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Augustin-Jean Fresnel (10 May 1788 – 14 July 1827), was a French physicist who contributed 
significantly to the establishment of the theory of wave optics. Fresnel studied the behaviour of 
light both theoretically and experimentally. He is perhaps best known as the inventor of the 
Fresnel lens, first adopted in lighthouses while he was a French commissioner of lighthouses, 
and found in many applications today. 
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______________________________________________________________________________ 
Christiaan Huygens, FRS (14 April 1629 – 8 July 1695) was a prominent Dutch mathematician, 
astronomer, physicist, horologist, and writer of early science fiction. His work included early 
telescopic studies elucidating the nature of the rings of Saturn and the discovery of its moon 
Titan, the invention of the pendulum clock and other investigations in timekeeping, and studies 
of both optics and the centrifugal force. Huygens achieved note for his argument that light 
consists of waves, now known as the Huygens–Fresnel principle, which became instrumental in 
the understanding of wave-particle duality. He generally receives credit for his discovery of the 
centrifugal force, the laws for collision of bodies, for his role in the development of modern 
calculus and his original observations on sound perception (see repetition pitch). Huygens is seen 
as the first theoretical physicist as he was the first to use formulae in physics. 
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15S.1  Green's theorem 

First we will give the proof of the Green's theorem given by 
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This theorem is the prime foundation of scalar diffraction theory. However, only an 
prudent choice of the Green's function and a closed surface A will allow its direct 

application to the diffraction theory: d is volume element and da is the surface element. 
((Proof)) In the Gauss's theorem, we put 
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Then we have 
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Noting that 
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By replacing   , we also have 
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Thus we find the Green's theorem 
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or 
 

 
AV

dad n)()( 22  , 

 
15S.2  Fresnel-Kirchhoff diffraction theory 

According to the Huygen's construction, every point of a wave-front may be 
considered as a center of a secondary disturbance which gives rise to spherical wavelets, 
and the wave-front at any later instant may be regarded as the envelop of these wavelets. 
Fresnel was able to account for diffraction by supplementing Huygen's construction with 
the postulate that the secondary wavelets mutually interfere. This combination of the 
Huygen's construction with the principle of interference is called the Huygens-Fresnel 
principle. (Born and Wolf, Principles of optics, 7-th edition). 

The basic idea of the Huygens-Fresnel theory is that the light disturbance at an 
observation point P arises from the superposition of secondary waves that proceed from a 
surface (aperture) situated between the point P and the light source S. 



 

 
Fig. Illustrating the deviation of the Fresnel-Kirchhoff diffraction formula. r' is the 

position vector from the source point S (at the origin). The aperture is denoted by 
the green line. The volume integral is taken over a region bounded by red lines 

(consisting a screen with an aperture and the surface C). rSP . 'rr PQ . The 

green line denotes an aperture. 
 

We now start with the Green's theorem given by 
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Here we assume that 
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where k (= 2/) is the wavenumber, )',( rrG  is the Green's function, )()',( srr GG   with 

'rrs  , and ŝ  is the unit vector of s. Then we have 
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Further we assume that u(r') = 0 everywhere but in the aperture. In the aperture, u(r') is 

the field due to a point source at the point S. So we get 
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where n' (=-n) is an inwardly directed normal to the aperture surface. This is one form of 
the integral theorem of Helmholtz and Kirchhoff. It is reasonable to suppose that 
everywhere on the aperture A, )'(ru  and )'(' ru will not appreciably differ from the 



values obtained in the free space. So we assume that )'(rincu  satisfies the Maxwell's 

equation in the free space. )'(rincu  is the component of the electric field for the spherical 

wave (incident wave); 
  

0)'()'( 22  rincuk . 
 
The solution of this differential equation is given by 
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on the aperture surface, where E0 is a electric field constant amplitude and 'r̂  is the unit 
vector of r'. Then we have 
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(Fresnel-Kirchhoff diffraction formula) 
 
where the inclination factor is defined as 
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for the convenience. This expression is consistent with the Huyghens' principle. u(r) is 
the superposition of the spherical waves eiks/s emanating from the wavefront eikr/r 
produced by a point source.  



 
15S.3  The Huygens-Fresnel principle 

In order to explain the essence of the Huygens-Fresnel principle, we use the simple 
model as shown below.  
 

 
 
Fig. Illustrating the diffraction formula. We assume that the shape of the aperture in 

the screen is a sphere.  
 

Let A be the instantaneous position of a spherical monochromatic wave-front of 

radius 0 which proceeds from a point source S, and let P be a point at which the light 
disturbance at a point Q on the wave-front may be represented by 
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where E0 is the amplitude at unit distance from the source S. According to the Huygens-
Fresnel principle, each element of the wave-front is the center of a secondary disturbance, 
which is propagated in the form of spherical wavelets. The contribution du(P) due to the 
element dA at the point Q is expressed by 
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where s =QP. The inclination factor )(I  is given by 
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where  is the angle (often called the angle of diffraction) between the normal at Q and 

the direction of propagation, and 'ˆˆ 0 nρ   in the present case. The total disturbance at the 

point P is given by 
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15S.4  Fresnel zone 
 



 
Fig. Fresnel's zone construction (Born and Wolf, Principles of optics, p.413) 
 
In order to evaluate u(P), we use the so-called Fresnel's zone. With the center at P, we 
construct the spheres of radii, 
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where r0 = CP. C is the point of the intersection of SP with the wave-front S. The spheres 
divide A into a number of zones  
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Fig.  Fresnel's zone (n = 1, 2, 3, ---). The distance PQ is equal to 2/0 nr   

2/)1(0  nr and for the n-th zone. This figure is drawn by using Graphics3D of 

the Mathematica. 
 

Since 0 and r0 are much larger than the wavelength , the inclination factor may be 
assume to have the same value (Ij), for points for the j-th zone. From the figure, we have 
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So that 
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and the surface element dA is given by 
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((Note-1)) 

The area of the end cap is given by 
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The area of the j-th zone is obtained as  
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The mean distance from the j-th zone to the point P is denoted as js  
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which is independent of j.  
 
((Note-2)) Inclination factor 
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Then the inclination factor is obtained as 
 

s

rsrs

s

srr
I

0

000

0

22
000

4

)2)((
)

2

2
1(

2

1
)(













 , 

 
since 
 

)0,( 00 rSP   , )sin,cos( 00 SQ , )sin,(cos'ˆ n  

 

)sin,cos( 0000   rSQSPQPs , 

 

s

srr

s

r

s 0

22
000000

2

2cos)('ˆ
cos


 








ns

. 

 
______________________________________________________________________ 
Then the contribution of the j-th Fresnel's zone to u(P) is 
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and I1 = -1. Noting that 
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we get 
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The total effect at the point P is obtained by summing all the contributions: 
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For n = 2m+1 (odd) 
 

)(
)(

)
22

(
)(

2

]
2

)
22

(

)
22

(...)
22

(
2

[
)(

2)(

121
00

)(

0

121

00

)(

0

1212
2

12

12
22

323
2

11

00

)(

0

00

00

00

































m

rik

m
rik

mm
m

m

m
m

m
rik

II
r

e
E

II

r

e
E

II
I

I

I
I

II
I

II

r

e
EPu













 

 

since Ij changes slowly with j, and 
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For n = 2m (even) 
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where 12 II  . Suppose that we allow m to become large enough so the entire spherical 

wave is divided into zones: I2m = 0 and I2m+1 = 0. Then we get 
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since I1 = 1. We note that the disturbance at P only due to the first zone is 
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In other words, the total disturbance at P is equal to half of the disturbance due to the first 
zone. 
________________________________________________________________________ 
15S.5  Reformulation of the Fresnel-Kirchhoff diffraction: 

We consider the new coordinate system for the above Fresnel-Kirchhoff diffraction 
formula, where the origin of the system is moved from the source point S to a specific 
point in the screening with an aperture (in the above figure, we put the new origin O1 at 
the center of the aperture). Note that the shape of the aperture is two-dimensional (such as 
a square aperture or a circle aperture). 



 
 

Fig. New coordinate system. The origin is moved to the center of aperture. 01 rQO . 

11 rPO . 01 rr PQ . The point Q is on the aperture and the point P is on the 

observation plane. 
 
 
We define the new origin O1 in a specific point in the screen with an aperture. The vector 
vector r' is expressed by 
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where 0ρ  is the  vector connecting the source point S and the new origin O1 in the 

aperture, and 1r  is a position vector from the new origin O1 to the position on the 

observation plane. The vector s is given by 
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For simplicity we assume that 
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where dA0 is the surface area element in the aperture; dA0 = dx0dy0. We assume that 
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15S.6  Fresnel diffraction 

Imagine that we have an opaque shield with a single small aperture which is illuminated by 
plane waves from a very distance point source. First we also have a screen parallel with, and 
very close to the aperture. In this case, an image of the aperture is projected on the screen. As  
the screen moves further away from the aperture, the image of the aperture becomes increasing 
more structured as the fringes become more prominent. This is called the Fresnel diffraction. The 
moving of the screen at a very great distance from the aperture results in the drastic chage of the 
projected pattern which is the two-dimensional (2D) Fourier transform image of the aperture 
pattern. This is called the Fraunhofer diffraction. 

 



 
Fig. Rectangular aperture for the Fresnel diffraction and Fraunhofer diffraction. r0 = (x0, y0, 0). 
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The electric field E(x, y, z) at the point P is expressed by 
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where r =(x, y, z) at the point P of the observation plane, r0 = (x0, y0,0) at the point Q in the 
aperture, as shown in Fig. 
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This equation describes how the light travels from the aperture to the observation plane, a 
distance z apart. All points from the aperture contribute to the intensity at the point P. Suppose 
that 
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Then we can expand 0rr   around  = 0, as 
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We assume that 
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When  is on the same order as the size of aperture a, this condition can be rewritten as 
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((Note)) 

Instead of this condition, we use the Fresnel's number F. When F>>1, the Fresnel diffraction 
can occur. On the other hand, when F<<1, the Fraunhofer diffraction can occur. The Definition 
of F will be given below. Note that the condition (F>>1) is not so restrictive compared to the 
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Under such a condition, the distance 0rr   is approximated by 
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This is called the Fresnel approximation.  
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where 1)0,,( 00  yx  for the inside of the aperture, and 0 for the outside of the aperture. 

Mathematically, this integral corresponds to the convolution of )0,,( 00 yx  and ),( 00 yxh , and 
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15S.7  Fraunhofer diffraction 

The above equation can be rewritten as 
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In other words, the field distribution can be found directly from a Fourier transform of the 
aperture distribution itself. Aside from the multiplicative factors, this expression is simply the 
Fourier transform of the aperture. 
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where F is the operation of Fourier transform. This is called the Fraunhofer diffraction. 
 
15S.8  Direct derivation for the Fraunhofer diffraction 

We start with the formula given by 
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As shown in Fig., the distance s is approximated by 
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Then we get the expression, 
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Here we note that 
 

000000 )()()()(ˆ x
z

y
kx

z

x
kyyxx

z

k

r

k
rk  rrr . 

 
Then E(x, y, z) is proportional to the Fourier transform of the aperture, 
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with the wave vector given by 
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The x and y coordinates of the observation point P are proportional to the wave numbers kx, and 
ky, respectively. 
 
15S.9  Fresnel's number; F 

Fresnel's number F  is a dimensionless number occurring in optics, in particular in diffraction 
theory. For an electromagnetic wave passing through an aperture and hitting a screen, the Fresnel 
number F is defined as 
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where a is the characteristic size (the side of the square aperture) of the aperture, z is the distance 
of the observation plane from the aperture and is the incident wavelength. Depending on the 
value of F the diffraction theory can be simplified into two special cases: Fraunhofer diffraction 
for F<<1 and Fresnel diffraction for F>>1. We note that the condition for the appearance of the 
Fraunhofer diffraction is evaluated as 
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On the other hand, the condition for the appearance of the Fresnel diffraction can be rewritten as 
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Suppose that z = 100 mm and a = 5 mm. Then we get the inequality as 
 

F<<3200. 
 
15S.10  Fresnel diffraction with a rectangular aperture 

The Fresnel diffraction occurs when the condition  z  is satisfied. 



 
 
Suppose that a rectangular aperture of ( axa  , bxb  ) is normally illuminated by a 

monochromatic plane wave of unit amplitude and the wavelength .  
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where k is the wavenumber and is given by k = 2/. It follows that the expression can be 
separated into the product of two integrals over x1 and y1, 
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These integrals are simplified by the change of variables, 
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where the limits of integration are 
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The integrals F(x) and F(y) can be evaluated in terms of the Fresnel integrals, which are defined 
by 
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We note that 
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Finally we have the complex field distribution 
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and the corresponding intensity distribution  
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15S.11  Cornu spiral 
 
Marie Alfred Cornu (March 6, 1841 – April 12, 1902) was a French physicist. The French 
generally refer to him as Alfred Cornu. Cornu was born at Orléans and was educated at the École 
polytechnique and the École des mines. Upon the death of Émile Verdet in 1866, Cornu became, 
in 1867, Verdet's successor as professor of experimental physics at the École polytechnique, 
where he remained throughout his life. Although he made various excursions into other branches 
of physical science, undertaking, for example, with Jean-Baptistin Baille about 1870 a repetition 
of Cavendish's experiment for determining the gravitational constant G, his original work was 
mainly concerned with optics and spectroscopy. In particular he carried out a classical 
redetermination of the speed of light by A. H. L. Fizeau's method (see Fizeau-Foucault 
Apparatus), introducing various improvements in the apparatus, which added greatly to the 
accuracy of the results. This achievement won for him, in 1878, the prix Lacaze and membership 
of the French Academy of Sciences (l'Académie des sciences), and the Rumford Medal of the 
Royal Society in England. In 1892, he was elected a member of the Royal Swedish Academy of 
Sciences. In 1896, he became president of the French Academy of Sciences. In 1899, at the 
jubilee commemoration of Sir George Stokes, he was Rede lecturer at Cambridge, his subject 
being the wave theory of light and its influence on modern physics; and on that occasion the 
honorary degree of D.Sc. was conferred on him by the university. He died at Romorantin on 
April 12, 1902. The Cornu spiral, a graphical device for the computation of light intensities in 
Fresnel's model of near-field diffraction, is named after him. The spiral is also used in 
geometrical road design. The Cornu depolarizer is also named after him. 
 



 
http://en.wikipedia.org/wiki/Marie_Alfred_Cornu 
 

Here we make a plot of Cornu's spiral. 

 
 
Fig. Plot of S(x) as a function of x. 
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Fig. Plot of C(x) as a function of x. 
 

 
 

Fig. ParametricPlot of {C(), S()} when a is changed as  parameter. 
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Fig. ParametricPlot of {C(), S()} around the point Z (1/2, 1/2) when a is changed as  
parameter. 
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Fig. ParametricPlot of {C(), S()} around the point Z' (-1/2, -1/2) when a is changed as  
parameter. 

 
15S.12  Fresnel diffraction with a square aperture 

We calculate the intensity of the Fresnel diffraction with the square aperture by using the 

Mathematica (Plot3D, ContourPlot).  and z are fixed. The size of the square (L = a)  
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(a) F = 22.7848 

 = 632 nm, z = 400 mm, L = a = 2.4 mm 
x(mm), y(mm) 

 

 
Fig. Plot3D of the intensity I(x, y). 
 



 
Fig. Plot of intensity vs x (mm). y (mm) is changed as a parameter. y = -1, -0.8, -0.6, -0.4, -0.2, 

0, 0.2, 0.4, 0.6, 0.8, and 1.0 mm 

 
Fig. DensityPlot. The distribution of the intensity in the x (mm) and y (mm) plane. 
 
(b) F = 17.4446 

 = 632 nm, z = 400 mm, L = a = 2.1 mm 
x(mm), y(mm) 
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(c) F = 12.8165 

 = 632 nm, z = 400 mm, L = a = 1.8 mm 
x(mm), y(mm) 

 
 

 
 



 
 

 
 
(d) F = 8.9032 

 = 632 nm, z = 400 mm, L = a = 1.5 mm 
x(mm), y(mm) 
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(e) F = 5.6962 

 = 632 nm, z = 400 mm, L = a = 1.2 mm 
x(mm), y(mm) 

 

 
 



 
 

 
 
(f) F = 3.20411 

 = 632 nm, z = 400 mm, L = a = 0.9 mm 
x(mm), y(mm) 
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(g) F = 1.42405 

 = 632 nm, z = 400 mm, L = a = 0.6 mm 
x(mm), y(mm) 

 
 



 
 

 
 

15S.13  A semi-infinite planar opaque screen with infinte 0 
We calculate the intensity of the Fresnel diffraction with the semi-infinite planar opaque 

screen by using the Mathematica (Plot3D, ContourPlot).  and z are fixed. The size of the square 
(L = a)  
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Fig. A semi-infinite planar opaque screen with finte 0. r0 = z. 
 
We assume that the plane wave arrives at a semi infinite opaque screen. As shown in the above 
figure, the distance r (=QP) is given  
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where P at (x = 0, y, z) and Q at (x0, y0, z = 0). The distance r is approximated as 
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Then the wave arriving at the point P (x = 0, y, z) on the screen is expressed  in the form 
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The resultant electric field at the point P is given by 
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The intensity is given by 
 

)]
2

1
)([]

2

1
)(([

2

1 22
0  wSwCII . 

 
15S.14  Example: a semi-infinite planar opaque screen 

 = 632 nm (He-Ne laser) and z = 400 mm (the distance between the screen and the aperture). 
The intemsity oscillates with the distance y. The intensity has a local maximum at the points P1, 
P2, P3, P4, P5, P6, and so on, and a local minimum at the points Q1, Q2, Q3, Q4, and so on.  
 

 
 

Fig. Intensity vs the distance y. y<0 (shadow region). I0 = 1.  = 632 nm (He-Ne laser) and z = 
400 mm. y is in the units of mm. The geometrical shadow edge is at y = 0 (the intensity = 
1/4); At w = 0, C(w) = S(w) = 0.   
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Fig. Intensity I vs y (mm). I0 = 1. 
 

P1( y = 0.432748, I = 1.37044), P2( y = 0.83353, I = 1.19927), 
P3( y = 1.09572, I = 1.15088),  P4( y = 1.30625, I = 1.12606),  
P5( y = 1.48725, I = 1.11039),  P6( y = 1.6485, I = 1.09937). 

 
Q1( y = 0.665733, I = 0.778251), Q2( y = 0.973793, I = 0.843162), 
Q3( y = 1.20571, I = 0.871942), Q4( y = 1.39975, I = 0.889064), 
Q5( y = 1.56999, I = 0.900735). 
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Fig. DensityPlot of the intensity vs the distance y from y = 0. 
 
Using the value of y in the units of mm, we get  
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The intensity corresponds to the square of the distance between (-1/2, -1/2) point and (C(),S()). 
The intensity has a maximum at y = 0.432748, 0.83353, 1.09572, 1.30625 (mm). In the Cornu 
spiral. 



 
Fig. Cornu plot. Z' at (-1/2, -1/2). Z at (1/2, 1/2). 
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Fig. Cornu plot (enlarged part of the above figure). P1, P2, P3, and P4 are the local 

maximum points of the intensity vs y, and Q1, Q2, and Q3 are the local minimum 
points of the intensity I vs y. 

 
15S.15  Fresnel diffraction with a single slit aperture 

We calculate the intensity of the Fresnel diffraction with a single slit aperture by using the 

Mathematica (Plot3D, ContourPlot).  and z are fixed. The size of the square (L = a)  
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Fig. Single slit aperture. The width of the single slit is a. 

 

The electric filed distribution is given by 
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The intensity is proportional to |U(x, y)|2, and is given by the form 
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Using these values of x1, x2, h11, and h2, we get 
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(a) a = 2.4 mm 

 

 

 
 
(b) a = 2.1 mm 

-1.0 -0.5 0.5 1.0
y

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Intensity
a= 2.4

y=0.

y=0.2

y=0.4

y=0.6 y=0.8

y=1.

y=1.2

y=1.4

y=1.6 y=1.8

y=2.

y=2.2

y=2.4y=2.6y=2.8

y=3.

-0.5 0.5
Ca

-0.6

-0.4

-0.2

0.2

0.4

0.6

Sa
a = 2.4



  

 
 
(c) a = 1.8 mm 
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(d) a = 1.5 mm 
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(e) a = 1.2 mm 
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(f) a = 0.9 mm 
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(g) a = 0.6 mm 
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APPENDIX 
Appendix. Square aperture in the case of finite distance 0 
(Landau and Lifshitz) 

-1.0 -0.5 0.5 1.0
y

0.2

0.4

0.6

0.8

1.0

1.2

Intensity
a= 0.6



 
2

0
2

0
2

0 yx    

 

2
0

2
0

2
0 )()( yyxxrr 

 
 

21 xxx  , 21 yyy   (square aperture) 

 
The total path is given by 
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We note that 
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21 xxx  , 21 yyy   (square aperture) 

 
The total path is given by 
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We note that 
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We put 
 

])1[(
)(

])1[(
)(

)(

0
0

0

000

0

0
0

0
2

000

00

0
0

00

00

00

00

xx
rr

rk

xx
rr

rk

x
x

r

r

r

rk
t


































 

 
and 



 

0
00

00
0

000

2

0

0
0 )(

)(

)1(

dx
r

rk
dx

r

r
kr

dt












  

 




2

1

)
2

exp(
2

00

00
1









dt
t

i
r

r

k
I  

 
where 
 

])1[(
)(

])1[(
)(

2
0

0

000

0
2

1
0

0

000

0
1

xx
rr

rk

xx
rr

rk





















. 

 
Similarly for the y direction. we have 
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The resultant electric field at the point P at the coordinate (x, y,z) is given by 
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The intensity is determined by the square of the field. Thus, we have 
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Similarly for the y direction. we have 
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The resultant electric field at the point P at the coordinate (x, y,z) is given by 
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The intensity is determined by the square of the field. Thus, we have 
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A.2 Fresnel diffraction intensity for the square aperture: Mathematica 
 

FresnelS[]; 

FresnelC[] 
Plot3D 
ParametricPlot 
DensityPlot 
RegionPlot3D 
Or[a, b] 



 

 Fresnel diffraction with a square aperture
l = 632 nm, z = 400 mm, L = 2.4 mm 
The unit of x and y are mm.
  

Clear"Gobal`"; F 
L2

z 
;

rule1  k 
2 

632  109
,   632  109, z  400  103, L  2.4 103,

x1  103 x, y1  103 y;

1  
k

 z

L

2
 x1 . rule1; 2 

k

 z

L

2
 x1 . rule1;

1  
k

 z

L

2
 y1 . rule1;

2 
k

 z

L

2
 y1 . rule1;

I11_, 2_, 1_, 2_ :
1

4
FresnelC2  FresnelC12  FresnelS2  FresnelS12

FresnelC2  FresnelC12  FresnelS2  FresnelS12;

Fresnel number

F1  F . rule1

22.7848



 

Plot3DI11, 2, 1, 2, x, 1, 1, y, 1, 1, PlotRange  All,

AxesLabel  "x mm", "ymm", "Intensity",

AxesEdge  1, 1, 1, 1, 1, 1,

AxesStyle  Blue, Thick, Blue, Thick, Red, Thick,

PlotLabel  "F"  ToStringF1

PlotEvaluateTableI11, 2, 1, 2, y, 1, 1, 0.2, x, 1, 1,

PlotRange  All, AxesLabel  "x", "Intensity", Background  LightGray,

PlotStyle  TableHue0.2 i, Thick, i, 0, 5,

PlotLabel  "F"  ToStringF1
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Intensity
F=22.7848

DensityPlotI11, 2, 1, 2, x, 1, 1, y, 1, 1, PlotRange  All,

AxesLabel  "x mm", "ymm", PlotPoints  40,

ColorFunction  Hue0.8  &, PlotLabel  "F"  ToStringF1 



 
A3. Cornu spiral 
 

 
 
________________________________________________________________________ 

Clear"Global`";

f1  ParametricPlotFresnelCx, FresnelSx, x, 0, 10, PlotStyle  Blue, Thin,

PlotRange  All, AxesLabel  "C", "S";

f2  GraphicsBlack, TablePointFresnelC, FresnelS, , 0, 10, 0.1, Red,

TablePointFresnelC, FresnelS, , 0, 10, 0.5,

TableTextStyle""  ToString, Black, 12, FresnelC, FresnelS,

, 0, 5, 0.1;

Showf1, f2, PlotRange  All
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