Chapter 1
Vector Analysis
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date: August 31, 2010)

((Note)) You may find original Mathematica programs in my web site
http://bingweb.binghamton.edu/~suzuki/

Johann Carl Friedrich Gauss (30 April 1777 — 23 February 1855) was a German
mathematician and scientist who contributed significantly to many fields, including
number theory, statistics, analysis, differential geometry, geodesy, geophysics,
electrostatics, astronomy and optics.

http://en.wikipedia.org/wiki/Carl Friedrich Gauss

Sir George Gabriel Stokes, 1st Baronet FRS (13 August 1819—1 February 1903), was a
mathematician and physicist, who at Cambridge made important contributions to fluid
dynamics (including the Navier—Stokes equations), optics, and mathematical physics
(including Stokes' theorem). He was secretary, then president, of the Royal Society.



http://en.wikipedia.org/wiki/Sir George Stokes, 1st Baronet
11  Fundamentals

1.1.1 Definition of vectors
Vectors are usually indicated by boldface letters, such as A, and we will follow this
most common convention. Alternative notation is a small arrow over the letters such as

A . The magnitude of a vector is also often expressed by A:|A|. The displacement

vector serves as a prototype for all other vectors. Any quantity that has magnitude and
direction and that behaves mathematically like he displacement vector is a Vector.

((Example))
velocity, acceleration, force,
linear momentum, angular momentum, torque
electric field, magnetic field, current density, magnetization, polarization
electric dipole moment, magnetic moment

By contrast, any quantity that has a magnitude but no direction is called a scalar.

((Example))
length, time, mass, area, volume, density, temperature, energy

A unit vector is a vector of unit length; a unit vector in the direction of A is written with
a caret as A , which we read as “A hat.”

A= AA = AA



(A)  Avectorr

Fig.  The vector r represents the position of a point P relative to
another point O as origin.

(B)  Negative vector: - r
The negative of a given vector r is a vector of the same magnitude, but opposite
direction. _

4]

o]
Fig. The vector —r is equal in magnitude but opposite in
direction to r.

(C)  The multiplication of the vector by a scalar



o
Fig.  The vector kr is in the direction of r and is of magnitude kr, where k = 0.6.

(D) A unit vector

unitvactor

s}
Fig.  The vector f is the unit vector in the direction of r. Note that r =r¥ .
1.1.2. Vector addition

C=A+B =B + A (commutative)



The sum of two vectors is defined by the geometrical construction shown below. This
construction is often called the parallelogram of addition of vectors.






1.1.3. Vector subtraction
C=A-B

The subtraction of two vectors is also defined by the geometrical construction shown
below.






1.1.4. Sum of three vectors

1.1.5 Sum of many vectors
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1.1.6. Imporrtant theorem for the geometry
(A)  Theorem

When the point P is between the point Q and P on the line connecting the two points
P and Q, the vector OP is expressed in terms of the vectors A and B by

OP = oA + /B

where o+ =1 (>0 and £>0).



Fig. OP = A+ B where o+ f= 1. o is changed between a =
0.1 and 0.9 with Aa=0.1.

We now consider the following case.

OA=a
OB=b
OA = pa
OB, =qb

where p and ¢ are between 0 and 1. From the above theorem, the vector OP is expressed
by

atwwnﬂmm=%mm+mm)

where
a+p=1

o
%y pg=1
p

From these Eqgs. we have



L, _P(=p)
1-pq

1-—
p=t
1-pq

Then OP is expressed by

55_PU=p),  dl-p),
1-pq 1-pq

(B)  Bisecting vector
In a triangle of this figure, the angle POR is equal to the angle QOR. The point R is

on the line PQ. What is the expression of OR in terms of the vectors A and B?. Since R
is on the line AB, OR is described by

OR=cA + B (1)

where o+ =1 (>0 and £>0).

Q9

0 Pq A

The vector OR is also described by
— A s A B
OR=k(A+B)=k(—+— 2
( ) (A B) )

where A and B are the magnitudes of A and B., A and B are the unit vectors for A and B.
From Egs.(1) and (2), we have



k
o=—
A
k
)
or
A
=—a 3
B B A3)
Then we get
B
a =
A+B
A
F=ave

1.1.7. Cartesian components of vectors

(A) 2D system

Let I and j, and Kk denote a set of mutually perpendicular unit vectors. Let i and j
drawn from a common origin O, give the positive directions along the system of

rectangular axes OXy.
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We consider a vector A lying in the Xy plane and making an angle & with the positive X
axis. The vector A can be expressed by

A=(A,A)=Ai+Aj=Acosd +sin )

where

A=|A|=\/AK2+A/2 and tané?:%

When the vector B is expressed by
B=(B,,B, )=B,i+B,j
the sum of A and B is

A+B=(A +B)i+(A +B))j

(B) 3D system

Let |, j, and k denote a set of mutually perpendicular unit vectors. Let i, j, and k drawn
from a common origin O, give the positive directions along the system of rectangular
axes OXyz.

An arbitrary vector A can be expressed by

A=(AALA)=Ai+Aj+AK



where Ay, Ay, and A, are called the Cartesian components of the vector A. When the
vector B is expressed by

B=(B,,B,,B,) = B,i + Byj + B,k
the sum of A and B is

A+B=(A +B)i+(A +B)j+(A +B,)k

1.1.8. Scalar product of vectors

(A)  Definition
The scalar product (or dot product) of the vectors A and B is defined as

A-B= |A||B|cos49 = ABcos@

where 6 is the angle between A and B and is between 0 and 7. The scalar product is a
scalar and is commutative,

A-B=B-A

(B)  Magnitude:
When B = A, we have

A-A=|A]"=A

since 6= 0.

(C)  Orthogonal (A L B):



If
A-B=0 (A#0 and B #0),

we say that A is orthogonal to B or perpendicular to B.

(C)  Projection:
The magnitude of the projection of A on B is A cosé. So A-B is the product of the

projection of A on B with the magnitude of A. We also consider that the magnitude
of A-B is the product of the projection of on B on A with the magnitude of B.

A-B =|A|B|cosd = B(Acos8) = A(Bcos6)

(D)  The expression of the scalar product using Cartesian components of vectors
Inner product of A and B

We now consider two vectors given by



A=(A.A,A)=Ai+Aj+AK
B=(B,,B,,B,)=B,i+B j+Bk

The scalar product of these two vectors A and B can be expressed in terms of the
components

A-B=(Ai+Aj+AKk) (B,i+B j+Bk)
=(AB,i-i+ABji-j+ABi-K)+(AB,j-i+ABj-j+AB,j-k)
+(ABk-i+ABK-j+ABK-k)

or
A-B=AB,+AB, +AB,

Here we use the above relations for the inner products of the unit vectors.
where

ii=1 ji=0 k-i=0
i-j=0 jrj=1 k-j=0
i-k=0 j-k=0 k-k=1

In special cases, the components of A are given by

A= Ai-i+Aji+Ak-i=A
A-j=Ai-j+Ajj+AKk-j=A
Ai=Ai-k+AjKk+Ak-k=A,

The unit vector A of the vector A is expressed by

<1 A. A A
A== A U A A 1
A(AA,AY,AZ) At
Ai. Aj. Ak
= i+ j+
A A A

k

(E)  Law of cosine



C’=C-C=(A-B)-(A-B)=A*>+B*-2(A-B)
=A>+B?-2ABcosé

This is the famous trigonometric relation (law of cosine).
1.1.9 Vector product
(A)  Definition

This product is a vector rather than scalar in character, but it is a vector in a somewhat
restricted sense. The vector product of A and B is defined as

C = AxB =|A|B]sinh = ABsinéh

where |A| is the magnitude of A. |B| is the magnitude of B. @ 1is the angle between A and

B. A is a unit vector, perpendicular to both A and B in a sense defined by the right hand
thread rule.

We read A x B as “A cross B.”

The vector A is rotated by the smallest angle that will bring it into coincidence with the
direction of B. The sense of C is that of the direction of motion of a screw with a right-
hand thread when the screw is rotated in the same as was the vector A.



Right-hand-thread rule.

((Note))

The vector C is perpendicular to both A and B. Rotate A into B through the lesser of
the two possible angles — curl the fingers of the right hand in the direction in which A is
rotated, and the thumb will point in the direction of C = A x B.

(B)
Because of the sign convention, B x A is a vector opposite sign to A x B. In other
words, the vector product is not commutative,

BxA=-AxB.
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It follows from the definition of the vector product that
AxA=0

(D)

The vector product obey the distributive law.

Ax(B+C)=AxB+AxC

(E)  Cartesian components.
The vectors A and B are expressed by

A=(A.A.A)=Ai+Aj+AK
B=(B,,B,,B,)=B,i+B,j+Bk

Then the vector product A x B is expressed in terms of the Cartesian components



AxB=(Aji+Aj+AK)x(B,i+Bj+Bk)
= (ixi)AB, +(ix )AB, +(ixk)AB,
+(UxDAB +(IxDAB, +(1xK)AB,
+(kxi)A,B, +(kxj)AB, + (kxk)AB,

Here we use the relations,

AxB=KkAB, — jAB, ~KAB, +iAB, +jAB, —iAB,
=i(AB, - AB)+j(AB, - AB)+k(AB, —AB,)
i j ok
=A A A
B, B, B,

It is easier for one to remember if the determinant is used.

Using the cofactor, AxB can be simplified as

L a b
where a 2x2 determinant is given by ¢ dl” ad —Dbc.

Note

Note that

A-(BxC)=B-(CxA)=C-(AxB)=(BxC)-A=(CxA)-B=(AxB)-C,

where the order of A, B, and C is cyclic.



((Mathematica))



A= {Al, A2, A3}
(A1, A2, A3}

B= {Bl, B2, B3}
(B1, B2, B3)

CC = {C1, C2, C3}
{C1, C2, C3)

DD = {D1, D2, D3}
(D1, D2, D3}

Cross[A, B]
{-A3B2 + A2B3, A3B1- A1B3, -A2B1 + A1 B2}

A.B
Al Bl + A2B2 + A3 B3

Cross[CC, Cross[A, B]] 7/ Simplify

{-A2B1C2+A1B2C2 - A3B1C3 + A1B3C3,
_B2 (ALC1l+A3C3) + A2 (B1C1+B3C3),
_B3 (A1C1+A2C2) + A3 (B1C1 +B2C2))

Cross[Cross[CC, DD], Cross[A, B]1] //
Simplify
{A3B1 (C2D1-C1D2) +
A2 Bl (-C3D1+C1D3) +Al
(-B3C2D1+B2C3D1+B3C1D2-B2C1D3),
A3 B2 (C2D1-C1D2) +
A1B2 (C3D2-C2D3) + A2
(-B3C2D1+B3C1D2-B1C3D2 +B1C2D3),
B3 (-A2C3D1+A1C3D2+A2C1D3-A1C2D3) +
A3 (B2C3D1-B1C3D2-B2C1D3+B1C2D3)}



1.9.3 Application of the vector product

(A)  Areaof parallelogram

The magnitude of A x B is the area of the parallelogram.

|AxB|= ABJsin 6|

C=AXB

f

& Parallelogram

(B)  Volume of a parallelepiped

The scalar given by

(AxB)-C|=V

is the volume of parallelepiped

(C) Lawofsine



We consider the triangle defined by C = A + B, and take the vector product
AxC=Ax(A+B)=AxA+AxB=AxB

The magnitude of both sides must be equal so that
ACsin(A,C) = ABsin(A, B) = ABsin(z — (A, B))

or

sin(A,C) sin[7z—(A,B)]
B C

(Law of sine).

where sin(A, B) denotes the sine of the angle between A and B.
1.10 BAC-CABrule

Ax(BxC)=B(A-C)-C(A-B)
Similarly the following two identities are also very important.
(A)

(AxB)x(CxD)=C{A-(BxD)}-D{A-(BxC)}
(B)

(AxB)-(CxD)=(A-C)B-D)-(A-D)(B-C)

1.2. Advanced topics

See Chapter 1S for more detail in the rotation.
1.2.1. Directional cosine a;j



e;'

er'

€2

e,

The vector field is defined in terms of the behavior of its components under the
rotation of the co-ordinate axes. Here we use the following notation.

X=¢, y=e,, l=e,

X'=e/', §/'=e2', 2'=es'
The new vectors ;' is related to the old vectors e; through the following relationship.

e’ € a, q, a;|¢§
e2' =a e, =13, a, as|&
e,' €; a; A, a5 \6

The matrix element a;; is called the directional cosine. The symbol 5ij is the Kronecker
delta, and is defined by

o; =1 fori=},and 0 fori#]j.

Then we have



The vector {e;} is also expressed by using {€;’}

€ e’ e’ a, 21 5 | €
€ |= a ezv =a' ez' =la, ay a; ez'
€; 63' 63' Q; 8y Ay e3'

where a' is the transpose of the matrix a. For simplicity, we can write down

.
e'=> ae;, e, =y (@)e,'=> aze;".
j j

j

((Note))
a'=a™'
((Proof))
From
ee i '= 6”
we have

ee;'= (z aikek)(z ;€)= Zaikajl (€)= zaikaj|5k| = Zaikajk =0
X i kol kol X
or
zaikajk = é‘ij >
X

where a' is the transpose of the matrix a;
a, 1
aa =|a, a, as|a, a, a,|=0
a,, 0

In other words, we have
aa' =a'a=|I

or



Note that
@' a); =0; = Zk:(aT i (@) = Zk:akiakj
or
zakiakj = 5ij .
k
1.2.2 Two dimensional rotation

€

, A
€

e1'= 4,6, +a,6,
ez': a6, +a,¢,

with

a, =(e&')=cosl
a, =(e,e,')=sind
a, =(ee,'")=—sinf
a,, =(e,e,")=cosf

or

> €



oo a, a,| (cosd sind
- a, a, | -sin@ cos@
((Note)) Mathematica

R = RotationMatrix[-6] // Simplify
{{Cos[@], Sin[o]}, {-Sin[6], Cos[O]}}

R // MatrixForm

Cos[©6] SIn[o]
-Sin[6] Cos[o]

1.2.3 Three dimensional rotation

Rotations of the body frame are defined to have a countercloskwise sense, with the
rotations carried out in the following order.

1. First, make a rotation by an angle ¢ about the initial z axis. (£ — 1 -¢).

2. Then, make a second rotation by an angle & about the body & (= &) axis, called
the line of nodes. (&' — ' — ¢').

3. Finally, make a third rotation by an angle  about the body ¢' (=z’) axis. (X' - y' -

Z".
cosg sing O
R, =|—sing cos¢g O
0 0 1
1 0 0
R,=[0 cos@ sind
0 —sin@ cosé

cosyy siny O
R, =|—siny cosy 0
0 0 1

The net result in the body frame is



cos@cosy —sin@cosfsiny

sing@cosy +cos@gcosfsiny  sin@siny
—cos@singcosy —cos@siny  cos@cosfcosy —sin@siny
sin ¢sin &

sin @ cosy
—cos¢gsinf cosf

i N S

Fig.1 Rotation by an angle ¢ about the initial z axis. (&— 7).



Fig.2 A second rotation by an angle @ about the body & (= &) axis, called the line of
nodes. (&' —n'— ).

P N

Fig.3 A third rotation by an angle y about the body ¢' (= z’) axis. (X' - y' - Z").



((Mathematica))
R¢ = RotationMatrix[-¢, {0, O, 1}] // Simplify;

Re¢ // MatrixForm

Cos[¢] Sin[¢] O
-Sin[¢] Cos[¢] O
0 0 1

Re = RotationMatrix[-6, {1, 0, 0}] // Simplify;

Re // MatrixForm
1 0 0]
0 Cos[e] Sin[o]
0 -Sin[©] Cos[9]

Ry = RotationMatrix[-y¢, {0, 0, 1}] // Simplify;

Ry // MatrixForm

Cos[¥] Sin[y] O
-Sin[y] Cos[y] O
0 0] 1

S =Ry.Re.R¢ // Simplify;

S // MatrixForm

Cos[¢] Cos[¥] -Cos[6] Sin[¢] Sin[¥] Cos[¥] Sin[¢] + Cos[6] Cos[¢] Sin[¥y] Sin[O] Sin (Y]
-Cos[0] Cos[y] Sin[¢] -Cos[¢] Sin[y] Cos[6] Cos[¢] Cos[¥] -Sin[¢] Sin[y] Cos[y] Sin[O]
Sin[6] Sin[¢] -Cos[¢] Sin[o] Cos (6]

1.2.4 Definition of vector
Suppose that the vector r can be expressed by

r= inei = in'ei'
for the old and new co-ordinate systems, respectively. Then we have

r= Zjlxiei = Zj:XJ (Zaijei') = iZlejaueiE Zi:(zj:aijxj)ei' =r'= in'ei'
Then we have

X'=DaX;
j

or



We may write (Cartesian co-ordinate)

b0

Note that we also have
x=a'x'=a'x'

or
.
xi=>. @)X = a;x;".
j i

Also we may write

oX OX
aji =, or aij ==,
ox;' OX:

Using the above notations, we get the original definition;

z Xi€; = Z[Zaﬂm '][Z A€ 'j = zaliaki X'e' = Z X, '€y 'zaliaki :Z X '8 'O = z X '€
i i | k i,k,l k.l i k,I k

Now we consider more general case in order to get the definition of vector.

X3

A

X

Suppose that



aj=zyiei =2yi'ei'
O_(j:Z:Ziei =zzi'ei'

where
yi':zj:aijyj, zi'=zj:aijzj
Then we have
A=PQ=0Q-0P=3(z,-y)e = 2.(z"-y e/
Since
e, =Y aze,
j
the expression of A can be rewritten as
2z - yage; =3 (z'-y e
i j i
By the interchange between 1 and j in the left-hand side,
2@ —yage =23 (z - yae' =D (z'-ye'.
i ] i i
Therefore we get
z'-y'= > 3(z;-Y)).
J
Since the component of A is given by

A=z-Y;, and A'=z'-y;

in the old and new co-ordinate systems, we can write

A':ZaijAj.



In summary, under the rotation of the co-ordinate system,
e'=> ae;, or e, =y aie,'=> ae,
i i j
the components of the vector are transformed through

A'=ZaijAj
J

((Example))

1) Newton's second law

We consider how the Newton's second law transforms under the rotation of the
coordinate by the angle @ around the z axis. From the definition of the vector for r, we
have
a relation between the old coordinates and new coordinates,

X' cos@ sinfd 0) x
y'|=|—sinf cosd Oy
Z' 0 0 1\z

since I is a real vector. In the old system, the Newton’s second law states that

d’x
F, dt’
d’y
Fy =m e
R | d
dt?

In the new system, the Newton's second law should be written as

F. X
e
F 1

7'

Then we have



Tn

cos@ sin@ O0) x

F, =md—t22 —sind cosd Oy
F, 0 0 1)z
cosd sind 0 L[ X cosd sind O)F,
=|—sin@ cos® Om——|y|=|-sinf cosd O|F
0 0 1 z 0 0 1\F

z

This means that the force is a real vector. In other words, if Newton's second law is
correct one set of axes, they are also valid on any other set of axes.

2 Angular momentum
The angular momentum is defined by

e, € &
L=rxp=|x y z|=Le,+Le, +Lsg,
Py By P,
where
L, =yp, —zp,
I-y =Zp, —Xp,
Lz = Xpy — YD

Now we consider how the angular momentum transforms under the rotation of the
coordinate by the angle & around the z axis. The angular momentum in the new
coordinate is

ex' ey' ez'
L=rsp=|x y  2|=LesLe “Le,
Py p)" P
with
Le=Y'p,—2'p,
L, =2'p.—X'p,
Lz' =X pyv - y' px'

Using



X' cos@ sin@d O0) X Py cosd sin@ O0) p,
y'|=|—-sinf cos@ Oy P, |=|—sin€ cos€ 0| p,
z' 0 0 1)z p, 0 0 1)np,

We can show that

L.=Yy'p,—2'p, =L, cosf+L,sind
L, =2'p, —X'p, =-L,sinf+L, cosd
I‘z' = X' py' - y' px' = I‘z

or

L cosé sin@ O} L,
L, |=|—sind cosd O] L,
L 0 0 I\L,

Z

This means that the angular momentum is a vector.

((Mathematica))



R
A

{X, VY, z}; P={px, py, pz}; L =Cross[R, P];
RotationMatrix[-e, {0, 0, 1}]:

RN = A.R
{(xCos[©] +ySiIn[o], yCos[©O] -xSiIn[©], Z}

PN=A_P
{px Cos[©] +py Sin[©], pyCos[o] -pxSin[©], pz}

LN = Cross[RN, PN] 7/ Simplify

{(pzy-py z) Cos[O] + (-pzX+pxz) SIn[O],
(-pzX+pxz) Cos[O] + (-pzy +pYy z) Sin[O],
Py X - pPX Y}

LN-A.L// Simplify
{0, 0, 0}

1.2.5 Scalar product
The scalar is invariant under the rotation of the co-ordinate system. We show that the
scalar product A - B is scalar;
A-B=A'B'
We start with the definition of the vectors,

Ai':ZaijAj' Bi':ZaikAk'

Then we have

A'B'= ZAi'Bi': Z(zaijAj)(zaikBk) = zAjBkzaijaik = zAjBk5jk = zAij
i P K ik i ik f

Then we have

A'-B'=ZABi=A-B



Thus A-B is a scalar.

1.2.6. Vector product
Here there still remains the problem of verifying that

C=AxB
is indeed a vector.

((Proof))
Under the rotation of the co-ordinate system,

A - A'=>a,A

|
&e&EZ%m
C,—>C'=A'B'-A'B,

where 1, j, and k are in cyclic order.

(:1|:: /\2'E33'—-/\3'E32'
= Z (a2|a3m — a5, )Ai Bm
I,m

= (a21a32 - a22a31)Ale + (a22a31 - a21a32)AzBl + (a22a33 - a23a32)AzBs
+ (a23a32 - a22a33)A3Bz + (a23a31 - a21a33)A381 + (a21a33 - azza31)A1 B3

222 Z“(AZB3—A332>+ (A, ~ AB,)+ (AB,-AB)

= an(Ax B)l + alz(Ax B)2 + a13(A>< B)3
= allcl + a12C2 + a13C3

& Ay
a

a23 a21
a,; a

33 3 31 32




sz: ASvBlv_AlvB3v
= Z(a‘SIa‘lm _allaSm)ABm
I,m

= (a313-12 _aszan)Ale +(a3zan _a31a12)AZBl + (a32a13 _a33a12)AzB3
+(‘3‘33"3‘12 - a32a13)A3Bz +(‘3‘33‘3‘11 _a31a13)AsBl +(a31a13 _a33all)AlBS

a3 8 a3 8y
(AB; —AB,)+ (AB —AB;)+ (AB, -AB)

=a,,(AxB), +a,(AxB), +a,;(AxB),
= a21C1 + azzcz + a23C3

a3 1 a32

a’12 13

11 12

C3'= A'BZV—AZ'BI'
= Z(allaZm _azlalm)A1 Bm
I,m

= (auazz - alZaZI)AlBZ + (a12a21 - allazz)AZBl + (a12a23 - a13a22)AzB3
+ (a13a22 - a12a23)A3Bz + (a13a21 - a11a23)A381 + (a11a23 - a13a21)A183

_ a'12 a13 B B a13 a‘ll B B a‘ll a12 B B
= (Az 3_A3 2)"‘ (A3 1_A1 3)"’ (Al 2_Az 1)
a‘22 23 a23 21 a21 22
=a,,(AxB), +a,,(AxB), +a,;(AxB),
= a31(:1 + a32C2 + a33C3
Thus C = AxB is areal vector. We note that
@y 8y Y a1 Gy
all - > a‘12 a‘13 >
a32 a33 a33 a31 31 a32
_ a; Ay _ a8 _ & Ay
a'21 - a‘22 - H a23 -
12 13 a13 all 11 a12
a a a a a a
a31 _ |12 13 , a32 — 13 11 a33 — 11 12
a‘22 a23 a23 a2 1 a2 1 a22

((Note))
The above relations among {a;;} can be derived in the following way.



e = Zajie /!

J
€ =€, xe,

Now we consider about the vectors e, e, x e, respectively.

e =Y a,e,'=a,e'+a,e, +a,e;

i
€, x€; = (ZI: a,€,") % (Z ans€n")

m

= (aIZel '+a22e2'+a32e3') X (al3e1 '+a23e2'+a33e3')

= (a22a33 - aazazs )elv"‘(aszaw - a123-33 )ez'+(a12a23 - 322313)63'

Thus we find
B Ay |83 33 TR
all - > a21 - ’ a31 - >
a'32 a’33 a’12 13 a22 a23
Similarly we have
8y 8y Ay &y a; 11
a'12 - ’ a22 - 2 a32 >
33 31 a’l3 11 a’23 21
@y Ay @ 8y a, &
a’l3 ’ a’23 a’33
a‘3 1 a32 a'1 1 a'12 a21 22

1.2.7. Tensor
Ohm’s law;

Ji = zUikEk
k

ois the tensor of second rank.

0, Op Oy
O =|0, 0O, Oy

O3 O3 Oy

scalar: tensor of rank zero
vector: tensor of first rank



((Definition of tensor of the second rank))
O-ij': Zaikajlo-kl
k.l

where
Only in Cartesian coordinates we have

X' . axj

a=—1=—1L
boox; ox!

So there is no difference between contravariant and covariant transformation. In other
systems, this in general does not apply, so the distinction between contavariant and
covariant is real.

OX, OX . .
i'= D ——-C, Covariant wrt i, ]
ox;"' ox;'
k.l i j
i ox;' OX;' : -
A= LAY Contravariant wrt i, j
k1 OX, OX,
i %' OX, o« . . . .
=) ——-B Contravariant wrt i, covariant wrt j.
1 0%, OX;

Summation convention:

_axi'ﬁBk

B =L !
OX, OX;'

i
The Kronecker delta o; is really a mixed tensor of second rank 5} .
We have, using the summation convention

K OX' OX,  OX' OX,
' ox, Ox;'  Ox, OX;'

by definition of the Kronecker delta. Now we have

K K _ K _ i

' v
OX, OX;"  0X;

by direct partial differentiation of the right-hand side (chain rule). Hence,



5“}_:%% |k
OX, OX;'

1.2.8. Gradient V
V@ (¢; scalar) Nabra, gradient, del

The gradient ¢ is defined as

Vop=X—+Y

20, 400, ;00 _ Op Op Op,
ox "oy oz ox oy oz

; gradient of the scalar ¢

((Example))

f=1(r)

with r=xX’+y +2°.

of of of
Vi(n=X—+y—+1—
" OX yay 0z
.df or df or _df or
=X——+y——+7——
dr ox droy droz

ldf . .
=——(XX+Yyy+122)
rdr

_rdf _,df
rdr dr
where
o x oy a2
X r’ oy r’ oz r

(A)  Geometrical interpretation
Let us give a geometrical interpretation of V.

dr = dxX + dyy + dzZ

From the definition, we have

o op op
do=Ve -dr =—2dx+-—2dy +—=-dz
? ¢ OX oy y 0z



Fig. The normal vector n which is perpendicular to the line PQ on the surface.
V¢ is perpendicular to the surface (¢ = constant).

If we choose two points P and Q on the surface ¢(r)=const, where ﬁj =dr in the limit
of dr - 0.

Since
dp=Ve-dr=0,

we find that V¢ is perpendicular to the surface (¢ = constant). It is called the normal
vector.

((Example-1))

Find a unit normal to the surface X’y +2xz =4 at the point P (2, -2, 3).

A =V(X'y+2xz2) = (2xy +22,X*,2X). A = (-2, 4, 4) at the point P. Then a unit normal to
the surface is (-1/3, 2/3, 2/3). Another unit normal is (1/3, -2/3, -2/3).



((Example-2)) Find an equation for the tangent plane to the surface
2xz2> —3xy —4x—7 =0 at the point P ro= (1, -1, 2).

A =V(2xz* —3xy —4x) = (22° =3y —4,-3X,4xz) . Then a normal to the surface at the
point P is A = (7, -3, 8) at the point P. The equation of a plane passing through a point P,
which is perpendicular to A is (r —rp).A=0; 7(X-1)=3(y+1)+8(z—-2)=0




(B) Vector Vo
Next we will verify that Vg is a vector. ¢ is scalar, which means the invariant under
the rotation of the coordinate system.

P'(%") =@(%).
o9' _ Z op X, Z %
ox' X, o' " ox,
since
4 - OX;
e oX;'

Thus V¢ is a real vector (contravariant vector)

(C)  Plotting of equi-potential lines and vector fields

Now we consider a rather simple 2D function,
p ==Xy

The gradient operating on this function generate the vector field
F=-Vo=(y.%)

Using the Matematica, we make a plot of the equipotential lines of ¢ in the X-y plane
(ContourPlot) and a plot of the field lines of F in the x-y plane (StreamPlot). The field
lines are perpendicular to the equipotential lines of constant ¢.



[o%)
T

-3
1.2.9 Divergence

Now we define the divergence of the vector as

oF
V-F:aFX+ y+aFZ
ox oy oz

(A)  V-F isareal scalar.

Under the rotation of the co-ordinate system
F'=> a;F,
i

Then we have

oF' 0 ox, OF, OF.
2Py~ (aF)=Ya 1 1 _Ngaq 1
oX' ZJ':axk'( i) ; ’ X' OX ; e X,

where

ox;'
a.l = .
b ox j

Then we have




oF

Z i ,|——Z(Z ij a) Z il 6X| 5_)(:

il il
Thus V- F is a scalar.
(B)  Definition of solenoid

V-B=0 “ B is said to be soloenoid.

1.2.10 VxF
Now we define the rotation of the vector as

X v 2
w=vxF=2 2 2
ox oy oz
FF F

We show that V xF is a real vector.

((Proof))
Now we put
,_ OF' oF'
YTk, ox,'

(For simplicity we use X; =X, Xo =Y, X3 =2)

aF'_ o, OF,
Z 3‘8x Z 3o, X,

231 21

j.l
Similarly, we have

OF, <. ©OF, ox, OF, oF

2 i i i
=>a —=>Ya ————=>) a,.a,—
X' Z,: 2 ox,! Z,: 2 ox,' ox, 2.2 ox,

X3 il

Then we have

, OF'" oF,)
leaxz, 8X _;(aﬂjaﬂ a21a3|)

or



oF oF
W1'= (a31a22 _a21a32) L+ (a31a23 —a21a33)—1

OX, OX,
oF oF
+(a5,8,, — 3-223-31)8_)(12 +(a3,8y; — 3-223-33)6_)(32
oF oF
+(a5,8,, — a23a31)8_x13 +(a5,8,, — a23a32)a_xj
or
, oF, oF, oF oF oF oF
le_a138_1+a12_1+a13 2_a11 2_a12 3+a11 2
X, 0X, 0% 0X, 0% 0X,
oF, OF oF OF oF, OF
=a, (- D +a (- D +ras(E-h
OX,  OX, X, OX 0%,  OX,
=4q 1W1 + a12W2 + a13W3
Therefore,

wi'=>"aW,
j

which means that V x F is a real vector.

1.2.11 Successive application of V
(A V-(Vo)

This is defined by a Laplacian,

2 2 2
V-V¢=v2¢=gf+gyf+gf
X z

The equation V¢ =0 is called as the Laplace equation.
(B) Ve isirrotational.
Vx(Vp)=0

since



Xy 2
Vx(Ve)= o 9 9 =0
ox oy oz
0p Op O¢
ox oy oz
Thus V¢ is irrotational.
(C)  (VxF) is solenoid.
9 0 9
OX OX OX
V-(VxF)= o 2 9 =0
ox oy oz
F F F

(D) Formula
Vx(VxF)=V(V-F)-V°F

((Proof))
We use the formula given by

Ax(BxC)=B(A-C)-(A-B)C
with A=V, B=V,and C = F. Then we find
Vx(VxF)=V(V-F)-V°F

1.2.12 Examples
(A)  Electromagnetic wave equation
Derivation of electromagnetic wave equation from Maxwell’s equation.

James Clerk Maxwell (13 June 1831 — 5 November 1879) was a Scottish theoretical
physicist and mathematician. His most important achievement was classical
electromagnetic theory, synthesizing all previously unrelated observations, experiments
and equations of electricity, magnetism and even optics into a consistent theory. His set
of equations—Maxwell's equations—demonstrated that electricity, magnetism and even
light are all manifestations of the same phenomenon: the electromagnetic field. From that
moment on, all other classic laws or equations of these disciplines became simplified
cases of Maxwell's equations. Maxwell's work in electromagnetism has been called the
"second great unification in physics", after the first one carried out by Isaac Newton.



http://en.wikipedia.org/wiki/James_Clerk Maxwell

Maxwell’s equations in vacuum (in SI units);

V-B=0
v.E=L
&

VxB=yu, +80§E)

Vsz—gB
ot

Suppose that p=0and J = 0.
Then we have

0 1 6° 0
—VxB=——""E=Vx—B=(-)Vx(VxE
ot c? ot? ot © ( )
or
1 &
Vx(VXE)=———
x(VxE) c? ot?

is the velocity of light.

where € = !
ok

Since



Vx(VxE)=V(V-E)-V’E

V-E=0
we have
2
szziz%E.
C

This equation is called as electromagnetic wave equation. Similarly we have

1 ¢°
VZB :C—ZyB .

(B)  Calculations
If A=(xy,~2xz,2yz), find VxA, Vx(VxA),and Vx(Vx(VxA)).

We use the Mathematica.

Clear["Gobal ""];

Needs["VectorAnalysis ']

SetCoordinates[Cartesian[Xx, V, z]];

Al = {xzy, -2xz, 2yz};

Curl [Al]

2x+2z, 0, x2_2z
{

Curl[Curl[Al]]
{0, 2+2x, 0}

Curl [Curl[Curl[Al1]]]
{0, 0, 2}

1.2.13 Line and surface integral
We consider about the line integral



I:IA-dr
PQ

where |d r| =ds and the tangential component is assumed to be Ag'
I = j Ads
PQ

If the contour is closed, we can write down as

ffA-dr

In general the line integral depends on the choice of path. If F =V ¢ (¢ ; scalar)



| = [Fdr=[Vp-dr=pQ-o(P).
PQ PQ

This value does not depend on the path of integral.

1.2.14 Surface Integral
A normal vector to the surface

da =nda (da; area element)

Then the surface integral is defined by

[F-da=[F-nda
S S



Fig.  Right-hand rule for the positive normal.

If F corresponds to the magnetic field; F = B,
o= IB -da is a magnetic flux through the area element S.
S

B

A

1.2.15 Gauss's theorem

Here we define the volume integral as



Jd

where ¢ 1is a scalar.

(A)  Gauss's theorem

jV-Fdr:jF-da
\% S

First we consider the physical interpretation of V-F . Suppose that F = J (current
density). The current coming out through ABCD is

Ny w)dydz

Iy |
OX

dydz = (3, |, o +

x=dx

The current coming in through EFGH is equal to
‘Jx |x:0 dde

Thus the net current through EFGH is equal to

A, dxdydz
OX




Thus the net current along the X direction through this small region is

A, dxdydz
OX

Similarly for the y and z components, we have the net current along the y-direction and z-
direction through the small region as

0J
2 dxdydz
0z y

0J

—Y dxdydz ,

oy
respectively. Therefore the net current coming out through the volume element
dz = dxdydz can be expressed by

> J-da=(V-J)ydr
Six
surface

Summing over all parallel-pipes, we find that J-daterms cancel out for all interior faces.
Only the contributions of the exterior surface survive.

D> J.da= Y (V-dydz

exterior volume
surface

or

[3-da=[v.3dr
A v (Gauss’ theorem)



(B)  Gauss' theorem
Let F be a continuous and differentiable vector throughtout a region V of the space. Then

IF-da=IF-nda=IV-Fdr
S S \
where the surface integral is taken over the entire surface that encloses V.

((Example-1))
In the maxwell's equation, we have



where p is the charge density. From the Gauss's law, we have

(P _(E.
\J;V-Edr—jg—odr—_S[E da.

We assume that the volume V is formed of sphere with radius r. From the symmetry, E is
perpendicular to the sphere surfaces,

E=E.e

rer:

Thus we have
J‘ﬁdrszrer -da
v €o s
Since Q = Ipdr, we get
\Y

£ Q

" dng,r?

(Coulomb's law)

((Example-2))



V-E=0
if p=0.

From the Gauss's law, we have

jv.Edr=jﬁur=0=jE«m
\Y \ 80 S

Ein and E;,, are the normal components of E; and E,. Then we have
(E,,—E,,)Aa=0.
Therefore we have the boundary condition for E as
E,.=E,,
1.2.16 Green's theorem

[ @6 - g7 y)dr = [V § -9V ) da

((Proof)) In the Gauss's theorem, we put
A=yN¢

Then we have



|, =[V-Adr=[V-@Vg)dr = [(Vg)-da

Noting that

V-V =yVg+Vy -V

we have
= [@V¢+Vy Vo)dr=[@Ve) da
\ S
By replacing i <> ¢, we also have

= [@V'y +V4:-Vy)dr=[(@Vy)-da

Thus we find the Green's theorem

L =1, = [V g—Vp)dr = [V -9V y)-da

1.2.17 Stokes' theorem

»

dx
A (X0, Yo) 1 B




§|: -dI = (circulation),,,,
- '[ Fdx + .f F,dy - _[ F,dx — .[ Fydy
1 2 } !

= [{F. (6 ¥5) = F 06 Yy + dy)jdx+ [{F, (%, + dx, ¥) = F, (%, Y)idy

Note that

o))
T

2

Fx(xa yo + dy) - Fx(xa yo) :(

j dy
X05Yo

Fy(X0+dX7 y)_ Fy(xo’ y):( yj dX
X0 Yo

()]
>°<)"n

Then we have

. . oF, oF
(circulation),,,, = (6—; - Ex)dxdy = (V xF),dxdy

We can write down this as

> F-dl=(VxF)-e,dxdy = (VxF)-da,

Four
sides

where
da, =e,dxdy

Imagine that paths 1 and 2 are expanded out until they coalesce with path C (or path 3).
Since the line integrals of F along the potions that 1 and 2 have in common will cancel
each other,

fF-di

C

:j?PdeSF-dl
1 2

=(VxF)-da, +(VxF)-da, = [(VxF)-da
1,2



C

Now let the surface S be divided up into a large number N of elements.

[ JLILY

! Joh g )

The above idea is extended to arrive at

§F-di=[(VxF)-da

((Stoke's theorem))
Let S be a surface of any shape bounded by a closed curve C. If F is a vector, then

§F-d|:I(VxF)-dazj(VXF)'nda-

S




1.3 Curvilinear co-ordinates

1.3.1 General definition
We consider that new co-ordinate (q;, (z, Q3) are related to (X, Y, z) through

X= X(q1vq2:q3) q, =q1(X> y,z)
y=Y(q,,9,,9;) or 0, = 0,(X,Y,2)
Z= Z(qlaqzaq3) g; = q3(x, y,Z)
Since
or or or or
dr=—dq, +—dg, +—dg, = > —dq.
oq, | o4, © oqy Zjlaq,- :
we have
or or
ds’ =dr-dr=>» (=—-—)dgdg, =Y g.dqg.dq;
%—:(aqi aqj) g,dg, %)g., g,dg,
where

ﬂ ﬂ —ﬁﬁ_kﬂﬂ_{_gﬂ (second rank tensor)_

gi.: . =
' o0q; 6q; og; 0q; og; 6q; Og oq

We now consider the general coordinate system. The relation between the constants h;,
h,, and h; and the tensor g;; will be discussed later.



> C)

dr = ds.e, +ds,e, + ds,e; = hdq e, + h,dq,e, + hydge; = > hdg,e,
ds* =dr-dr =) hh;dg,da; (e -e )
]

or we have
g; = hh; (e e)
or
g; =h’
Then
S (e e)
9idj;

Now we limit ourselves to orthogonal co-ordinate system.
g; fori#j.

In order to simplify the notation, we use g, = h.’, so that



ds® = Z(hiin )2

dr =dse, +ds,e, +ds,e,
=hda,e, +h,da,e, +h,da;e,

:Zhidqiei

Where ey, e,, and e3 are unit vectors which are perpendicular to each other.

1 or or
el = =
h oq, 05
1 or or
e2 =
hz 8% 882
1 or or

g, =——=—
h3 6q3 653
where

h_2 — g :ﬂﬂ
i ii aql aqj

or

2 2 2
h = \/— sqr \/ ( s_;(l J n ((’%J + ((%J (second rank tensor).

The volume element for an orthogonal curvilinear coordinate system is given by
dV =hdqe, - {(h,dg,e,)x (h,da,e;)} = hh,h,dg,dq,da,
1.3.2 Spherical coordinete
(A)  Unit vectors
The position of a point P with Cartesian coordinates X, Y, and Z may be expressed in
terms of I, 6, and ¢ of the spherical coordinates;
X =rsinécosg, y = rsindsing, Z=rcosd
or

r =rsinfdcosge, +rsinfsinge, +rcosék,



or



dr=hedr+he,dd+he,dg= edr+re,dd+rsince,ds

or . o
e, = =sin@cos¢e, +sinfsinge, +cos e,
r

e, _lor cos@cosge, +cosfsinge, —sinck,
roo
1 or .
e, = rsir“96—¢=—s1nq/ﬁe)(+cos¢rﬁey

This can be described using a matrix A as

e, e, sinfcos¢g sinfsing cosf \ e,
e, |=Al e, |=|cosfcosg cosfsing —sinb|e, |.
e, e, —sing cos¢ 0 e,

or by using the inverse matrix A as

e, e, e, sinfcosg cos@cos¢ —sing) e,
e, |=A"le, |=AT|e, |=]|sinfsing cosfsing cosg |e,
e, e, e, cosd —siné 0 e,







A = {{Sin[e] Cos[¢], Sin[e] Sin[¢], Cos[e]},
{Cos[e] Cos[¢], Cos[e] Sin[¢], -Sin[e]},

{-Sin[¢], Cos[¢], O}};

A // MatrixForm

Cos[¢] Sin[6] Sin[e] Sin[¢] Cos[o]
Cos[o] Cos[¢] Cos[O] Sin[¢] -SIn[H]
-Sin[¢] Cos[¢] 0

Ainv = Inverse[A] // Simplify;

{{Cos[¢] Sin[e], Cos[O] Cos[¢], -Sin[¢]},
n

{SIin[6] Sin[¢], Cos[6] Si
{Cos[6], -Sin[©], 0}}

Ainv // MatrixForm

Cos[¢] Sin[e] Cos[O6] Cos[¢] -Sin[¢]
Sin[6] Sin[¢] Cos[6] Sin[¢] Cos[¢]
Cos 9] -SIn[o] 0

A_Ainv // Simplify
{{1, o, 0}, {0, 1, 0}, {0, O, 1}}

The time derivatives €, €9, and €y are obtained as
e, =6k, + fsinte,
e, =—6e, +q§coséb¢

&, =—@(sine, +coste,)

We note that
e, =0, o, =e,, e, =sin 6,
or 060 o¢
%y _ a&=_er, ae—‘9=cos6é¢
or 00 o0¢

B) Vy

From the definition of Vi, we have

[¢], Cos[¢]},



or,

Vy/:ea—‘//+eglav/+e¢ 1 oy
or r oo rsin@ o¢

where yis a scalar function of r, 6, and ¢.

< VA
When a vector A is defined by

A=Ae +Ag,+Ag,

The divergence is given by

1 0
V-A=—J[—(hhA)+— + h.h,A
hrh6h¢[ar<e¢Ar> DAY+ NA)
[—(r smHAr)+—(rsm9A9)+—(rA )]
sm<9 o¢
or
V-A= oA) + 0 —A
28r rs1n<98¢ i
(D) VxA
V x A is given by
he. he, he, e, re, rsiné,
SO N NI S W I}
hhh,| or 060 0¢| rsin@lor 00 o¢p
hA  hA, hA, A TA, rsindA,

(E) Laplacian



1 a8 hho h, o hh, 8
Vi = (2ot dwy 0 hheowy 0 hhy oy,
hhh,or' h ar’ 80 h, 06 0¢ h, g

oV
—(r
o sm0[8r( ar)

oy o, 1 oy
(meae) 26 5ing 04

or

1 0 oy 1
Vip=——(r*"2)+
v r? ar( or

2
—(smHal//) 1 5 8‘{
r’sin@ 00 r’sin’ @ 0¢

We can rewrite the first term of the right hand side as

1 0,,0y
- (r-—= =——
rzar( ar) rar ()

which can be useful in shortening calculations

Note that we also use the expression for the operator

2
Vi=— ( 1 —(s1nt9—) .12 82 =
r’ ar ar r *sinf 00 r’sin 06¢
- 1 1
:—— — N 0_
= ar( = {meae(sn o7 zea¢2}

((Mathematica))

We derive the above formula using the Mathematica



We use the Spherical co-rdinate.

We need a Vector Analysis Package. We also need SetCordinatinates.In this system the vector is expressed
in terms of (Ar, A6, Ag)

Clear["Gobal "];
Needs["VectorAnalysis "];

SetCoordinates [Spherical [r, 6, ¢]1];

Vector analysis
Grad, Curl, Laplacian which are expressed in terms of the spherical coordin ates

eql = Laplacian[y¥[r, 6, ¢1] // Simplify

1
5 (Csc 112 u®%? r, 0, 9] + Cot (o] ¥ ™10 [r, 0, 9] +

p©@2:0 [r 0, 6] +2r y1-0:0 [r 0, 6] + 12200 [r o, ¢])

eq2 = Grad [¢[r, 6, ¢]1]

¥(0.1,0) (r, 6, ] Csc[o] 0.0, [r, 6, ¢]
1,0,0
{w( ) [r’ e’ CD] ’ r ? r }

A = {Ar[r, e, ¢], Ao[r, 6, ¢]1, Ap[r, 6, ¢1};

eq3 = Curl [A]

1
{—2 Csc [O] (rAqb[r, 6, ¢] Cos [O] -
-
rao©0b (r, o, ¢+ rsine) Ap®10 (r, 0, ¢1),
1
— Csc (6] (Ao [r, 6, #] Sin (6] +Ar %01 [r, 6, ¢] -

rsin (o] ApH99(r, o, ¢1),
Ao(r, 6, ¢] -Ar©0.1.0) r o, ¢] + rAc1.0.0) [r, o, ¢]

‘ }

eq3 = DiVv[A]
— Csc [9]

(rAo(r, e, ¢] Cos (0] +2rAr(r, 0, ¢] Sin[o] +rApC:0Yr o, ¢+
rsin(e] A% r, o, ¢1 +r2sine] Art-%:0 [r o, ¢))

1.3.3 Velocity and acceleration in the spherical coordinate
The velocity (V) and acceleration (a) in the spherical co-ordinates are given by



v, =t a =F-rf” —rg¢’sin’0

vV, =r0 a,=rf+2f0—r¢’sinfcosd
vV, = I sin O a, = résind + 2f dsin @ + 2r g cos O
((Mathematica))

We drive the above formula using the Mathematica.
Velocity and acceleration in the spherical coordinates
Clear ["Gobal ™"]
<< "VectorAnalysis™™
SetCoordinates [Cartesian[X, Y, z]]
Cartesian [X, Y, Z]
RRIT_] z= {r[t] Sin[e[t]] Cos[¢[T]1], r[t]Sin[e[t]] Sin[¢[Tt]], r[t] Cos[e[t]]}

D[RR[t], t] // FullSimplify

{Cos [¢[t]] (Sin[o[t]] r'[t] +Cos [o[t]] r[t] & [t]) - r[t] Sin[o[t]] Sin[¢[t]] ¢ [t]
Sin[¢[t]] (Sin[o[t]] r'[t] +Cos [6[t]] r(t] o' [t]) +Cos [¢[t]] r(t] Sin[o[t]] ¢ [t]
Cos [o[t]] r'[t] - r[t]Sin[o[t]] &' [t]}

DIRR[t], {t, 1}] // FullSimplify

{Cos [¢[t]] (Sin[o[t]] r' [t] +Cos [6[t]]
Sin [¢[t]] (Sin[e[t]] r'[t] +Cos [0[t]]
Cos [o[t]] r'[t] -r[t] Sin[o[t]] &' [t]}

D[RR[t], {t, 2}] // FullSimplify

{Cos[e[t]] (26" [t] (Cos [o[t ]]r'[tJ rit]Sin(¢[t]] ¢'[t]) +Cos [¢[t]] r(t] ©”[t]) +
Sin [o[t]] (Cos (t]] (-rit] (e [t)% + ¢ [t]?) +r7 (1)) -
Sin[¢[t]] (2r [t] ¢ [t ] rit] ¢’ [t])), Sin[o[t]]
(sin[ert]] (-rit] (e'[t)% + ¢ [t]?) + r[€]) +Cos [6[t]] (2 ¢ [t] & [t] +r[t] &' [L])) +
] [t] & [t]) ¢ [t] +r[t] Sin[e[t]] ¢”[t])

Cos [¢p[t]] (2 (Sin[e[t]]r [t] +Cos[e[t]]Tr
Cos [6[t]] (-r[t] & [t]2 +r”[t]) -Sin[6[t]]

D[RR[t], {t, 3}] // FullSimplify

{Cos [e[t]] (-3Sin[¢[t]] (¢'[t] (27 [t] & [t] +r[t1 e" [t]
(Be'[t] r’[t] +3r [t] & [t] +r[t] (o[t 1 -3t
(Cos[p[t]] (-3r [t] (o [t]%+ ¢ [t]2) -3r[t] (& [t] &
Sin [¢[t]] (-3 (¢'[t] r"[E] + ' [t] ¢”[t]) +r[t] (3¢
Sin [o[t]] (Sin[e[t]] (-3 v [t] (&/[t]? +¢ [t]?) -
3r(t] (&'[t] o’ [t
Cos [o[t]] (3¢ [t]

) +r(t] o [t] ¢ [t
1o 112 +0 [

[t] + ¢ [t] ¢ [T
]2 ¢ [t] + ¢ [T

] o (t] ¢ ] +r® )+
(t] +3r(t] o’ [t] +r(t] (-o[t]® -3 [t] ¢ [t]? +0® [t]))) +
Cos [¢[t]] (3Cos [o[t]] (¢ [t] (2r [t] & [t] +r[t] & [t]) +r[t] &' [t] ¢”[t]) +
Sin(e[t]] (3¢ [t] r'[t] +3r [t] ¢"[t] +r[t] (-3 [t]2¢ [t] - ¢ [t]°+ 0 [1]))),
Cos [o[t]] (-3¢ [t] (r'[t] &' [t] +r[t] & [t]) + r® (t]) +
sin[o[t]] (-3 (o' [t] r'[t] +r [t] e’ [t]) +r(t] (o [t]3 0@ [1]))}

[
r
]



Unit vectors along the r, 6, and ¢ directions (Cartesian coordinate)
ur = drre; RR[t] // Simplify

{Cos [¢[t]] Sin[o[t]], Sin[o[t]] Sin [¢[t]], Cos [6[t]]}

ue = dert; RR[t] /r[t] // Simplify

{Cos [o[t]] Cos [¢[t]], Cos [6[t]] Sin[é[t]], -Sin[o[t]]}
ug = dyrt; RR[t] / (r[t]l Sin[e[t]]) // Simplify
{-Sin[¢[t]], Cos [¢[t]], O}

ur.ue

0

ur.ue // Simplify
0]



m Velocity and kinetic energy in the spherical coordinates
Vr =D[RR[t], t].ur // Simplify
r[t]
Ve =D[RR[t], t].ue // Simplify
rit] o[t
Ve = D[RR[t], t].u¢ // Simplify
rit] Sin[e[t]] ¢ [t]

1

KL= > (vr? + ve? + Vg?) // Simplify

m(r ()%« r(t)? (o [t]? + Sin [o[t] 1% ¢’ [t]?))

N[ -

m Acceleration in the spherical coordinate
Ar =D[RR[t], {t, 2}].ur // Simplify

_r[t] (9/ [t]Z + Sin [9[t}}z¢’ [t]é> r’ [t]

Ae =D[RR[t], {t, 2}]1.ue // Simplify
2r' [t} o' [t] +r[t] (-Cos[o[t]] Sin[o[t]] ¢ [t]* +0"[t])

A¢ = D[RR[t], {t, 2}].u¢ // Simplify
2Sin[e[t]] r[t] ¢ [t] +r[t] (2Cos [6[t]] &' [t] ¢ [t] +Sin[6[t]] ¢" [L])

= Some application
Sr =D[RR[t], {t, 3}]-ur // Simplify
% (-6 r[t] (e[t]? +Sin[o[t]]2 ¢ [t]?) -

3r(t] (o[t] (Sin[20[t]] ¢ [t]?+206"[t]) +2Sin[o[t]]? ¢ [t] ¢”[t]) +2r®) [1])

Se =D[RR[t], {t, 3}].ue // Simplify

1
> (6o [t] r'[t) +r [t] (-3Sin[20[t]] & [t]12+60” (t]) -

rit] (2o (t)®+6Cos [6[t]]12 e [t] ¢ [t]? +3Sin[26[t]] ¢ [t] ¢ [t] -263) [1]))

S¢ =D[RR[t], {t, 3}]-u¢ // Simplify
3Sin[e[t]] ¢’ [t] r’"[t] +3r [t] (2Cos [o[t]] & [t] ¢'[t] +Sin[o[t]] ¢ [t]) +
rit) (-3sinfo[t]] o [t]? ¢ [t] -Sin[o[t]] ¢ [t]3 +
3Cos [6[t]] ¢'[t] ©”[t] +3Cos[o[t]] o [t] ¢ [t] +Sin[o[t]] ¢ [t])

1.3.4 Quantum mechanical orbital angular momentum
The orbital angular momentum in the quantum mechanics is defined by

L=rxp=-ia(rxV)



using the expression

0 10 1 0
V=e _—+e,——+e,————
or roe rsiné o¢

in the spherical coordinate. Then we have

or roé rsiné@ o¢
00 sind 0¢

The angular momentum L, Ly, and L, (Cartesian components) can be described by

1 0

sin@ 0¢"~

L =in[—(—sin ¢ge, +cos¢ey)%+(cosecos¢eX +cos@singe, —sinée,)

or

L, =iA(sin ¢6_86 + cotf cos ¢6_a¢)
Ly = ih(—cos¢a—a(9 + cot @sin ¢a%)

L ——inl

o

We define L: and L. as

L, =L +iL, = —ihe"fﬁ(ii - cotei)
00 o¢

and

L =L -iL, = —ihe’”’(—ii—cotﬁi)
ol o¢

We note that the operator V can be expressed using the operator L as



0 irxL

"or h or?

The proof of this equation is given as follows.

(r.x_l_): re, x(—e¢i+eeL—) =re,— 0
i 00 né o¢ 00
or
(rX|2_)_l €i+er 1 izv_erg
iar r o6 rsiné o¢ or
or
0 i(rxL)
=er—
or  hr’

From L*=L]+L,"+L,", wehave

e 10 1 _( nH—)]

L? =-7’[— ~+
sin“ @ 0¢~ sinf 00

where the proof is given by Mathematica. Using

2
L—zz—r \% +i(r2 0
h or or

we can also prove that

_va+rdy =ty
or h

((Note))
1
Vie - 2492
hr? r 8r( )
1 1 0 6
= P+—arZ
hir? r? ar( or
1 182
=-— L+ (r)

h22

1 0

e N
¢ﬁn98¢)



1.3.5 Mathematica

Arfken 2-5-13
Show that

0 0 0
-ih(X—=-y—=)=-i h—
i (Byyax) iho

This is the quantum mchanical operator corresponding to the z-componenet of
orbital angular momentum.

Arfken 2-5-14

With the quantum mechanical orbial angular momentum operator defined as L =r xp
= I x (-ihV), show that

(a) Ly +i Ly=-he‘7¢(§)+icot96—1)
(b) Ly +i Ly=-nhe™ (%-u’cot@(%)
Arfken 2-5-15

Verify that  Lx L =i L in spherical polar coordinates. L = -i#( I x V), the quantum
mechanical orbital angular momentm operator




Arfken 2-5-16

(a) Show that

= —; 1 0 _apl
L=-ia(rxv) zzh(EGSmH% ed 60)

(b) Resolving e6 and e ¢ into Cartesiancomponents, determine Ly, Ly, and L; in terms of 6, ¢, and
their derivatives.

(c) From sz + Ly2 + Lzz, show that

L2 ) | @ 2 W2 6(26)
= =-— — (smf — ) - — =-r"V 4+ =t =
# sing 90 ( aa) sin2 6 962 or ar
or

2_ L

19 (r2 ﬁ)
2l 2 ar ar

This identity is useful in relating orbital angular momentum.

Arfken 2-5-17

With L =-i#% (r x V), verify the operator identities

0 . rxL
a V=er— -i =
(@) a b

(b) rv? =-V(1+r§)=wa




Clear["Gobal "]

<< "VectorAnalysis™"
SetCoordinates[Spherical [r, 6, ¢]]
Spherical [r, 6, ¢]

Clear [¢¥]

L= (-2aCross[(urr), Grad[#]]) &

-i1h (ur r) xGrad [#1] &

Lx :

(ux. (-iaCross[(urr), Grad[#]]) &) // Simplify

(uy. (-2aCross[(ur r), Grad[#]]) &) // Simplify

Ly :
Lz 1= (uz.(-iaCross[(urr), Grad[#]]) &) // Simplify
Lx[¥[r, e, ¢1]1 // Simplify

in (Cos [¢] Cot (0] ¢'V--Y) [r, 0, ¢] +Sin [¢] ¥+ [r, 6, ¢])

Ly[#[r, e, ¢1]1 // Simplify
in (Cot (o] Sin[¢] yY"Y"Y [r, 0, ¢] - Cos [¢] ¥ -1V [r, 6, ¢])



Arfken Problem 2-5-13

Lz[y[r, e, 1] // Simplify

~1hayWYt(r, e, ¢]

Arfken Problem 2-5-14

Lx [¢[r, , ¢]]1 +i Ly [¢[r, &, ¢]1] // FullSimplify

el n (J‘lCOt (0] w(U,U,l) r, e, ¢] + w(U,l,U) [r, o, ¢.])

LX [¢[r, 6, ¢]1] -4 Ly [¥[r, e, ¢1]1 // FullSimplify
h (i Cos [¢] +Sin [¢]) (Cot[o] ¢V [r, e, ¢ +iytY (r, 6, ¢])

Arfken Problem 2-5-15
Lx [Ly[¥[r, 6, ¢]1]1] -Ly [Lx[¥[r, ©, ¢]]1] - 2alz[y[r, 6, ¢]] //
Expand // FullSimplify
0
Ly [Lz[y[r, 6, ¢]11] -Lz [Ly[¥[r, 6, ¢]1]1] - B LX[¥[r, 6, ¢1] //
Expand // FullSimplify
0

Lz [Lx[¥[r, ©, ¢]]1] -Lx [Lz[¥[r, 6, ¢]]1] - A Ly[¥[r, 6, ¢]] //
Expand // FullSimplify



Arfken Problem 2-5-16 (a)

L{w[r, e, 1] // Simplify
{0, incsc (6] y Y r, 6, 01, ~iny OtV (r, 6, ¢])

Arfken Problem 2-5-16 (b)

Lx[¥[r, e, $]1] // Simplify
in (Cos [¢] Cot [6] yV-Y"Y) [r, 6, ¢] +Sin[¢] ¢y [r, 6, ¢])

Ly[¥([r, e, #]11 // Simplify
in (Cot[e] Sin[¢] ¥ YY) [r, 6, ¢] -Cos[¢] vV [r, 6, ¢])

Lz[y[r, e, 11 // Simplify

-ihy %Y r, e, ¢

Arfken Problem 2-5-16 (c)
seql = LX[LX[¥[r, 6, ¢]11]1 // FullSimplify

1
2 n? ((3+Cos[26]) Csc[0]?Sin[2¢] ¥ 0V (r, 6, ¢] -

4 Cot [6] (Cos [¢]1? (Cot [0] ¥'®02 [r, 6, ¢] +y 10 (r, 6, ¢]) +
sin[2¢] y @1V [r, 0, ¢1) -4sin (612 ¢ %20 [r, 6, ¢])

seq2 = Ly[Ly[¢[r, , 111 // FullSimplify
12
4
((3+Cos[26]) Csc [0]2Sin[2¢] y©0V [r, 0, ¢] +4Cot [0] Sin [¢]
(sin ] (Cot (6] ¥(0:0:2 [r, 0, ¢ + 4010 [r, 0, ¢7) -

2Cos [¢] w1V [r, 6, ¢]) +4Cos [¢]2 420 [r, 6, ¢])

seq3d = Lz[Lz[¢][r, 6, ¢]11] // Simplify

-n? %08 (r, e, ¢]

seql23 = seql + seq2 + seq3 // Expand // FullSimplify
_pé
(Csc (012 4®:%2) [r, 0, ¢] + Cot [0] ¥ @10 [r, 0, ] + ¥ ®20 [r, 6, ¢])

seqd = -4 r? Laplacian[y[r, 6, ¢]] + A D[r2 D[¥[r, &, ], r1, r] //
Simplify
_p4
(Csc (012 ¢©:0-2 [r, 0, ¢] + Cot [6] ¥ O 10 [r, 0, ] +¥®20 [r, 6, ¢])
seql23 - seq4 // Simplify
0



Arfken Problem 2-5-17(a)

il
Grad [¢[r, 6, ¢]] +51 = Cross[{r, 0, O}, L[y[r, e, ¢111//
Simplify
(g% 1r, e, ¢1, 0, 0}

Arfken Problem 2-5-17(b)

;11 Curl[L[¥[r, e, ¢]]1] - {r, O, O} Laplacian[y[r, 6, ¢]] +
Grad [y [r, 6, ¢] + rory[r, 6, ¢1]1 // Expand // FullSimplify
{0, 0, 0}

1.3.6 Radial momentum operator in the quantum mechanics
(a) In classical mechanics, the radial momentum of the radius r is defined by

1
prc :_(r ' p)
r

(b) In quantum mechanics, this definition becomes ambiguous since the component
of p and r do not commute. Since pr should be Hermitian operator, we need to
define as the radial momentum of the radius r is defined by

1 r r
Prq :E(F'p”)?)

This symmetric expression is indeed the canonical conjugate of r.
h
prqr - r-prq = T

Note that

) 1 1
P = (—mxg )= (—nh);g ‘

((Mathematica))



Clear["Gobal "]

<< "VectorAnalysis™ "
SetCoordinates[Spherical [r, 6, ¢]]
Spherical [r, o, ¢]

Clear [¢]

prc := (-i 4 {1, O, O}.Grad [#] &)

prc¥[r, e, ¢]]

iyt r, e, ¢]

-1ih h
prqg := (2— {1, 0, O}.CGrad [#] + Div[# {1, 0, 0} ] &)

pra[¥[r, e, ¢]11 // Simplify

inh (y[r, 6, ¢] +ryd:0.001r o, ¢])
r

((Commutation relation))

prq[rylr, e, ¢1]1 - rprq[¥[r, 6, ¢]]1 // Simplify

-ihylr, 6, ¢]




Arfken 2-5-18

Show that the following three forms (spherical coordinates) of ~ V2(r) are equvalent:

1 d .2 %0, L
@5 L=k O

42 d2y @ 2 dy(n)

Clear["Gobal "]
<< ""VectorAnalysis™"

SetCoordinates[Spherical [r, o, ¢]]

Spherical [r, o, ¢]
Clear [y]

1
kr :=—iFD[r#, r] &

-kr[kr[¥[r]]] // Expand
2y [r]

+ 7 [r]

1
= DIrwlr], {r, 2}] // Simplify

1.3.7 Cylindrical coordinates

The position of a point in space P having Cartesian coordinates X, y, and z may be
expressed in terms of cylindrical co-ordinates

X=pcos¢g, Y=psing, z=z.

The position vector r is written as



r=pcosge, + psinge, +ze,

3
dr=>e hdg, =e dp+e,pdg+e,dz
j=1

where
hlzhpzl
h,=h,=p
h,=h, =1

The unit vectors are written as

1 or or .

e, =——=—=cosde, +singe

7 h,op op Y

e¢=iﬂ=lﬂ=—sin¢ex+cos¢ey
h, 09 p o

_Lor_or_
*hor a ¢
We note that

a¢ ¢ a¢ P2

o, =0, % -0
op op
e,= de 4> e, = —de ., €,=0 (time derivative)

The above expression can be described using a matrix A as

e, e, cos¢g sing 0)e,
e, |=Ale,|=|—sing cosg 0|e, |
e, e, 0 0 1I\e,

. . . -1
or by using the inverse matrix A~ as



e, e, cos¢ —sing Ol'e,
—1 T .
=A7le, |=A'|e, |=|sing cosg O0]e,

e 0 0 INE

A

z




1.3.8 Differential operations in the cylindrical coordinate
The differential operations involving V are as follows.

oy 1oy oy

\Y% e +e +e,—
P Y P ™
v.V:li( oV,)+ liw.,.ﬁv
p Oop p OP 0z
e, pe, ¢,
gevolo @ 0
pap 6¢ 0z
VoV,

li( 81,//) 1621// 821//

Viy =
V= op 7 o8

where V is a vector and yis a scalar.

1.3.9 Mathematica



We use the cylindrical co-ordinate.
We need a Vector Analysis Package. We also need SetCordinatinates.In this system the vector is expressed in terms

of (Ap, A¢, Az)
Clear["Gobal "]
Needs[''VectorAnalysis "]

SetCoordinates[Cylindrical [p, ¢, 2]]
Cylindrical [p, ¢, 2]

Vector analysis
Grad, Curl, Laplacian which are expressed in terms of the cylindrical coordinates

eql = Laplacian[¢[p, ¢, z]] // Simplify

5002 ) 4 o, y0:2.00 5, ¢, 2] N 100 15, ¢, z]
02 o

sy @00 5 g 7]

eq2 = Grad [¥[p, ¢, Z]]

y 1910, ¢, 2]
0o

[bB09 (0, 0, 21, OO (0, 0, 21}

B={Bolp, ¢, 2], Bé[p, ¢, 2], Bz[p, &, 2]}
{Bolp, ¢, 2], Bolp, ¢, 2], Bz[p, ¢, Z]}

eq3 = Curl [B]

(=2 B %%V [p, ¢, 2] +B2O1.0 [p, ¢, 2]
o)
Bo©0Y o, ¢, 21 -B2H00 o, 9, 2],
Bo[o. ¢, 2] -Bo @10 [p, ¢, 2] + pBep 100 [p, ¢, 2] }
o)

eq3 = Div[B]

1
= (Bolp. 6. 2] +0B2 %V 0, 0, 21 +B0 10 [0, ¢, 2] + 0BTV [0, 0, 2])

1.3.10 Velocity and acceleration in the cylindrical coordinates
The velocity (V) and acceleration (@) in the cylindrical co-ordinates are given by

. .. 12
V,=p a,=p-po
v, = po a, =pp+2p¢
vV,=1 a, =1

((Mathematica))



We drive the above formula using the Mathematica.
Velocity and acceleration in the cylindrical coordinates

Clear["Gobal "]
<< "VectorAnalysis™"

SetCoordinates[Cartesian[Xx, Yy, z]]

Cartesian(x, Yy, Z]

RR[t_] := {p[t] Cos[¢[t]], o[t] Sin[¢[L]], z[t]}
DIRR[t], t] // FullSimplify
{Cos[¢[t]] o' [t] -Sin[¢[t]] p[t] ¢ ,
Sin[¢[t]] o' [t] +Cos[¢[t]] o[t] ¢ [t], Z'[t]}
DIRR[t], {t, 2}] // FullSimplify

{Cos[o[t]] (-p[t] ¢'[L
2Cos[¢[t]] o' [t] ¢'[T
Sin(e[t]] (-p[t] &'t

[ 12407 1€]) -Sin[o[t]] (20 [t] ¢'[t] +p[t] ¢"[t]),
[ ]+
12+ 0" [t]) +Cos[o[t]] p[t] ¢ [E], 2 [E]}

DIRR[t], {t, 3}] // FullSimplify
[Cos[o[t]] (-3¢ [t] (o' [t] ¢ [t] +p[t] ¢”[E]) +0® [t]) +

Sin(e(t]] (-3 (¢'[t] p” [t] + 0’ [t] ¢ [t]) +o[t] (¢’ [t)% -0 [1])),
Sin[o[t]] (-3¢ [t] (o' [t] ¢'[t] +p[t] ¢”[t]) +p [E]) +

Cos[o(t]] (3¢'[t] p”[t] +3p [t] ¢”[t] +p[t] (-¢'[t)°+0 [1])), 2% (1]}

Unit vectors along the p, ¢, and z directions

Up = ap[t] RR[t] // Simplify
{Cos[¢[t]], Sin[¢[t]], O}

Ug = 94117 RR [t]/p[t] // Simplify
{-Sin[¢[t]], Cos[¢[t]], O}

uz = 8z1¢; RR[t] // Simplify
{0,0, 1}



m Velocity and kinetic energy in the cylindrical coordinates
Vo = D[RR[t], t]-up // Simplify
P’ [t]
V¢ = D[RR[t], t].u¢ // Simplify
p[t] ¢"[t]
Vz = D[RR[t], t].uz // Simplify
z'[t]

k1=~ (Vo® + Vo2 + Vz2) /7 Simplify

m Acceleration in the spherical coordinate
Ao = D[RR[t], {t, 2}].up // Simplify

—o[t] ¢ [t]2+ 0" [T]

A¢ = D[RR[t], {t, 2}]-u¢ // Simplify
2p'[t] ¢ [t] +p[t] ¢ [T]
Az =D[RR[t], {t, 2}].uz // Simplify

z" [t]

m Some application
Sp = D[RR[t], {t, 3}]-up // Simplify

“30/[t] ¢’ [t]2-3p[t] ¢'[t] ¢ [t] + 0 [t

S¢ = D[RR[t], {t, 3}]-u¢ // Simplify

3(¢'[] 0[] +0 [t] ¢ [t]) +p[t] (-0 (€13 +0® [1])

Sz =D[RR[t], {t, 3}].-uz // Simplify

z® 1t




1.3.11 Jacobian

o(X, Y,z
dV = dxdydz = a(;Ti,qz)dqldqqus = hyh,h,dg,da,da;

Jacobian determinant is defined as;

OX OX  OX

oq, oq, oo,
oxy.2) _|oy &y o

0(q;,0,,0;) |09, 0od, oq,
0z 07 o0z

aq, aq, g

(@) Spherical coordinate

hh,h,dg,dg,da, = hh,h,drdéde¢ = r* sin Adrd &d ¢
(b)  Cylindrical co-ordinate

h,h,h,dg,dg,da, = h h,h,dpdgdz = pdpd gdz

((Mathematica))
This is the program to determine the Jacobian determinant.



JacobianDeterminant[pt, coordsys]:

to give the determinant of the Jacobian matrix of the transformation from the coordinate
system coordinate system to the Cartesian coordinate system at the point pt.

Clear["'Gobal ']

S~y

<< "VectorAnalysis
Jacobian determinant for transformation from cylindrical to Cartesian coordinates:
jdet = JacobianDeterminant[{p, ¢, z}, Cylindrical]
o)
Jacobian determinant for transformation from cylindrical to Spherical coordinates:
jdet = JacobianDeterminant[{r, &, ¢}, Spherical]
r’ Sin([o]

1.3.12 Plane polar coordinate for 2D system
The point P is located at (r, €), where r is the distance from the origin and 8 is the
measured counterclockwise from the reference line (the X axis).

y
A

€y er




We introduce the unit vectors given by
e, =(cosd,sinf) =costk, +sinbe,
T, . V4 .
e, = (cos(6 + 5), sin(6 + 5) = (—sind,cos0).

= —sinék, +coste,

These expressions can be rewritten using a matrix A as

e ) [€) [ cosd sind}e,
e,) e, “(—sin@ cos@ e, )

. -1
and using A" as

e, _ A e | (cosd —sinf'e
e, - e,) \sind cos@ \e,)
Note that

oe, _ e
00 ° 00 '




The position vector (displacement vector) is given by
r=(rcosé,rsinf)=rcoste, +rsinée,
The velocity and acceleration are

v=re, +ré,
a=(F-rde, +(2r6+rbje,

or
V,=v-f=¢ a =a-f=f-ré
V,=V-0=rf aeza-é:ré+2f9:%%(r29)
((Note))

Velocity along the e, direction

ds=rdé
v, _O5_ 16
dt

Velocity along the e, direction

dr |
vV, =—=7
dt



- <

Y

((Note))

r=(rcosé,rsinf)

V=F=(Fcos@—r@sind,rsind+rdcosd) = F(cosd,sind) + rd(-sind,cos d) = rf + roé

a=F=(fcos@—rOsind—rOsinf—rdsind—ro*cos,isin@+rbcos@+rbcos@+rbcosd—ro’s
or

I=(fcos@—2r0sin@—rlsin@—r6* cos b, isin @+ 2¢O cos @+ rd cos @ — rd* sin 0)
or

= (Fcos@—2r0sin@—rfsin@—ro* cos O)i + (Fsin @ +2f0cos O +récos@—rb*sinb) |

P =(F—rd*)(cosd +sindf)+ (210 +rd)(=sin & +cos &) = (f —r6*)f + (216 + r )0

((Mathematica))



R={r[t] Cos[e[t]], r[t] Sin[e[t]]}
{Cos[o[t]] r(t], r(t] Sin[o[t]]}

V =DI[R, t] // Simplify

{Cos[o[t]]
Sin[o[t]]

[t] -r[t] Sin[e[t]]

r [(t]16'[t],
rit]) +Cos[o[t]] r[it] &

(t]}
A = D[R, {t, 2}] // Simplify

{-2sin[o[t]] r'[t] o'[t] +Cos[o[t]] r"[t] -
rit] (Cos[o[t]] o' [t]2+Sin[e[t]] 6" [t] ), 2Cos[o[t]] r'[t]

o' [t] +
Sinfo[t]] r’[t] +r[t] (-Sin[o[t]] o' [t]%+Cos[6[t]] o’ [t])}

ru= {Cos[e[t]], Sin[e[t]]}
{Cos[o[t]], Sin[o[t]]}

eu = {-Sin[e[t]], Cos[e[t]]}
{-Sin[o[t]], Cos[o[t]]}

A.ru // Simplify

“rit] o [t]%+r’ [t

A.eu // Simplify

2r [(t) o' [t] +r[t] 67 [t]
V.ru// Simplify

r'[t]

V.eu // Simplify

rit] o'[t]
1.13.13 Angular momentum
The angular momentum is defined by

L=rxp=m(rxv)=mfre, x(v,e, +v.e,)]=mrv,(e, xe,) = mr2<9'(er X€,)

1.13.14 Circular motion (r = constant)



We consider a circular motion with r = constant. since ¥ =0 and =0

a =-r¢’

a,=a =ré
In summary, we have

Vy =V, =rf=

\'
¥
4
AL:]
P
r
=rg
g
- X
0] Reference line
2
. Vv
a =-rf’=——
r
dv
a, = 0=—
dt

-

ag




