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Max Born (11 December 1882 – 5 January 1970) was a German born physicist and 
mathematician who was instrumental in the development of quantum mechanics. He also 
made contributions to solid-state physics and optics and supervised the work of a number 
of notable physicists in the 1920s and 30s. Born won the 1954 Nobel Prize in Physics 
(shared with Walther Bothe). 
 

 
http://en.wikipedia.org/wiki/Max_Born 
________________________________________________________________________ 

Julian Seymour Schwinger (February 12, 1918 – July 16, 1994) was an American theoretical 
physicist. He is best known for his work on the theory of quantum electrodynamics, in particular 
for developing a relativistically invariant perturbation theory, and for renormalizing QED to one 
loop order. Schwinger is recognized as one of the greatest physicists of the twentieth century, 
responsible for much of modern quantum field theory, including a variational approach, and the 
equations of motion for quantum fields. He developed the first electroweak model, and the first 
example of confinement in 1+1 dimensions. He is responsible for the theory of multiple 
neutrinos, Schwinger terms, and the theory of the spin 3/2 field. 



 
 
http://en.wikipedia.org/wiki/Julian_Schwinger 
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18.1 Green's function in scattering theory 

We return to the original Schrödinger equation. 
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Suppose that there exists a Green's function )(rG  such that 
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where )(r  is a solution of the homogeneous equation satisfying 
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18.2 Born approximation 
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The first term: original plane wave in propagation direction k. The second term: outgoing 
spherical wave with amplitude, ),'( kkf , 
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The first Born approximation: 
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when )()( r  is approximated by 
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18.3 Differential cross section 
 
 

 
 
 

 
 

We define the differential cross section 
d

d
 as the number of particles per unit time 

scattered into an element of solid angle d  divided by the incident flux of particles. 
 
 
The particle flux associated with a wave function 
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is obtained as 
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Fig. Note that  = m in this figure. 
 
 

volume = 1
m

k
 

 

1
2
ikze  means that there is one particle per unit volume. Jz is the incident flux (number 

of particles) of the incident beam crossing a unit surface perpendicular to OZ per unit 
time. 
 
The flux associated with the scattered wave function 
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(the number of particles which strike the opening of the detector per unit time) 
 

 

z

unit area



k


 vrel

 relative
velocity

r

d

dS

Detector

dS  r 2d



 
The differential cross section 
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First order Born amplitude: 
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which is the Fourier transform of the potential with respect to q, where 
 

'kkq  : scattering wave vector. 
 
For a spherically symmetric potential, ),'( kkf is a function of q. 
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where  is an angle between k’ and k (Ewald’s sphere). Fro simplicity we assume that ’ 
is an angle between q and r’. We can perform the angular integration over ’. 
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The differential cross section is given by 
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18.4 Yukawa potential 
 
Hideki Yukawa (23 January 1907 – 8 September 1981) was a Japanese theoretical 
physicist and the first Japanese Nobel laureate. 
 

 
http://en.wikipedia.org/wiki/Hideki_Yukawa 
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The Yukawa potential is given by 
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where 0V  is independent of r. 1/ corresponds to the range of the potential. 
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so, in the first Born approximation, 
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Note that as 0 , the Yukawa potential is reduced to the Coulomb potential, provided 

the ratio /0V  is fixed. 
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which is the Rutherford scattering cross section that can be obtained classically. 
 
18.5 Validity of the first-order Born approximation 

If the Born approximation is to be applicable, )(r  should not be too different 

from kr  inside the range of potential. The distortion of the incident wave must be 

small. 
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krr )(  at the center of scattering potential at r = 0. 
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____________________________________________________________________ 
18.6 Lipmann-Schwinger equation 
 
The Hamiltonian H is given by 
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where H0 is the Hamiltonian of free particle. Let  be the eigenket of H0with the energy 

eigenvalue E, 
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The basic Schrödinger equation is  
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Both 0Ĥ  and VH ˆˆ
0  exhibit continuous energy spectra. We look for a solution to Eq.(1) 

such that as 0V ,   , where   is the solution to the free particle Schrödinger 

equation with the same energy eigenvalue E. 
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Since )ˆ( 0HE   = 0, this can be rewritten as 
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The presence of   is reasonable because   must reduce to   as V̂  vanishes. 

 
Lipmann-Schwinger equation: 
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by making Ek (= )2/22 mk  slightly complex number (>0,  ≈0). This can be rewritten 
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The Green's function is defined by 
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In summary, we get 
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More conveniently the Lipmann-Schwinger equation can be rewritten as 
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When two operators Â  and B̂  are not commutable, we have very useful formula as 
follows, 
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where 0]ˆ,ˆ[ BA  are not commutable. We assume that 
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For simplicity, we newly define the two operators by 
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0 iEG k   denotes an outgoing spherical wave and )(ˆ

0 iEG k   denotes an 

incoming spherical wave. Note that the operator )(ˆ G  is slightly different from 
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Then )( can be rewritten as 
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18.7 The higher order Born Approximation 

From the iteration, )(  can be expressed as 
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The Lippmann-Schwinger equation is given by 
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This is supposed to hold for any k taken to be any plane-wave state. 
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The scattering amplitude ),'( kkf  can now be written as 
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Using the iteration, we have 
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Correspondingly we can expand ),'( kkf  as follows: 
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Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations. 

kk  is the initial state of the incoming particle and '' kk  is the final state 

of the incoming particle. V̂  is the interaction. 
 
18.8 Optical Theorem 

The scattering amplitude and the total cross section are related by the identity 
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This formula is known as the optical theorem, and holds for collisions in general. 
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Fig. Optical theorem. The intensity of the incident wave is mk / . The intensity of the 

forward wave is )]0(Im[)/4()/( fmmk   . The waves with the total intensity 

totmkfm  )/()]0(Im[)/4(    is scattered for all the directions, as the scattering 

spherical waves. 
 
((Proof)) 
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Now we use the well-known relation 
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The first two terms of this equation vanish because of the Hermitian oparators of V̂  and 
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