Chapter 14
Green’s function; fundamental
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date 11-11-10)

George Green (14 July 1793 — 31 May 1841) was a British mathematician and
physicist, who wrote An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism (Green, 1828). The essay introduced several
important concepts, among them a theorem similar to the modern Green's theorem, the
idea of potential functions as currently used in physics, and the concept of what are now
called Green's functions. George Green was the first person to create a mathematical
theory of electricity and magnetism and his theory formed the foundation for the work of
other scientists such as James Clerk Maxwell, William Thomson, and others. His work
ran parallel to that of the great mathematician Gauss (potential theory).

http://en.wikipedia.org/wiki/George Green

14.1 What is a Green's function?
We now consider the equation

Ly+ (=0,

where Ly is the self-adjoint differential operator,
d \ ..
Ly= &[ pPX)Y'1+a(x)y. (self-adjoint)

The solution of this equation is given by
b
Yy(¥) = [G(x,E) F(£)dE +p(x).

Here the Green's function is defined by
LG(X,8)=-6(x=¢),
and
Lo(x)=0. [arbitrary function o(x)].
((Proof))
Ly(x)= _T LG(x,&) f($)dS + Lip(x) = —T5(X -9 f(Hde=-1(x).



We need to find an explicit form of G(X, &).

14.2 Construction of Green’s function
d , .
L.y= &[ P(X)Y'(X)]+a(X)y(x), (self- adjoint)

where Ly is the self-adjoint differential operator. The Green's function satisfies the
differential equation given by

LXG(X’ é) = _5(X_§) s

G (x) Ga()

a & b
(1) We define the Green's function
G(x)=G,(x), for a<x<&
G(X)=G,(X). for a<& <x<b
(11) G1(x) and G,(X) satisfy the following equations,
LG, (x)=0, for a<x<¢
LG,(x)=0. for a<¢& <x<b
(iii)
At x = a, G;(X) satisfies the homogeneous boundary condition;
Gi(a)=0orGy’(@a)=0or aGi(a)+ fGi'(a)=0.
Similarly, at X = b, G,(X) satisfies the homogeneous boundary condition;
Ga(b) =0 or G,’(b) =0 or a Gy(b) + £ G,'(b) = 0.

(iv)  Continuity at X = &



lim G,(x)= lim G, (x).

X—>&—¢
where £ —0 (£>0).
V) We require that G’(X) be discontinuous at X = &,

G,/ (.., —G,'(X) |, .= —@-

((Proof))
J.ig[di[ P(X)G'(X)]+ q(x)G(x)]dx = —fjgg(x —)dx=—1,
¢ dx fe
or
[POOG OO + [ a6 (0dx =1

The second term is equal to zero in the limit of &0 since the integrant is continuous at X

= § .
Then we have

1

G,'(x) |§+g -G,'(x) |§—g= _@

14.3  The symmetric nature in G(x, &)
We assume that

Lu(x) =0 for a<x< & with the homogeneous boundary condition at X = a.
L.v(x) =0 for & <x<b with the homogeneous boundary condition at x = b.
Then the Green's function is expressed by
G(x, & = ¢y u(x) for a<x<¢&,
G(x, &) = ¢, v(X) for &<x<b,
where C; and C, are constants.

(1) The continuity of G(X, &) atx = &;



CU(&) ~Cv(&) =0.
(1) The discontinuity in G(X, &) at X = &,

(EY— oV (E) = L
CU() e ()=

This equation is closely related to the Wronskian determinant (see Chapter 5). The
Wronskian determinant is defined as

W(o) =

u(s) V(é)‘
u'g) V')

LG= %[ pP(xX)G']+qg(x)G = pG"+p'G+qG =0.

We take the derivative,

o |u© vol | 1 Ve
W (5)_u"(§) v"(f)_—g(p'uurqu) —lp(p'V'+qV)’
or
plue vo|__p
W'(&) = - =-Pw ().
R TN

Then we have

A
W = "(E)-u' =
u(SHv'(§) —u'(EHv($) o)

for the independence u(X) and Vv(X), where A is constant. Then we have the following
equations,

b

qu'(§)—cV'(s) = @)’

CuU($) —Cv(5) =0,

Here we define A as



A= p(S)UEIV'(E) —U'(SV(D]= P(EOW(S).

From these equations, we have

GO

C = =
A A

Thus we have

G(x,£) =~ UOOV(E) for asx<,

G(x,¢&) = —%u(f)v(x) for &<x<h.

We find that
G(x,E)=G(&,X).  (Symmetry property)

14.4  The check of the solution
Using the Green's function G(X, &), we get the solution of

Ly+f(x)=0,
where Ly is the self-adjoint differential operator, and is given by

ny=di[p(x)y']+q<x>y. (self-adjoint)
X

The boundary condition (homogeneous) is given by

ay@ + py(@=0, ay(b) + By'(b)=0.

The solution of this equation is obtained as
b
y(0) = [G(x.&) f(£)dé.

Here we firm that this is a solution of the differential equation.



1} 1°
Vo) =-— j UEVOOF(§)dE - j u(V(&) f (£)dE
V(X) } u(x) '
= j UEVOOF(§)dE -== j V() f(&)d¢E
For y'(x), we have
1 _ _lx ' _l
Y= I UEWV () ()t =— UGV F (%)

1 1
- j UOOV(E) F(§)dE +—uOVe) F ()

or
X b
V(0 ==,V j U F(£)dE U () j V(&) f(E)dE .
For y"(x), we also have
X b
Y () = —%v"(x){u(f) f (cf)dé—%U"(X)IV(f) F(&)de
=TV (0 = VT ()

or

)

X b
y"(x) =—%v"(x){u(f)f<§)dé—%u"(x)£v(§)f<§>d5——.

f
p(X)

From Egs.(1), (2), and (3), we obtain
d
Ly= &[ P(IY'1+a(X)y = p(X)y"+p'(X)y+a(X)y

1. ¢ 1. °
= LN!U(?) f(&)dt A LN!V(?) f($HdE - 1 (x),
=-f(x)
or

Ly =—f(x).

(1

2)

3)



14.5 Boundary condition for the Green’s function

We consider the Green's function G(X, &) with the homogeneous boundary condition
atx=aandb.

y(x) = V(X)I u&f (&) - “(X)j VO (&)
The values of y(a), y'(a), y(b) and y'(b) are obtained as

y@)=-—= j V(&) f(£)dE =-cu(a),
yib) =0 W Juer@az=—cvo),
y'(a) = ——j (& F(&)dé =—cu(@),

v ) =-L2 U@ F(&)ds =-cv D),
where

1° 1°
c = I V() F(&)de, = j u(&) f(&)de

Then we have

ay(@)+ py'(a) = —¢,[au(a) + pu'(a)]
and

ay(b) + py'(b) = —¢,[au(b) + Su' (b)]

where o and g are constants. Thus the boundary conditions for the Green's function are
given by the same boundary condition as y(X),

au(a)+ pu'(a)=0, av(b)+ p'(b)=0



In conclusion, given the linear differential operator Ly (acting on the variable X), the
solution y(x) of the differential equation L, y(x)=—f(X) can be obtained from the

Green’s function G(x, &) by
Yy = [G(x&) F()dE.

The Green's function obeys the differential equation
LG(X,§)=-6(x=2).

with the same boundary condition as the solution y(X).

14.6 Example: homogeneous boundary condition
Show that

G(x,&)=x(1-¢) for 0<x< &,
G(X,&)=£&(1-x) for0<E<x<1,
is the Green's function for
Ly=y",
where

y(0) =0, y(1) =0.

((Solution))

Lu=0 0<x<¢<l
Lv=0 0<&<x<l1

u”=0,or u(x)=c,x+c, (0<x<?)

v"=0, or V(X) =C/X+C, (&E<x<L))
Boundary condition:

u0)=0—->c, =0 u(x) =c,x

v()=0—>c¢/+C,'=0 v(X)=c/(x—1)



cXx 0<x<¢

G(X’@:{c;(x-l) E<x<l1

The continuity of G(X,&) at Xx=¢&:

Ce=c(s-D.

The discontinuity of dG(x,&)/dx at X=¢:
c,'—C, =-1.

Then we have
¢ =1-¢ and c¢/'=-¢&

or

X(1-&) 0<x<¢

G(X’f):{g(l-x) F<x<l’

((Mathematica))

Clear["Global " *"];

eql = DSolve[{G""[x] == -DiracDelta[x-&§], G[0] == 0, G[1] == 0}, G[x], x] // Simplify

{{G[X] » (X-x &) HeavisideTheta[l-¢&] +
(-X + &) HeavisideTheta[x - ¢£] + (-1 +X) £ HeavisideTheta[-£]}}

G[x_]1 =G[x] /-eql[[1]];
Simplify[G[x], 1> x> & > 0] // Factor
-(-1+x) &

Simplify[G[x], O<Xx< § <1] // Factor
-X (-1+¢)



G(x.£)
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14.7 Example: boundary condition
Ly=y",
with
y(0) +y(1) =0, and y*(0) +y’(1) =0
The Green's function is obtained as
1 1
G(x,&) = —§|x -¢ t
((Solution))
{LXU:O 0<x<é<1
LVv=0 0<&<x<l
u”=0,or u(x)=cx+c, (0<x<$)
v"=0,or V(X) =C/X+C, (E<x<L])
Boundary condition:
u(0)+v(l)=0—c,+c'+c,'=0,

u'@0)+v'1)=0—-c +¢'=0



Continuity of G(x,¢) at x=¢:
cé+c,=¢'é+c,.

Discontinuity of dG(X,&)/dx at x=¢&:
c,'-¢ =-1.

Then we have

1 1 . 1 1

0125’ 0222(1_2§)a 01:_5’ CZZZ(1+2§)
X 1
—+—(1-2&) 0<x<¢

Gxt=1 2 4 .
——+—(1+2 <x<1
5 4( §) ¢

((Mathematica))

Clear["Global "]
eql = G""[X] == -DiracDelta[x - £];

eq2 = DSolve[{eql, G[O] +G[1] ==0, G"[0] + G"[1] =0}, G[x], x] //
Simplify

{{G[X] -

((1+2%x-2¢&) HeavisideTheta[l-£] -4 (X - &) HeavisideTheta[x - &) +

[N

(-1+2x-2¢) HeavisideTheta[-¢]) |}

G[x_1=0G[x] /.eq2[[1]];
Simplify[G[X], 0<Xx< &§ < 1]

(1l+2x-2¢)

NS

Simplify[G[X], 0< £ < X< 1]

(1-2x+2¢)

NI



G(x£)

14.8 Example: inhomogeneous boundary condition

Arfken 10.5.1
Find the Green's function for

Ly=Yy",
with

y(0)=0,  y'®=0.
((Solution))

Lu=0 0<x<¢&<l1
Lv=0 0<&E<x<1

u”=0,or u(x)=cx+c,,
v"=0,or V(X) =C/X+C},

Boundary condition:

0<x<&)

u0)=0—->c,=0 u(x) =c,Xx.

V(1)=0—>c¢ =0 V(X)=C,.

cx 0<x<¢
¢, E<x<1

G(&§)={



Continuity of G(x,&) at x=¢:

!

cé=c,.

Discontinuity of dG(x,£)/dx at x=¢:

0-c, =-1
c,=1,c,=¢
G(X’é):{x 03x<§.
£ F<x<l
((Mathematica))

Clear["Global "];

eql = G""[X] = -DiracDelta[x-&] // Simplify;

eq2 = DSolve[{eql, G[O] =0, G"[1] =0}, G[x], x] // Simplify;
G[x_]=G[x] /.eq2[[1]]

X HeavisideTheta[l - £] + (-X+ &) HeavisideTheta[x - £] - £ HeavisideTheta[-¢]

eq3 = FullSimplify[G[x], O0< X< § < 1]

X

egd = Simplify[G[x], 0< § < X< 1]

3

G(x$)

0.8}

0.6

&=0
0.4+ /
02F
X

0.2 0.4 0.6 0.8 1.0



14.9 Example: homogeneous boundary condition
Find the Green's function for

L.y(x)=y"+y,
with the boundary condition,
y(0) =0, and y(1) = 0.
The Green's function is obtained as

csc(1)sin(1-x)sin(§) 0<x<¢

C(x.6)= {csc(l)sin(x)sin(l ) E<x<l

((Mathematica))
Clear["Global +"];
egl = G""[X] +G[x] = - DiracDelta[x - &];
eq2 = DSolve[{eql, G[O] ==0, G[1] =0}, G[xX], X];
G[x_] =GI[x] /-eq2[[1]1];
Gl = Simplify[G[Xx], 1> x> & > 0] // TrigFactor

Csc[1l] SINn[1-X] SIN[&]

G2 = Simplify[G[x], O0<Xx < & <1] // TrigFactor
Csc[1l] SIn[Xx] SIn[1 - ¢&]



G(x£)

14.10 Example: inhomogeneous boundar condition
Arfken 10.5.2 (a)
Find the Green's function for

Ly=Yy"+y,
with
y(0)=0, y'()=0.
((Solution))
(@)
Lu=0 0<x<¢&
u"+u=0
U =C,sinX+C, cos X
with the boundary condition

u0)=0,

c, =0,



U=c,sinX.
(i)

Lv=0 ¢&<x<I

V'+v=0

V =, sin X + C), cos X
with the boundary condition,

v'(1)=0,

c, =0,

V' =C/cosX—C)sinX,

C,cosl=cjsinl. (1)
(ii1))  Continuity of G(X,¢&) at x=¢&:

C,siné =c¢/siné+C,cosé. (2)
(iv)  Discontinuity of dG(x,&)/dx at x=¢&

—C,cos& +(Cjcosé —Cysiné) =—1. 3)
From Eq.(1) , we have

c, =cotl-c|
Then

C,siné =c¢/sin& +¢ cotlcos&

. siné&

Cl_ . 1
sin& +cotlcosé&

or

c, =cos(1-&)sec(l), ;=0



c,'=sin(¢)tan(l), c,'=sin($),
and

cos(1-&)sec(l)sinx 0<x<¢&
cos(1-x)sec(l)siné <& <x<1

G(X,§)={

((Mathematica))
Clear["Global %"];
eql = G""[X] +G[X] == - DiracDelta[x - &];
eq2 = DSolve[{eql, G[0O] ==0, G"[1] =0}, G[x], X];
G[x_] =G[x] /-eq2[[1]];
Gl = Simplify[G[x], 1> x> & > 0] // TrigFactor
Cos[1l-Xx] Sec[1] SIn[¢&)
G2 = Simplify[G[X], O<Xx< & < 1] // TrigFactor
Cos[1-¢&] Sec[1] Sin[X]

G(x£)
L4}

1.2}

Lo/
0.8;
06!
0.4;

0.2}

0.2 0.4 0.6 0.8

14.11 Eigenfunction and Green's function
We assume that



Lu,+Awu, =0

where Ly is the Sturm-Liouville differential operator, {U,} is the eigenfunction, 4, is the
eigenvalue, and W is the weight function.

We now consider the problem

Ly+f=0.

Since the eigenfunctions of L forms a complete set, y may be written as a superposition of
eigenfunction;

y=> Cu,.
n
Thus we have

f= _Ly = _L(chun) = _zcn I—un = zcn (ﬂ“nwun)

b b
'[um* fdx = Jum*ZCn (A,wu, )dx
a a n i i
= Zﬂncnjum*(wun)dx = cmﬂmjum*(wum)dx
or

N MG
RO
" Uy (EXWE, (E)dE

C. =

m

If we work with normalized u,(X), so that
b £
[u, W&, )de =1

or

15 .
&= I u, (&) f(&)de



Then
y(x) = Zﬂi [u, ©u,00f (2)dz = [G(x.&) T (£)de

where

G(x£) = X4, (1,0

n

This is a Green's function. As a sanity check, we have
1
LG(x,$) = Z;L—Un (S)Lu,(x)

= Z%Un*(f)[—ﬂna)(X)Un(X)]
= —Zun*(é)w(x)un(x)
=-0(x=¢)

((Note))

S(x=&) =D U, * (WU, (E) = D U, * (WS, (X) .
For any arbitrary function y(X), we have
w(X) =D a,u,(x)

Using the relation

[u, = owCaw (9dx = " a, [u, * owx)u, (x)dx

= zam5nm = an
m

Then



y(o) = Zn:anun(f)
= Zn:un(é)jjun * (WX (X)dx
= zzﬂ:un * (U, ()W) (x)dx
From the definition of the delta function,
O(X=¢)= Zn:Un * WX, (8) = Zﬂ:un *(SHW(EW,(X) -

14.12 Example
Find an appropriate Green’s function for the equation

1
Ly=y"+—y.
Y=Y 4 y

with the boundary condition y(0) = y(7)=0

Ly, +4,Y,=0,

where
d 1
Ly=—(y)+—
<Y dx(y) 4 y
u."+(4, +l)u =0
n n 4 n *
We put
u,"+@,’u, =0
where
o =1, oL
4

and the boundary condition u, (0)=u, (z)=0

We have a solution for U,(X)



with

The Green’s function is

G(x,) = Z%un*(f)un(x) :% Sin(nf)siil(nX)
n n n=0 n2 _
4

This should be equal to

G(x,&) = 2cos(§)sin(§) for O<x<&<r

and

G(X,&) = 2cos(§) sin(g) for 0<E<X<1.

((Mathematica))
The Green's function can be derived using the Mathematica as follows.

G"(x)ﬁe(x) = 5(x—¢),

with G(0)=0, and G(z)=0.



Clear["Global %"];
1
eql =G""[X] + Z G[X] == -DiracDelta[x - &];

eg2 = DSolve[{eql, G[0] =0, G[x] =0}, G[x], X];
G[x_] =G[x] /-eq2[[1]];
G[x] 7/ Simplify[#, {O<Xx< E<n}] &

2cos| ] sin| |

G[x] // Simphlify[#, {0< & <X<n}] &

2cos| 2] sin| |

14.13 A useful generalization

We now consider a more generalized equation
Ly+mwy+ f(x)=0
Lu, +A,wu, =0

The function f(X) can be described by

fOO =2 a,u,(x)
with

U (HW(E) T (£)dE

a, =

D ey T

or

b b
F00 = [ DU, *(EWE), () F(E)dE = [S(x=&) T (§)dg



where

S(x=&) =D U (EW(&)u,(x)

Here we assume that

y(x) = D¢,U, (%)

L, > €U, (X) + 2w(X) > € u, (X) + F(X)=0

or
b
€L () + £4W() 3 €U, (0 + WCO U, (0 [ U, * () F(£)dE =0

Since Lu,(X)+ A4 w(x)u, (x)=0, we have

WD (= Ay + AU, () + W) DU, (0 [ U, * (€) f (£)dé =0

b
Multiplying j dxu, " (X)

b b b
> [un COWOOU, ()X (=4, + ), + D [y COWOU, 00dX U, * () T (£)dé =0

or

b

> (A + 10, + 25 [ U () F(£)dE =0
or
(= + )Gy + [ Uy * (&) F(£)dE =0

or



fu, (& f(&)de
Cn B (/1n _,Ll)

Hence the solution is given by

y(x) = Ide e, §X)f(§) - [dB.O 1 (©)

where the Green’s function is defined by

SO MG

14.14 Physical meaning of the Green function

We consider the impulse (Green’s function) method for getting solutions for the
harmonic oscillator with an arbitrary time dependent driving force. We write the solution
as a superposition of solutions with zero initial displacement but velocities given by the
impulses acting on the oscillator due to the external force. An arbitrary driving force is
written as a sum of impulses, The single impulse X(t) responses are added together in the
form of a continuous integral.

We are going to work out a general expression for the response of a damped mass-
spring system to an arbitrary force as a function of time making some very clever uses of
Superposition. We will view the force as a sum of rectangular infinitesimal impulses and
add the x(t) solutions for each impulsive force. For an initially quiescent oscillator each
impulse produces a solution equivalent to a free oscillator with initial velocity. The
solution becomes a sum (integral) over such impulse responses.

14.15 Damped oscillator in Green function
We suppose that a damped harmonic oscillator is subjected to an external force f(t)

with finite duration and is at rest before the onset of the force. The displacement satisfies
a differential equation of the form,

Lx(t) = X" () + 2)X'(t) + @, " (1) = T (1),
where m is a mass, vy is the damping factor, and wy is the natural angular frequency.

Using the Green function G(t, 7), we have



x(t)=—TG(t,r)f(r)dr,

Lx(t)=- T LG(t,7)f(r)dr

= T5(t -7)f(r)dr
= 7fw(t)
where G(t, 7) satisfies
LG(t,7)=-d(t—7),
with
G(t=0,7)=G'(t=0, n=0.

The form of G(t, 7) is given by

G(tr)=— & in(t - ), JO(t ~ 7)
@y
and
° e—y(t—r)
X(t) = j f (o) ——sin[(t-1)o, 1Ot-o)dr,
with

2
wy=A-7 tw, .

((Note)) ¥= 0 for un-damped oscillator

The Green function is given by

G(t,7) = —sin[(t - 1), 1Ot — 7)

@
where G(t, 7) satisfies

G"(t,7)+ @, G(t,7) =0t —7)



with

G(t=0,7)=G'(t=0, /=0

We assume that f(t) is a continuous function of t. This function consists of the
combination of the square impulses with the time width Az.

T "
- P
A 3
L - A
- .
06 ",4 \\
- \
V4
f"
04} 7
r
‘f
L Jf
02} ¥
r
4
’
05 1.0 Is 20
14.16 Example-1: one pulse
0.6
0.4}
02}
03 T0 Ts 2.0

Suppose an impulse with a height f(t,) at t = t,. This impulse can be defined by
f (tn )5(t - tn)

Then we have



x(t)=—[G(t,7)f (t,)5(r ~t,)dz
= _G(tﬁtn) f (tn)
where G(t, t,) is equal to zero for t<t,.

14.17 Example-2: many pulses

v
0.6 - /
,4
0.4+
0.2+
0.5 1.0 1.5 2.0

When there are many impulses at different times, X(t) can be described by

X(t) =2 G(t,t,) f(t,)

5 xplr = to)lsinlog (=t g ¢ 5
n a)d

14.18 Response to a step function
We consider the response X(t) to the external force f(t) which is given by the form

f(t)=a®(t-t,)

The response X(t) is obtained as

© -y(t-7)
Xt = [ f@

sin[(t—7)w, 1®(t —7)]d7,
@y

with

2
o, =~-7 +o, .



We calculate the response using the Mathematica.

((Mathematica))

Clear["Global %"];

EXp[- ¥ (T -
G[t , z ] =- Pl Y; il Sin[(t-t) wd] UnitStep[t-t];
w

f[t ] = aUnitStep[t-t0];

X[t_] = Integrate[-G[t, ] F[c], {t, -», }] /. {(¥?+wd?) > w0?} // Simplify
a (wd- et (yd Cos[ (t-10) wd] + v Sin[ (t-10) wd])) UnitStep[t - tO]

w0? wd

rulel:{t0—>0, as1, w0>1, wd- w02—72};

Tl = Plot[Evaluate[Table[x[t] //- rulel, {y¥, O, 0.8, 0.1}]], {t, O, 30},
PlotStyle » Table[{Hue[0.1 1], Thick}, {i, 0, 10}], PlotRange - All,
AxesLabel - {"t', "X[t]"}];

T2 = Graphics[{Text[Style["y=0", Black, 12], {3, 2.1}]1,

Text[Style["y=0.4", Black, 12], {3.5, 1.25}],
Text[Style["y=0.8", Black, 12], {4, 0.95}1}1:

Show[fl, 2]
. N 2 \
05¢
|
s 10 I 2 25 30

Fig.  Step response for ap =1, a = 1, ty = 0, @, =+—° +a)02 , v 1s changed as a
parameter. y=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8

14.19 Square pulse (1)



£It]
1.0}

0.8

0.6

0.4r

0.2+

What is the response to the square pulse given by
external force;
f(t)=aO(t-t)-0(t-t)],
where a is the amplitude and At =1, - t; is the pulse width.

((Mathematica))

Clear["Global " %"7];

ExXp[- Tt -
G[t , z ] =- PI Y; 22 Sin[(t-zt) wd] UnitStep[t-<];
w

f[t ] = a (UnitStep[t-t0] - UnitStep[t-tl]);

X[t ]
1
w0? wd

(wd - e "B Y (ud Cos[ (t-t1) wd] +y Sin[ (t-tl) wd])) UnitStep[t - t1])

Integrate[-G[t, ] F[c], {r, -®, ©}] /. {(¥*+wd®) > w0%} // Simplify

a ((wd-e ™Y (ud Cos[ (t-t0) wd] +y Sin[ (t-t0) wd])) UnitStep[t - t0] -

rulel:{tO—»O, t1510, a>1, w052, wd> sz—)’z};

fl = Plot[Evaluate[Table[x[t] //- rulel, {y¥, O, 0.8, 0.1}]]1, {t, -5, 30},
PlotStyle » Table[{Hue[0.1i], Thick}, {i, 0, 10}], PlotRange -» All,
AxesLabel » {"t", "xX[t]"}]1;

T2 = Graphics[{Text[Style["y=0", Black, 12], {2, 0.5}],

Text[Style["y=0.4", Black, 12], {2, 0.4}],
Text[Style["y=0.8", Black, 121, {2, 0.3}1}1;
Show[fl, 2]

Response:



x[t]

14.20 Square pulse: Dirac delta function
f(t)=aO(t-t)-0(t-t)],

with
b=a(t, —t,)=ar = const,

in the limit of @ — o and 7 —0. In the limit, the f(t) can be described by a Dirac delta
function,

External force:
f(t)=bo(t-t,).

The response function is obtained as

X(t) = Le’”"t") sin(w,t)O(t —t,).
Wy

Response:



x[t]

15 ’ 20

—04L

Fig. Response to the Dirac delta function for ap =2, b= 1,1 =0, @, =+/—-y* + 0)02 , Y
is changed as a parameter. y=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8

14.21 Step response (1)
External force:
f(t) = a[@(t) - 20(t —t,) + Ot — 2t,)]

Response:
fIt]

1.0

0.5

—05¢+

—-1.0+




-0.10+ U

14.22 Exponential decay with time

External force;
f(t)=fe o)

and response:
x[t], f[t]

1.0
0.8:
0.6:
0.4:

02!

? i

15 20
External force and response

f(t)=fe " [O@) -0t -T,)]+ fe [\t -2T,) -0t -3T,)]+
f,e O [O(t - 4T,) — O(t — 5T,)] +



x[t], £[t]
1.0y

0.8
0.6f
04!

02!

14.23 Exponential decay with time
f(t)=fe ()

f(t) is approximated by the superposition of square pulses with a width Az,
N-1
f) =2 ft)0t-t,) -0t -t )Az
n=0

where

Ar=t

n+l ~ ‘n



A
W\ ya

0.4

0.2} N

14.24 Example
Four square impulses with constant height f at different times




Clear["Global " *"];

EXp[-¥y (T -17)] __ .
G[t_, z. ] =- Sin[(t-—t) w] UnitStep[t-];
w

rulel:{f0—>1, ¥->0.2, w01, w—>\/1—0_22};

x[t , t0_] = -G[t, t0] fO;

x1[t , t0 ] = x[t, t0] /. rulel;

gl = x1[t, 1.1] + x1[t, 2.1] + x1[t, 4.6] + x1[t, 5.6];
g2 = x1[t, 1.1];

03 =x1[t, 1.1] +x1[t, 2.1];

g4 = x1[t, 1.1] + x1[t, 2.1] + x1[t, 4.6];

pll =Plot[{gl, g2, g3, g4}, {t, 0, 10},
PlotStyle -» {{Red, Thick}, {Green, Thick}, {Blue, Thick}, {Black, Thick}},
Background - LightGray] ;

Impulse[t_, tO , t1 ] = Which[t<t0, 0, tO<t<tl, 1, tl<t, 0];

pl2 =
Plot[Evaluate[{Impulse[t, 1.1, 1.3], Impulse[t, 2.1, 2.3],
Impulse[t, 4.6, 4.8], Impulse[t, 5.6, 5.8]}], {t, 0, 10},
PlotStyle » {{Blue, Thick}, {Blue, Thick}, {Blue, Thick}, {Blue, Thick}},
Background - LightGray] ;

Show[pll, pl2]

LO; =
05
N ‘
2 4 6 10
—0.5;

14.25 Mathematica:Derivation of Green's function



-r(t-7)

G(t,r) =2

sin[(t - 7)@]O(t - 7)

for the damped oscillator.

((Mathematica))
Clear["Global "%"];
eqll =G "[t] + 2y G"[t] + w0?G[t] = -DiracDelta[t - t];

eql2 = DSolve[{eqll, G[0] =0, G"[0] =0}, G[t], t] // Simplify
1 -(t-1) [7/+V ¥2-w0?

{{6[t] »-——=e

2\/7(2 - w0?

[1 4 2 (0 ¥2-u02 ) (HeavisideTheta[t - r] - HeavisideTheta[-t])}}

eql3 = eql2 /. {\/ ¥? - w0? > ﬁw} // Simplify;
i
L2,

Gli[t_, z ] =G[t] /.eqld4[[1]] // Simplify[#, O<t< <] &

1
eqld = eql3 /. {

72 _ (1)02

0]

G22[t_, z ] =G[t] /.eqld4[[1]] // FullSimplify[#, t>t>0] &
i e (t-T) (y+iw) (_1+ (621'1 (t-1) w)
2w

G22[t, t] Exp[y (t - t)] // ExpToTrig // Simplify

_Sin[(t—t) w]
w

EXp[-¥ (Tt - sSIn[(t -
G[t , z.]=- PLoy 28 L o) o] UnitStep[t- ]
w

e 1) Sin[(t-1) w] UnitStep[t- t]
w

14.26 Derivation of Green's function using Fourier transform



LG(t) =G"(t) + 2)G' (t) + 9, "G (t) = =5 (t) .

We use the Fourier transform,

G(t) =ﬁ j G(w)e " do,
G'(t) =ﬁ [[-i0G (@)l “do,

|
o) =— |e'dw,
(= j
Then we have

— 0’G(w) - 2y0G(w) + w,"G(w) = —%,
r

1 1
G(w)= .
(@) V271 & +2y0 - @,

The Green's function is obtained as

0 —imt e—izt
L € do !

I S
27 ) o’ +i2y0- o, 2rl T +i2p-w,

G(t) =

for t>0, using the Jordan's lemma for the contour /7. There are two simple poles in the
lower half plane. The contour C; has the clock-wise rotation. Tow simple poles are
obtained as

22 +i212-w, =0,
or

Z=—-lytwy,
where

w, =A@, — 7> .

Using the residue theorem, we have



G(t) =-i[Res(z=12z))t Res(z = 25)]

or

G)= —Lsin(a)dt)e‘”
Wy

The Green's function for t<0 is obtained as

© —jat —izt
L e do 1 e

2 x 2 =y
27 L0 +12y0 - o, 2r T +12y -,

G(t) =

using the Jordan's lemma for the contour /3. There is no pole in the upper half plane.
Then we have G(t) = 0.

In summary we have

G(t) = —a)Lsin(a)dt)eﬂ(H)(t) ,
d

where A1) is the step function; EXt) =0 for t<0 and 1 for t>0.

14.27 Green's function for the undamped oscillator



LG(t)=G"(t) + @,"G(t) =—5(t).

We use the Fourier transform,

G(t)= ﬁ ]EG(a))e_i“’tda),

G"(t)= ‘G(w)]edo,

.
7 e

51 =~ [edo,

27

—00

Then we have

— 0’G(0) - 0, G(w) = T

1

1
G(w)=—— .
(@) 27 o' -,

The Green's function is obtained as

1 o —Ia)t
GH)=—— j
27 2 W’ —a)o
1 —|a)t 1 _ 1 )da)
Tor 20, 7 a)—a)o W+ @,

Q) Retarded Green's function



For t>0, we need to choose the contour C; (in the lower-half plane). The integral
along the 77 is zero according to the Jordan's lemma. There is two simple poles inside the
contour C;. The contour C; has a clock-wise direction.

—izt

[——sdo+ [ —sdz=§ 5 dz=—27i[ReS(z= ) + (2 =-0,)]
0 —0, P, 82—,
or

1 7 e 27
G, (t)=— ﬁda) =———Res(z=w))+(2=-w,)]

27 7 0" - o, 2

=—Lsin(a)0t)
@

For t<0, we need to choose the contour C, (in the upper-half plane). The integral along
the 73 is zero according to the Jordan's lemma. There is no pole inside the contour C,.

—iat —izt —izt

e

or



0

G (t)—ij e o0
ret ' _wwz ~ a)oz .

In summary, we have

Gra() =~ —sin(@,HO(1).

)
((Note))

6 (@)L ! 1
! N2m 20, w—-w,+ie w+a,+ie

Using the formula,

1
[«/27z wo+ie

F—l

1=0(t).

-1 1 I _ A-logt
i [\/ga)—a)oﬂg]]_e om.

-1 1 _ plogt
i [\/ﬂa}+a)0+ig]]_e o0

we find that

11 A2
G (D) = T2n 20, [

= —Lsin(a)ot)(a(t)

@,

e "' Q(t) — e ' O(t)]

(i)  Advanced Green's function



For t>0, we need to choose the contour C; (in the lower-half plane). The integral

along the /7 is zero according to the Jordan's lemma. There is no pole inside the contour
Ci.

o0 e—ia)t e—izt e—izt
'[ ﬁda)+ jﬁdz = §ﬁdz =0
S0 -, P2 —w, S ARO
or
1 © e—ia)t
Gadv(t):_.[ 2 2d(0=0
27 S 0" -,

For t<0, we need to choose the contour C, (in the upper-half plane). The integral along
the 75 is zero according to the Jordan's lemma. There is two simple poles inside the
contour C,. The contour C; has a counter clock-wise direction.

0 e—izut e—lzt e—izt
[5——Fdo+ [ 5—dz= § 5 dz=2zi[Res(z = ;) +Res(z2 =-a,)]
RANOREON r 1w S -,
or
1 7 e™ 1 .
G =— .[ﬁ dw =—sin(ayt)

27 S 0" -, @,



In summary, we have

G (1) = —sin(@,HO(-1).
@y
14.28 Application of the un-damped Green's function

m®O L vty =F )

We define the Green's function

m9O | 6ty =—s0t) .

Then the form of v(t) can be described using the Green's function as

v(t) = — j G(t,r)F(r)dr
We derive the Green's function using the Fourier transform.

G(t) :ﬁ je(a;)e-iw‘dco

I Y
5(t)_g_jme de

Then we have

% j(—mia)+ a)G(w)e " dt = _ZL Ie_i“"dt )
/2 Vs

-0
or

1 1

m)

The inverse Fourier transform:



G(t) =

For t>0, we need to choose the contour C; (in the lower-half plane). The integral
along the 77 is zero according to the Jordan's lemma. There is a simple pole inside the

contour C;. The contour C; has a clock-wise direction.

s —iot —izt —izt .
. I

I : : da)+j e_ d2=§ e_ dz:—2mRes(z:——a)
lx lx lx m

o @+ — LZ+— Cz+——
m m m

or

0 e—ia)t ) | - t

J i dw=-27Res(z :__a) =27 exp(—ﬁ)

—o@+ m m
m

G(t) = (2ri)exp(- 2y =~ Lexp(- %y for t00.
27mi m m m



For t<0, we need to choose the contour C, (in the upper-half plane). The integral

along the 73 is zero according to the Jordan's lemma. There is no pole inside the contour
C.

_ —izt

[ da>+j dz=§e dz=0
la a
—wa)+— Z+— CZ+—
m m m
or
© —iwt
€ —dw=0
I
@+
m
or
G(t)=0 for t<0.
More generally we have
1 a(t-z
Gt.n)=-—expl- 2ot -o).
m m

14.29 Example

Suppose that the input F(t) is a force that is constant Fy between t = 0 and t = T and zero
otherwise.

F()=F[O1)-01-T)].

v(t)=— TG(t, 7)F(r)dr

:%Texp[ A=D1 — o)[0(r) - O(r —T)]d 7

—00

=5[{1—exp<—ﬂ>}®(t)—{1—e p(- 2 ‘T)
[0 m

——)j0(t-T)]

((Mathematica))



Clear["Global "+"];

vit] =

FO (o —a (t - 1) i
Exp[—] UnitStep[t - ]

m -0 m
(UnitStep[z] - UnitStep[t-T]) dz // FullSimplify

(-t+T) o
UnitStep[t] + (—1+<e m

ta
m

FO [UnitStep[t] - e UnitStep[t-T]

(04

rulel={m-1, a-1, T->1, FO- 1};

1l =Plot[v[t] /. rulel, {t, O, 5}, PlotStyle » {Red, Thick},
AxeslLabel » {"t", "v(t)"}, Background - LightGray];
f2 =
Graphics|
{Text[Style["m=1,a=1, T=1, FO=1", Black, 12], {3, 0.6}1}1:;
Show[fl, 2]

v(t)

0.6} m=1,a=1, T=1, F0=1
0.5
0.4}
0.3+
0.2+
0.1+
: t
1 2 3 4 5

14.30 Stretched string problem: homogeneous boundary condition
The differential equation describing the displacement of the string is

Toy"(x) = f(x),

with the boundary condition y(0) = y(L) = 0 (homogeneous boundary condition). The
solution can be described by using the Green function G(X, &) as



y() =—[G(x,&) f (£)d&

where G(X, &) satisfies the differential equation
T,G"(X,8) ==0(X=¢)

with the homogeneous boundary conditions, G(0, &)= G(L, &) = 0. Note that G(x, &) is
symmetric with respect to X and &.

The Green's function is obtained as
G(x,&) =Lx(L -$), for O<x<&<L
LT,
and

G(x,&) = ﬁ E(L-X) for 0<&<x<L

((Mathematica))



Clear["Global "]
eql =TOG""[X] == -DiracbDelta[x - &];
eq2 = DSolve[{eql, G[O] =0, G[L] =03}, G[x], x] // Simplify

{{GIx] (X (L-&) HeavisideTheta[L - £] +

1
N
LTO
L (-x+ &) HeavisideTheta[x - €] + (-L+x) £ HeavisideTheta[-¢]) } }
Gll[x , £1=G[x] /-eq2[[1]] 7/ Simplify[#, O<Xx< &< L] &
X (L-¢)
LTO

G22[x_, £ 1 =G[X] /-eq2[[1]] // Simplify[#, 0< & <Xx<L] &
(L-x) ¢
LTO

X L
y[x_] =J;G22[X, g1 (-F[£]) A& + lel[X, €] (-f[&]) ag

J'—X (L-&) FL£] d§+JX (L-x) F[£]
0

dé
X LTO LTO

14.31 Inhomogeneous boundary condition
The differential equation describing the displacement of the string is

Ty"(x) = f(x),

with the boundary condition y(0) = 0 and y(L) =y, (inhomogeneous boundary condition).
The Green's function G(X, &) satisfies the differential equation given by

T,G"(X,&) =-0(x-¢),
with the homogeneous boundary conditions,
G(0, &) =0, G(L, & =0.

The solution can be described by using the Green's function as
L
y() ==[G(x,&) F(O)AE +4(x),
0

where



T#"(x) =0
with the

#0) =0 and AL) = yo.

The solution of y(X) is obtained as

XY, fXL=9T(®) f(L=x& (&)
y(x)_L+-[ LT, d§+£ LT, do

The validity of this method is given in the Appendix.

Ref: B.R Kusse and E.A. Westwig; Mathematical Physics
((Mathematica))



Clear["Global "] ;

eql =TOG""[X] = -DiracDelta[x - &];

eq2 = DSolve[{eql, G[O] =0, G[L] =03}, G[x], x] // Simplify
{{6[x] - L (X (L-&) HeavisideTheta[L - £] +

LTO
L (-x+ &) HeavisideTheta[x - ] + (-L +x) £ HeavisideTheta[-¢]) } }

Gll[x , £ 1 =G[x] /-eq2[[1]] // Simplify[#, O<Xx< &< L] &

X (L-¢)
L TO

G22[x_, £ 1 =G[X] /-eq2[[1]] // Simplify[#, 0< & <Xx<L] &
(L-Xx) ¢
LTO

eq3 =TO¢""[X] ==0;
eq4 = DSolve[{eq3, ¢[0] == 0, ¢[L] == y0}, &[x], X]

{{orx1 - 22}

¢[x_1=¢[x]/-eqd[[1]];

X L
yl[x_] =jG22[X, g1 (F[€]) A€ + lel[X, g1 (F[g]) ag

X

Lx (L- €]
L LTO de+ J LTO ¢
L
YI[x_] =¢[X] +r622[X, E1 (F[E]) A€ + lel[X, 1 (FL&E1) A€
X y0 (L-¢) <]
T+L L TO de+ J LTO d¢

{y[O], y[L], y1[O], y1[L]}
{0, y0, 0, O}

14.32 Solving the differential equations using the Green’s function
Solve the differential equation



y'(¥)+y(x)=-e”
with the boundary condition

y(0) =0, and y'(0) = 1.
1) Solving the differential equation without using the Green's function
((Mathematica))

Clear["Global "] ;

sol = DSolve[{y""[X] + Y[X] = - EXp[-X],
y[0] =0, y"[0] == 1}, y[x], X];

y[x 1 =Yy[x] /.sol[[1]] // Simplify

(-e™+Cos[x] +Sin[x])

NI

Plot[y[x], {X, 0, 20}, PlotStyle » {Red, Thick}, Background - LightGray]

0.6
0.4+

0.2

—-0.2+

—0.4f

—0.6

(2) Solution with the use of Green's function
We find the Green’s function;

G"(X)+G(X) =-d(x=¢)
with the boundary condition

G(0)=0, G'(0)=1.



Using the Mathematica, we have
G,(Xx,&) =sinX for O<x<&<1.
G,(X,&) =sin X —sin(X—¢&) for 0<&<x<1.

The arbitrary function @(X) satisfies the differential equation given by
¢"(X)+¢(x)=0.

The solution of @ is
¢=C,;sinx+C,cosX.

Then the solution for y(X) is
Yy(¥) = [G,(x,£)e*dé + [ G, (x,£)e “d& + C,sin X+ C, cosX,
0 X

with the boundary condition,
y(0) =0, and y'(0) = 1.

We find that C; = 0 and C, = 0.

y(x) = %(—e‘X +sin X+ cos X) .

((Mathematica))



Clear["Global "%"];
Clear[G];

eq1=
DSolve[{G""[x] + G[X] = - Diracbelta[x-&], G[0] == O,
G"[0] =1}, G[x], x] // Simplify;

G11[x_] =G[x] /-eql[[1]] // Simplify[#, 0<Xx< &1 &

Sin[X]

G22[x_1=G[x] /.eql[[1]] // Simplify[#, x> &> 0] &
Sin[x] -SIn[x-¢&]

The arbitrary term satisfies the differential equation given by

¢"[x] + ¢[x] =0

or
¢(x)=C1 Sin[x] + C2 Cos[x]

FIx_]1 :=

rezz[x] (Exp[-£]) d& +j°°Gll[x] (EXp[-£]) d& +CL Sin[x] +
0(32 Cos[x] // Simplify[#x, x € Reals] &

FIx]

1

> (-e™+Cos[x] +2C2Cos[x] +Sin[x] +2C1Sin[x])

F=Ix]
% (e +Cos[x] +2Cl1Cos[x] -Sin[x] -2C2Sin[x])
Boundary condition

eql = Solve[F[0] =0, C2]

{{C2->0}}

eq2 = Solve[F"[0] == 1, C1]
{{C1-0}}

Simplify[F[X] /- eql[[1]] /- eq2[[1]], X > O]

% <_e*X+Cos[x] +Sin[x])



14.34 Example
Solve the differential equation
X"(t) + x(t) = sint
with the boundary condition
X(0) =0, and X'(0) = 1.

1) Solving the differential equation without the use of the Green's function
1 .
X(t) = E(_t cost + 3sint)

((Mathematica))

Clear["Global "]

eql = x""[t] + X[t] ==Sin[t]

X[t] +X’[t] =Sin[t]

eq2 = DSolve[{eql, X[0] =0, x"[0] =1}, x[t], t] // Simplify

{{x1t] e% (-tCos[t] +3Sin[t])}}

[t ] =x[t] /. eq2[[1]]

(-tCos[t] +3Sin[t])

Nl X

pl = Plot[x[t], {t, O, 10}, PlotStyle » {Red, Thick}, Background - LightGray]




2 Solution with the use of Green's function
We find the Green’s function;
G"t)+G(t)=-0o(t—-17)
with the boundary condition
G0)=0, G'(0)=0.
Using the Mathematica, we have
G,(t,7)=0 for O<t<z<I.
G,(t,7)=—sin(t—7) for 0<z<t<I.
The arbitrary function @(t) satisfies the differential equation given by
") +g(t)=0.
The solution of @ is
¢ =C,sint+C,cost.

Then the solution for y(t) is
t
X(t) = j G,(t,7)(-sint)dz + C,sint + C, cost,
0

with the boundary condition,
X(0) =0, and X'(0) = 1.

We find that C; =0 and C, = 1.
1 .
X(t) =5(—tcost+3smt).

((Mathematica))



Clear["Global *"];

seql =G""[t] + G[t] == -DiracDelta[t-z];

seq2 = DSolve[{seqgl, G[0] =0, G"[0] == 0}, G[t], t];
seq3 =G[t] /-seq2[[1]];

Plot[Evaluate[Table[seq3, {t, 1, 10, 1}]1], {t, O, 10},
PlotStyle » Table[{Hue[0.1 1], Thick}, {i, 0, 10}],
Background - LightGray]

1.OF

0.5 \
ﬁ 3 4 3 \ ‘ o
/ /

—-1.0+

Gli[t , z 1 =G[t] /-seqg2[[1]1] // Simplify[#, O<t< ] &
0

G22[t , z 1 =G[t] /-seqg2[[1]1] // Simplify[#, t>t>0] &
-Sin[t-t]



The arbitrary term satisfies the differential equation given by

¢"[t] + ¢[t] =0
or
¢(t) = C1 Sin[t] + C2 Cosl[t]

FIt ] := J1G22[t, t] (-Sin[z]) dz +C1 Sin[t] +C2 Cos[t] //
0
Simplify[#, teReals] &
F[t]

C2Cos[t] +C1lSIin[t] +% (-tCos[t] +SIn[t])
eqll = F[O]
c2

eql2 = Solve[eqll == 0]
{{C2 - 0}}

eq2l = D[F[t], t] /- €t->0// Simplify
Ci

eq22 = Solve[eq21 == 1, C1]
{{C1-1}}

F11[t ] = F[t] /- eql2[[1]] /- eq22[[1]] // Simplify

% (-tCos[t] +3Sin[t])

14.35 Poisson equation

Find the Green's function for the one dimensional Poisson equation

d’d(x)
dx?

-p(X),

with boundary conditions;



®(0)=0, o(1)=0
Next, find the solution for @ when
p(X) = sin(px).
((Mathematica))
Method - 1 Ordinary differential equation
Clear["Global "+"];
eql=3""[x] = -SIn[xX];
eq2 = DSolve[{eql, &8[0] ==0, &[1] =0}, &[x], x] // Simplify

Sin [ X]
{{21x] *T}}

8[x_]=2[x] /-eq2[[1]];

pl =Plot[&[x], {x, O, 1}, PlotStyle » {Red, Thick},
Background - LightGray]

0.10F
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0.06 |

0.04 -

0.02 |-

0.2 0.4 0.6 0.8 1.0



Method - 2 Green's function method

Clear["Global "%"];

seql = G""[X] = -DiracDelta[x-¢&];

seq2 = DSolve[{seql, G[O] ==0, G[1] =0}, G[x], X];

G[x_ ] =G[x] /.sedq2[[1]];

Gll[x , £ 1 =G[x] // Simplify[#, O<Xx<&<1]&

X-XE&

G22[x_, £ 1 =G[x] // Simplify[#, 1>Xx>&>0] &

E-X¢

Plot[Evaluate[Table[G[x], {£, 0.1, 1, 0.1}]11, {x, O, 1},
PlotStyle -» Table[{Hue[0.1 1], Thick}, {i, 0, 10}],
Background - LightGray, PlotRange -» All]

0.25}

0.20

0.15+

0.10 -

0.05 -

0.2 0.4 0.6 0.8 1.0

1
B[x ] :=J;XG22[X, &1 (Sin[r &]) d¢ +JGll[x, ] (Sin[r &]) ag //

X

Simplify[#, x>0] &
2[X]
Sin[xX]

2

APPENDIX-I
Stretched string problem: homogeneous boundary condition
We consider the solution of



Ly+ (=0,

where Ly is the self-adjoint differential operator, and is given by
d "
L.y = d_[ POAY'T+A(X)y - (self-adjoint)
X

The boundary condition (inhomogeneous) is given by

y(@) =0, y(b) =Yo.

Suppose that the solution of this equation is obtained using the Green's function G(X, &)
as

Y(¥) = [G(X,.E) F(£)dE +p(x).

where G(X, &) satisfies the differential equation
LG(X,8)=-6(x=2),
with the homogeneous boundary condition
aG(a,8)+fG'(a,§)=0, and  aG(b,5)+ pG'(b,5) =0
or
au(@)+ pu'(a)=0, oau)+pu'(b)=0
Note that
Lo(X)=0.
What is the boundary condition imposed for ¢(X) ?

The solution of y(X) can be rewritten as

00 =222 [u) 1@ - 22 [u(@) () + 9.



X b
(0 ==V Juo s U U1+ 00+
Thus the values of y(a), y(b), y'(@), and y'(b) are obtained as

b
y@) =22 [u&) F(©)d + p(a) =—cu(a) + p(a),

ub)

y(b)=-—1

[u@ F(&)AE + p(b) =—c,v(b) + p(b),
y'(a)= —%u'(a) W& f(&)dé+o'(@) =—cu'@+¢'(a)

Y0 =~ VO UE) U +(b) =—cv (B) + /(D)

Then we have
ay(@) + fy'(a) = —c[au(a) + pu'(a)]+ ap(a) + fo'(a)
ay(b) + py'(b) = —c,[au(b) + pu'(b)] + ap(b) + Bp' (D) .

Since au(a)+ Au'(a) =0, and au(b)+ Au'(b) =0, we get
ay(@)+ py'(@) = ap(a) + po'(a),
ay(b) + py'(b) = ap(b) + So'(b).

((Simple case))

When o= 1, and =0,

y@=¢(@)=0, y(b)=p() =y,

This is the boundary condition imposed on ¢(X) .

APPENDIX-I1

Table: Green's function with various boundary condition



(1)

(1) L.y =Yy" with y(0)=0, y(1)=0.
G(x,5)=£(1-X) for O<x<&<1
G(x,5)=x(1-9) for 0<&<x<1

(2) L.y =Yy" with y(0)=0, y'(1)=0.
G(x,$)=x for O<x<&<1
G(x,&)=¢ for 0<&<x<1

(3) L.y =y" with y(0) +y(1) =0, y'(0) +y'(1) = 0.

G(x,&) = %(1 +2X-2&)  for 0<x<&<1

G(x,&) = %(1 —2x+28)  for 0<&x<1

4 Ly=y" with y(0) -y'(0) =0, y(1) -y'(1) =0.
G(x,&)=-¢(1+Xx) for O<x<&<1
G(X,&)=—x(1+¢&) for 0<&<x<1

(5)  Ly=y" with y(0) +y'(0) =0, y(1) -y'(1) =0.
G(x,&)=—-2-&)(1-x) for 0<x<&<1
G(x,&)=—(2-x)1-&) for 0<&<x<l

APPENDIX Il Green's function for un-damped oscillator

We consider the calculation

['e]

G(t)_LJ'Lmdw
27 @ —w)

®© 0
S NS B
2r 2w, *, w-w, O+,

Here we add to ay a positive or negative imaginary part + ig, which amounts to

the simple pole above or under the real axis. Note that £0 and @>0.



Q) Retarded Green's function

For t>0, we need to take the contour C; (clock-wise) in the lower half plane.
The integral along the /7 is equal to zero because of the Jordan's lemma. For t<0,
we need to take the contour C, (counter-clock wise) in the upper half plane. The

integral along the 77 is equal to zero because of the Jordan's lemma.

For t>0
G(t) L §dze““[ ! — ! :
27 20, ¢ I-w,+tle I+a,+le
L (—27)[Res(z =w, —ig)+Res(z=-a, —i¢)]
27 20,
z—Lsin(a)ot)
@
For t<0
G(t) — —|zt 1 1 :
z—a)0+|g I+, +ie
=0

This Green's function is the same as that derived from the damped oscillator in the limit
of y—0.



(i)  Advanced Green's function

For >0,
G(t) :LLWZQ—M[ 1 _ 1 _
27 2w, ¢ I-w,—l¢ I+w,—l¢
=0
For t<0,
cO- L faer L1
27 2w, ¢ I-w,—l¢ I+w,—l¢
L (2r)[Res(z=w, +ig)+Res(z=—-w, +is)]
27 2w,
=Lsin(a)0t)
@,

(ii1))  Other Green's function which is of limited interest as far as classical
mechanics is concerned.



For t>0

G(t) :LLj}dze-izt[ 1 _ 1 :
27 2w, ¢ I-w,—l¢ I1+w,+le
_ 11 (—2m)[Res(z =—w, —i¢)]
27 2w,
:Leiwot
2w,
For t<0
G(t) :LL §dze7izt[ 1 — 1 :
27 2, ¢ I-w, -l I+w,+le
= LL(27zi)[ReS(Z =, +i¢)]
27 20,
:Le—iwot
2,

(iv)  Other Green's function which is of limited interest as far as classical
mechanics is concerned.



For t>0

1

1 1

G(t)—L -
I-w,+le I+w,—l¢

dze ™
27 2w, i) [

0C,
1 1 . ,
=———(—27)[ReS(z = w, —i€)]
27 20,

—iwyt

i
=——-=
2w,

For t<0

—iz 1 1
§dze t[Z_ -

g w,+ie 1+w,—ic

27 2w,

11 . :
e (2n)[Res(z =—a, +i&)]

_ _Leiwot
2w,




