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Max Born (11 December 1882 — 5 January 1970) was a German born physicist and
mathematician who was instrumental in the development of quantum mechanics. He also
made contributions to solid-state physics and optics and supervised the work of a number
of notable physicists in the 1920s and 30s. Born won the 1954 Nobel Prize in Physics
(shared with Walther Bothe).

http://en.wikipedia.org/wiki/Max_Born

Julian Seymour Schwinger (February 12, 1918 — July 16, 1994) was an American theoretical
physicist. He is best known for his work on the theory of quantum electrodynamics, in particular
for developing a relativistically invariant perturbation theory, and for renormalizing QED to one
loop order. Schwinger is recognized as one of the greatest physicists of the twentieth century,
responsible for much of modern quantum field theory, including a variational approach, and the
equations of motion for quantum fields. He developed the first electroweak model, and the first
example of confinement in 1+1 dimensions. He is responsible for the theory of multiple
neutrinos, Schwinger terms, and the theory of the spin 3/2 field.



http://en.wikipedia.org/wiki/Julian _Schwinger

18.1 Green's function in scattering theory
We return to the original Schrédinger equation.
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We assume that
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Suppose that there exists a Green's function G(r) such that
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Then w(r) is formally given by
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where ¢(r) is a solution of the homogeneous equation satisfying
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18.2 Born approximation
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The first term: original plane wave in propagation direction k. The second term: outgoing
spherical wave with amplitude, f (k',k),
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The first Born approximation:
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18.3 Differential cross section
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We define the differential cross section d—g as the number of particles per unit time

scattered into an element of solid angle dQ divided by the incident flux of particles.

The particle flux associated with a wave function
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Fig.  Note that 4= m in this figure.

volume = K x 1
m

‘e'kz =1 means that there is one particle per unit volume. J, is the incident flux (number

of particles) of the incident beam crossing a unit surface perpendicular to OZ per unit
time.

The flux associated with the scattered wave function

1 eikr
=———1f(
Zr (2”)3/2 r ( )
is
P ZL(Z*QZ , i){*)z 1 ﬁ|f(9)|2
Cooami Yot Mot @2y mr?
dA = r’dQ
v [T v 2
AN =J dA=——— 11— r’dQ=———rH|f () dQ
(2r) r (2r)

(the number of particles which strike the opening of the detector per unit time)
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The differential cross section
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First order Born amplitude:
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which is the Fourier transform of the potential with respect to g, where

g =k —K': scattering wave vector.

For a spherically symmetric potential, f(k',K)is a function of q.
7
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where @is an angle between k’ and k (Ewald’s sphere). Fro simplicity we assume that &
is an angle between ¢ and r’. We can perform the angular integration over .
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The differential cross section is given by
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18.4 Yukawa potential

Hideki Yukawa (23 January 1907 — 8 September 1981) was a Japanese theoretical
physicist and the first Japanese Nobel laureate.

http://en.wikipedia.org/wiki/Hideki Yukawa

The Yukawa potential is given by
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where V, is independent of r. 1/4 corresponds to the range of the potential.
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Note that as # — 0, the Yukawa potential is reduced to the Coulomb potential, provided
the ratio V,/ i is fixed.
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which is the Rutherford scattering cross section that can be obtained classically.

18.5 Validity of the first-order Born approximation
If the Born approximation is to be applicable, <I"l//(+)> should not be too different

from <r|k> inside the range of potential. The distortion of the incident wave must be

small.
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<r‘w(i)> ~(r|k) at the center of scattering potential at r = 0.
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18.6 Lipmann-Schwinger equation
The Hamiltonian H is given by
H = H, +V

where Hy is the Hamiltonian of free particle. Let |¢> be the eigenket of Howith the energy

eigenvalue E,
Hil¢) = E[¢)
The basic Schrodinger equation is

(Ho +V)lyw) = E|y) (1)

Both I:IO and I-A|0 +V exhibit continuous energy spectra. We look for a solution to Eq.(1)
such thatasV — 0,

equation with the same energy eigenvalue E.

l//> - |¢> , Where |¢> is the solution to the free particle Schrodinger
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Since (E - |:|0)| ¢> = 0, this can be rewritten as



V|y)=(E-Hy|w)-(E-H,)|4)
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(E-H)(w)~|#)=Vly)

or

v} =(E=H) V]w)+|¢)

The presence of |¢> is reasonable because |l//> must reduce to |¢> as V vanishes.
Lipmann-Schwinger equation:
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by making Ey (= #’k*/2m) slightly complex number (£>0, & ~0). This can be rewritten
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The Green's function is defined by
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More conveniently the Lipmann-Schwinger equation can be rewritten as
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When two operators A and B are not commutable, we have very useful formula as
follows,

where [A, L5z] =0 are not commutable. We assume that
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A=(E,—H,*is), B=(E —H i)
Then
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For simplicity, we newly define the two operators by
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where GO(Ek +ig) denotes an outgoing spherical wave and éO(Ek —ig) denotes an

incoming spherical wave. Note that the operator G® s slightly different from
Gy(E, +ig),
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18.7  The higher order Born Approximation
From the iteration,

l//(”> can be expressed as
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The Lippmann-Schwinger equation is given by
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where the transition operator T is defined as
V‘w(+)> = f|k>
or

TIk) =V
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This is supposed to hold for any |k>taken to be any plane-wave state.
T =V +VG,(E, +is)T .

The scattering amplitude f(k',k) can now be written as
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Using the iteration, we have
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Correspondingly we can expand f (k',k) as follows:

f(k', k)= fOK, k) + fOK, k) + FOK, k) +.......
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Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations.
& = |k> is the initial state of the incoming particle and ¢, = | k'> is the final state

of the incoming particle. V is the interaction.

18.8 Optical Theorem
The scattering amplitude and the total cross section are related by the identity

Im[f(0=0)]= o,
4
where
f (0 =0)= f(k,k): scattering in the forward direction.
do
O-tot = -[d_Q dQ .

This formula is known as the optical theorem, and holds for collisions in general.



Fig.  Optical theorem. The intensity of the incident wave is 7k /m . The intensity of the
forward wave is (7ik /m)—(4zi/m)Im[ f(0)]. The waves with the total intensity

(471/m)Im[ f (0)] = (Ak /m)o,, is scattered for all the directions, as the scattering
spherical waves.
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Now we use the well-known relation
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