt_, _  
Exp t   Sint   


UnitStept  


 t Sint    UnitStept  

  
 
_____________________________________________________________________ 
14.26 Derivation of Green's function using Fourier transform 
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We use the Fourier transform, 
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The Green's function is obtained as 
 

 











1

2
0

22
0

2 22

1

22

1
)(

C

iztti

dz
ziz

e
d

i

e
tG








, 

 
for t>0, using the Jordan's lemma for the contour 1. There are two simple poles in the 
lower half plane. The contour C1 has the clock-wise rotation. Tow simple poles are 
obtained as 
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where 
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Using the residue theorem, we have 
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The Green's function for t<0 is obtained as 
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using the Jordan's lemma for the contour 2. There is no pole in the upper half plane. 
Then we have G(t) = 0. 
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In summary we have 
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where (t) is the step function; (t) = 0 for t<0 and 1 for t>0. 
 
14.27 Green's function for the undamped oscillator 
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We use the Fourier transform, 
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The Green's function is obtained as 
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(i) Retarded Green's function 
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For t>0, we need to choose the contour C1 (in the lower-half plane). The integral 
along the 1 is zero according to the Jordan's lemma. There is two simple poles inside the 
contour C1. The contour C1 has a clock-wise direction. 
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For t<0, we need to choose the contour C2 (in the upper-half plane). The integral along 
the 2 is zero according to the Jordan's lemma. There is no pole inside the contour C2.  
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In summary, we have 
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Using the formula, 
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we find that 
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(ii) Advanced Green's function 
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For t>0, we need to choose the contour C1 (in the lower-half plane). The integral 
along the 1 is zero according to the Jordan's lemma. There is no pole inside the contour 
C1.  
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For t<0, we need to choose the contour C2 (in the upper-half plane). The integral along 
the 2 is zero according to the Jordan's lemma. There is two simple poles inside the 
contour C2. The contour C2 has a counter clock-wise direction. 
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In summary, we have 
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14.28  Application of the un-damped Green's function 
 

)()(
)(

tFtv
dt

tdv
m   

 
We define the Green's function 
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Then the form of v(t) can be described using the Green's function as 
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We derive the Green's function using the Fourier transform. 
 






 


 deGtG ti)(
2

1
)(  

 






 


  det ti

2

1
)(  

 
Then we have 
 











  dtedteGmi titi 




 2

1
)()(

2

1
. 

 
or 
 

)(

11

2

1
)(

m

imi
G 



 . 

 
The inverse Fourier transform: 
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For t>0, we need to choose the contour C1 (in the lower-half plane). The integral 
along the 1 is zero according to the Jordan's lemma. There is a simple pole inside the 
contour C1. The contour C1 has a clock-wise direction. 
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For t<0, we need to choose the contour C2 (in the upper-half plane). The integral 
along the 2 is zero according to the Jordan's lemma. There is no pole inside the contour 
C2.  
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More generally we have 
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14.29 Example 
 
Suppose that the input F(t) is a force that is constant F0 between t = 0 and t = T and zero 
otherwise. 
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((Mathematica)) 



Clear"Global`";

vt_ 

F0

m




Exp  t  

m
 UnitStept  

UnitStep  UnitStep  T   FullSimplify

F0 UnitStept  t 
m UnitStept  1  

tT 
m UnitStept  T



rule1  m  1,   1, T  1, F0  1;

f1  Plotvt . rule1, t, 0, 5, PlotStyle  Red, Thick,

AxesLabel  "t", "vt", Background  LightGray;

f2 

Graphics
TextStyle"m1,1, T1, F01", Black, 12, 3, 0.6;

Showf1, f2  
 

m=1,a=1, T=1, F0=1
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14.30 Stretched string problem: homogeneous boundary condition 

The differential equation describing the displacement of the string is 
 

)()("0 xfxyT  , 

 
with the boundary condition y(0) = y(L) = 0 (homogeneous boundary condition). The 
solution can be described by using the Green function G(x, ) as 
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where G(x, ) satisfies the differential equation 
 

)(),("0   xxGT  

 
with the homogeneous boundary conditions, G(0, )= G(L, ) = 0. Note that G(x, ) is 
symmetric with respect to x and . 
 
The Green's function is obtained as 
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((Mathematica)) 
 



Clear"Global`"
eq1  T0 G''x  DiracDeltax  ;

eq2  DSolveeq1, G0  0, GL  0, Gx, x  Simplify

Gx 
1

L T0
x L   HeavisideThetaL   

L x   HeavisideThetax    L  x  HeavisideTheta

G11x_, _  Gx . eq21  Simplify, 0  x    L &

x L  
L T0

G22x_, _  Gx . eq21  Simplify, 0    x  L &

L  x 
L T0

yx_  
0

x
G22x,  f   

x

L
G11x,  f 


x

L


x L   f
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x
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14.31 Inhomogeneous boundary condition 

The differential equation describing the displacement of the string is 
 

)()("0 xfxyT  , 

 
with the boundary condition y(0) = 0 and y(L) = y0 (inhomogeneous boundary condition).  

The Green's function G(x, ) satisfies the differential equation given by 
 

)(),("0   xxGT , 

 
with the homogeneous boundary conditions,  
 

G(0, ) = 0, G(L, ) = 0.  
 

The solution can be described by using the Green's function as 
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where 
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with the  
 

(0) = 0 and (L) = y0. 
 
The solution of y(x) is obtained as 
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The validity of this method is given in the Appendix. 
 
Ref: B.R Kusse and E.A. Westwig; Mathematical Physics 
((Mathematica)) 
 



Clear"Global`";

eq1  T0 G''x  DiracDeltax  ;

eq2  DSolveeq1, G0  0, GL  0, Gx, x  Simplify

Gx 
1

L T0
x L   HeavisideThetaL   

L x   HeavisideThetax    L  x  HeavisideTheta

G11x_, _  Gx . eq21  Simplify, 0  x    L &

x L  
L T0

G22x_, _  Gx . eq21  Simplify, 0    x  L &

L  x 
L T0

eq3  T0 ''x  0;

eq4  DSolveeq3, 0  0, L  y0, x, x
x 

x y0

L


x_  x . eq41;

y1x_  
0

x
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_____________________________________________________________________ 
14.32 Solving the differential equations using the Green’s function 

Solve the differential equation 
 



xexyxy  )()("  
 
with the boundary condition 
 

y(0) = 0, and y'(0) = 1. 
 
(1) Solving the differential equation without using the Green's function  
 
((Mathematica)) 
 
Clear"Global`";

sol  DSolvey''x  yx   Expx,

y0  0, y'0  1, yx, x;

yx_  yx . sol1  Simplify

1

2
x  Cosx  Sinx

Plotyx, x, 0, 20, PlotStyle  Red, Thick, Background  LightGray

5 10 15 20

-0.6

-0.4

-0.2

0.2

0.4

0.6

 
 
______________________________________________________________________ 
(2) Solution with the use of Green's function 
 
We find the Green’s function; 
 

)()()("   xxGxG  
 
with the boundary condition 
 

0)0( G , 1)0(' G . 
 



Using the Mathematica, we have 
 

xxG sin),(1      for 0<x<<1. 
 

)sin(sin),(2   xxxG    for 0<<x<1. 
 
The arbitrary function )(x  satisfies the differential equation given by 
 

0)()("  xx  . 
 
The solution of  is 
 

xCxC cossin 21  . 
 
Then the solution for y(x) is 
 

xCxCdexGdexGxy
x
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   , 

 
with the boundary condition, 
 

y(0) = 0, and y'(0) = 1. 
 
We find that C1 = 0 and C2 = 0. 
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______________________________________________________________ 
((Mathematica)) 
 



Clear"Global`";

ClearG;

eq1 

DSolveG''x  Gx   DiracDeltax  , G0  0,

G'0  1, Gx, x  Simplify;

G11x_  Gx . eq11  Simplify, 0  x   &

Sinx

G22x_  Gx . eq11  Simplify, x    0 &

Sinx  Sinx  

The arbitrary term  satisfies the differential equation  given by
f''[x] + f[x] ã0
or
f(x)=C1 Sin[x] + C2 Cos[x] 

Fx_ :


0

x
G22x Exp   

x


G11x Exp   C1 Sinx 

C2 Cosx  Simplify, x  Reals &

Fx
1

2
x  Cosx  2 C2 Cosx  Sinx  2 C1 Sinx

F'x
1

2
x  Cosx  2 C1 Cosx  Sinx  2 C2 Sinx

Boundary condition

eq1  SolveF0  0, C2
C2  0

eq2  SolveF'0  1, C1
C1  0

SimplifyFx . eq11 . eq21, x  0
1

2
x  Cosx  Sinx

 



 
14.34  Example 
 

Solve the differential equation 
 

ttxtx sin)()("   
 
with the boundary condition 
 

x(0) = 0, and x'(0) = 1. 
 
(1) Solving the differential equation without the use of the Green's function  
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((Mathematica)) 
 
Clear"Global`"
eq1  x''t  xt  Sint
xt  xt  Sint

eq2  DSolveeq1, x0  0, x'0  1, xt, t  Simplify

xt 
1

2
t Cost  3 Sint

xt_  xt . eq21
1

2
t Cost  3 Sint

p1  Plotxt, t, 0, 10, PlotStyle  Red, Thick, Background  LightGray
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______________________________________________________________________ 
(2) Solution with the use of Green's function 
 
We find the Green’s function; 
 

)()()("   ttGtG  
 
with the boundary condition 
 

0)0( G , 0)0(' G . 
 
Using the Mathematica, we have 
 

0),(1 tG    for 0<t<<1. 
 

)sin(),(2   ttG   for 0<<t<1. 
 
The arbitrary function )(t  satisfies the differential equation given by 
 

0)()("  tt  . 
 
The solution of  is 
 

tCtC cossin 21  . 
 
Then the solution for y(t) is 
 

tCtCdttGtx
t

cossin)sin)(,()( 21

0

2    , 

 
with the boundary condition, 
 

x(0) = 0, and x'(0) = 1. 
 
We find that C1 = 0 and C2 = 1. 
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((Mathematica)) 
 



Clear"Global`";

seq1  G''t  Gt  DiracDeltat  ;

seq2  DSolveseq1, G0  0, G'0  0, Gt, t;

seq3  Gt . seq21;

PlotEvaluateTableseq3, , 1, 10, 1, t, 0, 10,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10,

Background  LightGray

2 4 6 8 10

-1.0

-0.5

0.5

1.0

G11t_, _  Gt . seq21  Simplify, 0  t   &

0

G22t_, _  Gt . seq21  Simplify, t    0 &

Sint    
 



The arbitrary term  satisfies the differential equation  given by

f''[t] + f[t] ã0
or
f(t) = C1 Sin[t] + C2 Cos[t] 

Ft_ : 
0

t
G22t,  Sin   C1 Sint  C2 Cost 

Simplify, t  Reals &

Ft
C2 Cost  C1 Sint  1

2
t Cost  Sint

eq11  F0
C2

eq12  Solveeq11  0
C2  0

eq21  DFt, t . t  0  Simplify

C1

eq22  Solveeq21  1, C1
C1  1

F11t_  Ft . eq121 . eq221  Simplify

1

2
t Cost  3 Sint
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14.35 Poisson equation 
 
Find the Green's function for the one dimensional Poisson equation 
 

)(
)(

2

2

x
dx

xd 
, 

 
with boundary conditions; 



 
0)0(  , 0)1(   

 
Next, find the solution for  when 
 

)sin()( xx   . 
 
((Mathematica)) 
 
Method - 1 Ordinary differential equation

Clear"Global`";

eq1  ''x  Sin x;

eq2  DSolveeq1, 0  0, 1  0, x, x  Simplify

x 
Sin x

2


x_  x . eq21;

p1  Plotx, x, 0, 1, PlotStyle  Red, Thick,

Background  LightGray

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

 
 



Method - 2 Green's function  method

Clear"Global`";

seq1  G''x  DiracDeltax  ;

seq2  DSolveseq1, G0  0, G1  0, Gx, x;

Gx_  Gx . seq21;

G11x_, _  Gx  Simplify, 0  x    1 &

x  x 

G22x_, _  Gx  Simplify, 1  x    0 &

  x 

PlotEvaluateTableGx, , 0.1, 1, 0.1, x, 0, 1,

PlotStyle  TableHue0.1 i, Thick, i, 0, 10,

Background  LightGray, PlotRange  All

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

x_ : 
0

x
G22x,  Sin    

x

1
G11x,  Sin   

Simplify, x  0 &

x
Sin x

2  
_______________________________________________________________________ 
APPENDIX-I 
Stretched string problem: homogeneous boundary condition  

We consider the solution of  



 
0)(  xfyLx , 

 
where Lx is the self-adjoint differential operator, and is given by 
 

yxqyxp
dx

d
yLx )(]')([  .  (self-adjoint) 

 
The boundary condition (inhomogeneous) is given by 
 

y(a) = 0,  y(b)  = y0.  
 
Suppose that the solution of this equation is obtained using the Green's function G(x, ) 
as 
 

)()(),()( xdfxGxy
b

a

   . 

 
where G(x, ) satisfies the differential equation  
 

)(),(   xxGLx , 

 
with the homogeneous boundary condition 
 

0),('),(   aGaG , and 0),('),(   bGbG  
 
or 
 

0)(')(  auau  , 0)(')(  bubu   
 
Note that  
 

0)( xLx .  

 
What is the boundary condition imposed for )(x ? 
 

The solution of y(x) can be rewritten as 
 

)()()(
)(

)()(
)(

)( xdfv
A

xu
dfu

A

xv
xy

b

x

x

a

   . 

 



)(')()()('
1

)()()('
1

)(' xdfvxu
A

dfuxv
A

xy
b

x

x

a

   + 

 
Thus the values of y(a), y(b), y'(a), and y'(b) are obtained as  
 

)()()()()(
)(

)( 1 aaucadfv
A

au
ay

b

a

   , 

 

)()()()()(
)(

)( 2 bbvcbdfu
A

bv
by

b

a

   , 

 

)(')(')(')()()('
1

)(' 1 aaucadfvau
A

ay
b

a

    

 

)(')(')(')()()('
1

)(' 2 bbvcbdfubv
A

by
b

a

    

 
Then we have 
 

)(')()](')([)(')( 1 aaauaucayay    
 

)(')()](')([)(')( 1 bbbubucbyby   . 
 
Since 0)(')(  auau  , and 0)(')(  bubu  , we get 
 

)(')()(')( aaayay   , 
 

)(')()(')( bbbyby   . 
 
((Simple case)) 
 

When  = 1, and  = 0,  
 

0)()(  aay  ,  0)()( ybby   

 
This is the boundary condition imposed on )(x . 
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APPENDIX-II 
 
Table:  Green's function with various boundary condition 
 



(1) 
(1) "yyLx   with  y(0) = 0,   y(1) = 0. 

 
)1(),( xxG     for 0<x<<1 

)1(),(   xxG   for 0<<x<1 
 
(2) "yyLx   with   y(0) = 0,   y'(1) = 0. 

 
xxG ),(     for 0<x<<1 

 ),(xG    for 0<<x<1 
 
(3) "yyLx   with  y(0) +y(1) = 0,  y'(0) +y'(1) = 0. 

 

)221(
4

1
),(   xxG  for 0<x<<1 

)221(
4

1
),(   xxG  for 0<<x<1 

 
(4) "yyLx   with  y(0) -y'(0) = 0,  y(1) -y'(1) = 0. 

 
)1(),( xxG     for 0<x<<1 

)1(),(   xxG   for 0<<x<1 
 
(5) "yyLx   with  y(0) +y'(0) = 0,  y(1) -y'(1) = 0. 

 
)1)(2(),( xxG     for 0<x<<1 

)1)(2(),(   xxG   for 0<<x<1 
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APPENDIX III Green's function for un-damped oscillator 

We consider the calculation 
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Here we add to 0 a positive or negative imaginary part ± i, which amounts to 

the simple pole above or under the real axis. Note that >0 and 0>0.  
 



(i) Retarded Green's function 

For t>0, we need to take the contour C1 (clock-wise) in the lower half plane. 

The integral along the 1 is equal to zero because of the Jordan's lemma. For t<0, 

we need to take the contour C2 (counter-clock wise) in the upper half plane. The 

integral along the 2 is equal to zero because of the Jordan's lemma. 
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For t<0 
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This Green's function is the same as that derived from the damped oscillator in the limit 
of  0. 



 
(ii) Advanced Green's function 
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For t>0,  
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For t<0, 
 

)sin(
1

)](Re)()[Re2(
2

1

2

1

]
11

[
2

1

2

1
)(

0
0

00
0

000 2

t

izsizsi

iziz
dzetG

C

izt

















  

 

 
(iii) Other Green's function which is of limited interest as far as classical 

mechanics is concerned. 
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(iv) Other Green's function which is of limited interest as far as classical 

mechanics is concerned. 
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For t<0 
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