
Chapter 1 
Vector Analysis 

Masatsugu Sei Suzuki 
Department of Physics, SUNY at Binghamton 

(Date: August 31, 2010) 
 
((Note)) You may find original Mathematica programs in my web site  
http://bingweb.binghamton.edu/~suzuki/ 
 

Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German 
mathematician and scientist who contributed significantly to many fields, including 
number theory, statistics, analysis, differential geometry, geodesy, geophysics, 
electrostatics, astronomy and optics. 

 
 
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss 
 
 
Sir George Gabriel Stokes, 1st Baronet FRS (13 August 1819–1 February 1903), was a 
mathematician and physicist, who at Cambridge made important contributions to fluid 
dynamics (including the Navier–Stokes equations), optics, and mathematical physics 
(including Stokes' theorem). He was secretary, then president, of the Royal Society. 
 



 
 
http://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet 
 
1.1 Fundamentals 
 
1.1.1 Definition of vectors 

Vectors are usually indicated by boldface letters, such as A, and we will follow this 
most common convention. Alternative notation is a small arrow over the letters such as 

A


. The magnitude of a vector is also often expressed by AA . The displacement 

vector serves as a prototype for all other vectors. Any quantity that has magnitude and 
direction and that behaves mathematically like he displacement vector is a vector. 
 
((Example)) 

velocity, acceleration, force, 
linear momentum, angular momentum, torque 
electric field, magnetic field, current density, magnetization, polarization 
electric dipole moment, magnetic moment 

 
By contrast, any quantity that has a magnitude but no direction is called a scalar. 
 
((Example)) 

length, time, mass, area, volume, density, temperature, energy 
 
A unit vector is a vector of unit length; a unit vector in the direction of A is written with 

a caret as Â , which we read as “A hat.” 
 

AA AAA ˆˆ   
 



(A) A vector r 

 
 

Fig.  The vector r represents the position of a point P relative to 
another point O as origin. 

 
(B) Negative vector: - r 

The negative of a given vector r is a vector of the same magnitude, but opposite 
direction. 

 
Fig. The vector –r is equal in magnitude but opposite in 

direction to r. 
 
(C) The multiplication of the vector by a scalar 



 
 
Fig. The vector kr is in the direction of r and is of magnitude kr, where k = 0.6. 
 
(D) A unit vector 

 
 
Fig. The vector r̂  is the unit vector in the direction of r. Note that rr ˆr . 
 
1.1.2. Vector addition 
 

C = A + B = B + A (commutative) 



 
The sum of two vectors is defined by the geometrical construction shown below. This 
construction is often called the parallelogram of addition of vectors. 



 



 
1.1.3. Vector subtraction 
 

C = A – B 
 
The subtraction of two vectors is also defined by the geometrical construction shown 
below. 



 



 
1.1.4. Sum of three vectors 

 
 
 
1.1.5 Sum of many vectors 
 

 
 



 
 
1.1.6. Imporrtant theorem for the geometry 
 
(A) Theorem 

When the point P is between the point Q and P on the line connecting the two points 

P and Q, the vector OP  is expressed in terms of the vectors A and B by 
 

BA  OP  
 
where  +  = 1 (>0 and >0).  

 
 



Fig. BA  OP  where  +  = 1.  is changed between  = 

0.1 and 0.9 with  = 0.1. 
 
 
We now consider the following case. 
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where p and q are between 0 and 1. From the above theorem, the vector OP  is expressed 
by 
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From these Eqs. we have 
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Then OP is expressed by 
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(B) Bisecting vector 

In a triangle of this figure, the angle POR is equal to the angle QOR. The point R is 

on the line PQ. What is the expression of OR  in terms of the vectors A and B?. Since R 

is on the line AB, OR  is described by 
 

BA  OR  (1) 
 
where  +  = 1 (>0 and >0).  
 
 

 
 

The vector OR  is also described by 
 

)()ˆˆ(
BA

kkOR
BA

BA   (2) 

 

where A and B are the magnitudes of A and B., Â  and B̂ are the unit vectors for A and B. 
From Eqs.(1) and (2), we have 
 



B

k
A

k








 

 
or 
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Then we get 
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1.1.7. Cartesian components of vectors 
 
(A) 2D system 
 

Let I and j, and k denote a set of mutually perpendicular unit vectors. Let i and j 
drawn from a common origin O, give the positive directions along the system of 
rectangular axes Oxy. 
 

 
 



We consider a vector A lying in the xy plane and making an angle  with the positive x 
axis. The vector A can be expressed by 
 

)sin(cos),( jijiA   AAAAA yxyx  

 
where 
 

22
yx AAA  A   and 
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When the vector B is expressed by 
 

jiB yxzyx BBBB  ),(  

 
the sum of A and B is 
 

jiBA )()( yyxx BABA   

 
 
(B) 3D system 

Let i, j, and k denote a set of mutually perpendicular unit vectors. Let i, j, and k drawn 
from a common origin O, give the positive directions along the system of rectangular 
axes Oxyz. 

 
An arbitrary vector A can be expressed by 
 

kjiA zyxzyx AAAAAA  ),,(  

 



where Ax, Ay, and Az are called the Cartesian components of the vector A. When the 
vector B is expressed by 
 

kjiB zyxzyx BBBBBB  ),,(  

 
the sum of A and B is 
 

kjiBA )()()( zzyyxx BABABA   

 
 
1.1.8. Scalar product of vectors 
 
(A) Definition 

The scalar product (or dot product) of the vectors A and B is defined as 
 

 coscos AB BABA  

 
where  is the angle between A and B and is between 0 and . The scalar product is a 
scalar and is commutative, 
 

ABBA   
 

 
_______________________________________________________________________ 
(B) Magnitude: 

When B = A, we have 
 

22
A AAA  

 
since  = 0. 
 
_______________________________________________________________________ 
(C) Orthogonal (A  B): 



If  
 

0BA  (A ≠0 and B ≠0),  
 
we say that A is orthogonal to B or perpendicular to B. 
 
______________________________________________________________________ 
(C) Projection: 

The magnitude of the projection of A on B is A cos. So BA   is the product of the 
projection of A on B with the magnitude of A. We also consider that the magnitude 
of BA   is the product of the projection of on B on A with the magnitude of B.  
 

)cos()cos(cos  BAAB  BABA  

 

 
 
(D) The expression of the scalar product using Cartesian components of vectors 

Inner product of A and B 
 
We now consider two vectors given by 
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The scalar product of these two vectors A and B can be expressed in terms of the 
components 
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zzyzxz

zyyyxyzxyxxx
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or 
 

zzyyxx BABABA BA  

 
Here we use the above relations for the inner products of the unit vectors.  
where 
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In special cases, the components of A are given by 
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The unit vector Â  of the vector A is expressed by 
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(E) Law of cosine 
 



 
 
 

cos2
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This is the famous trigonometric relation (law of cosine). 
 
1.1.9 Vector product 
 
(A) Definition 

This product is a vector rather than scalar in character, but it is a vector in a somewhat 
restricted sense. The vector product of A and B is defined as 
 

nnBABAC ˆsinˆsin  AB  

 
where A  is the magnitude of A. B  is the magnitude of B.  is the angle between A and 

B. n̂  is a unit vector, perpendicular to both A and B in a sense defined by the right hand 
thread rule.  
 

We read A x B as “A cross B.” 
 
The vector A is rotated by the smallest angle that will bring it into coincidence with the 
direction of B. The sense of C is that of the direction of motion of a screw with a right-
hand thread when the screw is rotated in the same as was the vector A. 



 
((Note)) 

The vector C is perpendicular to both A and B. Rotate A into B through the lesser of 
the two possible angles – curl the fingers of the right hand in the direction in which A is 
rotated, and the thumb will point in the direction of C = A x B. 
 
(B) 

Because of the sign convention, B x A is a vector opposite sign to A x B. In other 
words, the vector product is not commutative, 
 

BAAB  . 
 



 
(C) 

It follows from the definition of the vector product that 
 

0AA  
 
(D) 

The vector product obey the distributive law. 
 

CABACBA  )(  
 
(E) Cartesian components. 

The vectors A and B are expressed by 
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Then the vector product A x B is expressed in terms of the Cartesian components 
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Here we use the relations, 
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It is easier for one to remember if the determinant is used. 
 
Using the cofactor, BA  can be simplified as 
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where a 2x2 determinant is given by bcad
dc

ba
 . 

 
Note 
 

zyx

zyx

zyx

BBB
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 )( BAC  

 
Note that 
 

CBABACACBBACACBCBA  )()()()()()( , 
 
where the order of A, B, and C is cyclic. 



 
((Mathematica)) 



A  A1, A2, A3
A1, A2, A3

B  B1, B2, B3
B1, B2, B3

CC  C1, C2, C3
C1, C2, C3

DD  D1, D2, D3
D1, D2, D3

CrossA, B
A3 B2  A2 B3, A3 B1  A1 B3, A2 B1  A1 B2

A.B

A1 B1  A2 B2  A3 B3

CrossCC, CrossA, B  Simplify

A2 B1 C2  A1 B2 C2  A3 B1 C3  A1 B3 C3,

B2 A1 C1  A3 C3  A2 B1 C1  B3 C3,
B3 A1 C1  A2 C2  A3 B1 C1  B2 C2

CrossCrossCC, DD, CrossA, B 
Simplify

A3 B1 C2 D1  C1 D2 
A2 B1 C3 D1  C1 D3  A1
B3 C2 D1  B2 C3 D1  B3 C1 D2  B2 C1 D3,

A3 B2 C2 D1  C1 D2 
A1 B2 C3 D2  C2 D3  A2
B3 C2 D1  B3 C1 D2  B1 C3 D2  B1 C2 D3,

B3 A2 C3 D1  A1 C3 D2  A2 C1 D3  A1 C2 D3 
A3 B2 C3 D1  B1 C3 D2  B2 C1 D3  B1 C2 D3  



 
1.9.3 Application of the vector product 
 
(A) Area of parallelogram 
 
The magnitude of A x B is the area of the parallelogram. 
 

sinABBA  

 
 

 
 
(B) Volume of a parallelepiped 
 

 
 
The scalar given by 
 

V CBA )(  

 
is the volume of parallelepiped 
 
(C) Law of sine 
 



 
 
We consider the triangle defined by C = A + B, and take the vector product  
 

BABAAABAACA  )(  
 
The magnitude of both sides must be equal so that 
 

)),(sin(),sin(),sin( BAABBAABCAAC    
 
or 
 

C

BA

B

CA )],(sin[),sin( 



  (Law of sine). 

 
where sin(A, B) denotes the sine of the angle between A and B. 
 
1.10 BAC-CAB rule 
 

)()()( BACCABCBA   
 
Similarly the following two identities are also very important. 
 
(A) 
 

)}({)}({)()( CBADDBACDCBA   
 
(B) 
 

))(())(()()( CBDADBCADCBA   
 
_______________________________________________________________ 
 

1.2. Advanced topics 
 
See Chapter 1S for more detail in the rotation. 
1.2.1. Directional cosine aij 
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The vector field is defined in terms of the behavior of its components under the 
rotation of the co-ordinate axes. Here we use the following notation. 
 

1ˆ ex ,  2ˆ ey ,  3ˆ ez  

 
By the rotation of the co-ordinate system, we have the new co-ordinate system, such as 
 

''ˆ 1ex ,  ''ˆ 2ey ,  ''ˆ 3ez  

 
The new vectors 'ie  is related to the old vectors je  through the following relationship. 

 



































































3

2

1

333231

232221

131211

3

2

1

3

2

1

'

'

'

e

e

e

e

e

e

e

e

e

aaa

aaa

aaa

a  

 
where A is the 3 x 3 matrix, and  
 

ijji ee ,  ijji  '' ee  

 
The matrix element aij is called the directional cosine. The symbol ij  is the Kronecker 

delta, and is defined by 
 

1ij  for i = j, and 0 for i ≠ j. 

 
Then we have 
 



)'( ijija ee  . 

 
The vector {ei} is also expressed by using {ej’} 
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where aT is the transpose of the matrix a. For simplicity, we can write down 
 

j
j

iji a ee ' ,  '')( j
j

jij
j

ij
T

i aa eee   . 

 
((Note)) 
 

1 aaT  
 
((Proof)) 
From 
 

ijji  '' ee  

 
we have 
 

ij
k

jkik
lk

kljlik
lk

lkjlik
l

ljl
k

kikji aaaaaaaa   
,,

)())(('' eeeeee  

 
or 
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where aT is the transpose of the matrix a; 
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In other words, we have 
 

Iaaaa TT   
 
or 



 
1 aaT  

 
Note that 
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1.2.2 Two dimensional rotation 
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((Note)) Mathematica 
 

R  RotationMatrix  Simplify

Cos, Sin, Sin, Cos

R  MatrixForm

 Cos Sin
Sin Cos   

 
1.2.3 Three dimensional rotation 

Rotations of the body frame are defined to have a countercloskwise sense, with the 
rotations carried out in the following order. 
 
1. First, make a rotation by an angle  about the initial z axis. ( –  –). 
2. Then, make a second rotation by an angle  about the body  (= ’) axis, called 

the line of nodes. (' – ' – '). 
3. Finally, make a third rotation by an angle   about the body ' (= z’) axis. (x' - y' - 

z').  
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The net result in the body frame is 
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Fig.1  Rotation by an angle  about the initial z axis. ( –  –). 
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Fig.2 A second rotation by an angle  about the body  (= ’) axis, called the line of 

nodes. (' – ' – '). 
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Fig.3 A third rotation by an angle   about the body ' (= z’) axis. (x' - y' - z').  
 



 
((Mathematica)) 
R  RotationMatrix, 0, 0, 1  Simplify;

R  MatrixForm

Cos Sin 0
Sin Cos 0

0 0 1

R  RotationMatrix, 1, 0, 0  Simplify;

R  MatrixForm

1 0 0
0 Cos Sin
0 Sin Cos

R  RotationMatrix, 0, 0, 1  Simplify;

R  MatrixForm

Cos Sin 0
Sin Cos 0

0 0 1  
 
S  R.R.R  Simplify;

S  MatrixForm

Cos Cos  Cos Sin Sin Cos Sin  Cos Cos Sin Sin Sin
Cos Cos Sin  Cos Sin Cos Cos Cos  Sin Sin Cos Sin

Sin Sin Cos Sin Cos  
 
______________________________________________________________________ 
1.2.4 Definition of vector 

Suppose that the vector r can be expressed by 
 

 
i
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ii xx ''eer  

 
for the old and new co-ordinate systems, respectively. Then we have 
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Then we have 
 


j

jiji xax ' , 

 
or 
 

axx '  
 



We may write (Cartesian co-ordinate) 
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Note that we also have 
 

''1 xaxax T   
 
or 
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Using the above notations, we get the original definition; 
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Now we consider more general case in order to get the definition of vector. 
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Suppose that 
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Then we have 
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Since 
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the expression of A can be rewritten as 
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By the interchange between i and j in the left-hand side, 
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Therefore we get 
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Since the component of A is given by 
 

iii yzA  ,  and  ''' iii yzA   

 
in the old and new co-ordinate systems, we can write 
 


j

jiji AaA ' . 

 



In summary, under the rotation of the co-ordinate system, 
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the components of the vector are transformed through 
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((Example)) 

 
(1) Newton's second law 

We consider how the Newton's second law transforms under the rotation of the 
coordinate by the angle  around the z axis. From the definition of the vector for r, we 
have 
a relation between the old coordinates and new coordinates, 
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since r is a real vector. In the old system, the Newton’s second law states that 
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In the new system, the Newton's second law should be written as 
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Then we have 
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This means that the force is a real vector. In other words, if Newton's second law is 
correct one set of axes, they are also valid on any other set of axes. 
 
(2) Angular momentum 

The angular momentum is defined by 
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Now we consider how the angular momentum transforms under the rotation of the 
coordinate by the angle  around the z axis. The angular momentum in the new 
coordinate is 
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We can show that 
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This means that the angular momentum is a vector. 
 
((Mathematica)) 
 



R  x, y, z; P  px, py, pz; L  CrossR, P;

A  RotationMatrix, 0, 0, 1;

RN  A.R

x Cos  y Sin, y Cos  x Sin, z

PN  A.P

px Cos  py Sin, py Cos  px Sin, pz

LN  CrossRN, PN  Simplify

pz y  py z Cos  pz x  px z Sin,
pz x  px z Cos  pz y  py z Sin,

py x  px y

LN  A.L  Simplify

0, 0, 0  
 
________________________________________________________________________ 
1.2.5 Scalar product 

The scalar is invariant under the rotation of the co-ordinate system. We show that the 
scalar product BA  is scalar; 
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We start with the definition of the vectors, 
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Thus BA   is a scalar. 
 
________________________________________________________________________ 
1.2.6. Vector product 

Here there still remains the problem of verifying that  
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is indeed a vector.  
 
((Proof)) 

Under the rotation of the co-ordinate system, 
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where i, j, and k are in cyclic order.  
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Thus BAC   is a real vector. We note that 
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((Note)) 
The above relations among {aij} can be derived in the following way. 
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Thus we find 
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______________________________________________________________________ 
1.2.7. Tensor 

Ohm’s law; 
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scalar:  tensor of rank zero 
vector:  tensor of first rank  
 



((Definition of tensor of the second rank)) 
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So there is no difference between contravariant and covariant transformation. In other 
systems, this in general does not apply, so the distinction between contavariant and 
covariant is real. 
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The Kronecker delta ij is really a mixed tensor of second rank i
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by definition of the Kronecker delta. Now we have  
 

i
j

j

i

j

k

k

i

x

x

x

x

x

x
'

'

'

'

' 










 

 
by direct partial differentiation of the right-hand side (chain rule). Hence, 
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________________________________________________________________________ 
1.2.8. Gradient   
 

  (; scalar) Nabra, gradient, del 
 
The gradient  is defined as 
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(A) Geometrical interpretation 

Let us give a geometrical interpretation of  . 
 

zdzydyxdxd ˆˆˆ r  
 
From the definition, we have 
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Fig. The normal vector n which is perpendicular to the line PQ on the surface. 

  is perpendicular to the surface ( = constant). 
 

If we choose two points P and Q on the surface const)(r , where rdPQ   in the limit 
of 0rd . 
 
Since  
 

0 rdd  , 
 
we find that   is perpendicular to the surface ( = constant). It is called the normal 
vector. 
 
((Example-1))  
Find a unit normal to the surface 422  xzyx  at the point P (2, -2, 3). 

)2,,22()2( 22 xxzxyxzyx A . A = (-2, 4, 4) at the point P. Then a unit normal to 
the surface is (-1/3, 2/3, 2/3). Another unit normal is (1/3, -2/3, -2/3). 
 



 
 
((Example-2)) Find an equation for the tangent plane to the surface 

07432 2  xxyxz  at the point P r0 = (1, -1, 2). 
 

)4,3,432()432( 22 xzxyzxxyxz A . Then a normal to the surface at the 
point P is A = (7, -3, 8) at the point P. The equation of a plane passing through a point P, 
which is perpendicular to A is (r – r0).A = 0; 0)2(8)1(3)1(7  zyx  
 

 



 
(B) Vector   

Next we will verify that   is a vector.  is scalar, which means the invariant under 
the rotation of the coordinate system. 
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Thus   is a real vector (contravariant vector) 
 
 
(C) Plotting of equi-potential lines and vector fields  
 
Now we consider a rather simple 2D function, 
 

xy  
 
The gradient operating on this function generate the vector field 
 

),( xyF    
 
Using the Matematica, we make a plot of the equipotential lines of   in the x-y plane 
(ContourPlot) and a plot of the field lines of F in the x-y plane (StreamPlot). The field 
lines are perpendicular to the equipotential lines of constant . 
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1.2.9 Divergence 
 
Now we define the divergence of the vector as 
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(A) F  is a real scalar. 
 
Under the rotation of the co-ordinate system 
 


j

jiji FaF '  

 
Then we have 
 

 

















lj l

j
klij

lj l

j

k

l
ij

j
jij

kk

i

x

F
aa

x

F

x

x
aFa

xx

F

,, '
)(

''

'
 

 
where 
 

j

i
ij x

x
a





'
. 

 
Then we have 
 



  


















j j

j

lj l

j
jl

lj l

j

i
ilij

lji l

j
ilij

i i

i

x

F

x

F

x

F
aa

x

F
aa

x

F

,,,,

)(
'

'   

 
Thus F  is a scalar. 
 
(B) Definition of solenoid 
 

0 B    B is said to be soloenoid. 
 
_______________________________________________________________________ 
1.2.10 F  

Now we define the rotation of the vector as 
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We show that F  is a real vector. 
 
((Proof)) 
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(For simplicity we use x1 = x, x2 = y, x3 = z) 
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Similarly, we have 
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Therefore,  
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which means that F  is a real vector. 
 
________________________________________________________________________ 
1.2.11 Successive application of  
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This is defined by a Laplacian, 
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The equation 02    is called as the Laplace equation. 
 
(B)   is irrotational. 
 

  0   
 
since 



0

ˆˆˆ

)( 





















zyx

zyx

zyx



  

 
Thus   is irrotational. 
 
(C) )( F  is solenoid. 
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(D) Formula 
 

FFF 2)()(   
 
((Proof)) 

We use the formula given by 
 

CBACABCBA )()()(   
 
with A , B , and C = F. Then we find 
 

FFF 2)()(   
 
1.2.12 Examples 
(A) Electromagnetic wave equation 

Derivation of electromagnetic wave equation from Maxwell’s equation. 
 
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish theoretical 
physicist and mathematician. His most important achievement was classical 
electromagnetic theory, synthesizing all previously unrelated observations, experiments 
and equations of electricity, magnetism and even optics into a consistent theory. His set 
of equations—Maxwell's equations—demonstrated that electricity, magnetism and even 
light are all manifestations of the same phenomenon: the electromagnetic field. From that 
moment on, all other classic laws or equations of these disciplines became simplified 
cases of Maxwell's equations. Maxwell's work in electromagnetism has been called the 
"second great unification in physics", after the first one carried out by Isaac Newton. 



 
http://en.wikipedia.org/wiki/James_Clerk_Maxwell 
 
 
Maxwell’s equations in vacuum (in SI units); 
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Suppose that  = 0 and J = 0. 
Then we have 
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c  is the velocity of light. 

 
Since 
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This equation is called as electromagnetic wave equation. Similarly we have 
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(B) Calculations 

If )2,2,( 2 yzxzyx A , find A , )( A , and ))(( A . 
 
We use the Mathematica. 
 

Clear"Gobal`";

Needs"VectorAnalysis`"
SetCoordinatesCartesianx, y, z;

A1   x2 y, 2 x z , 2 y z;

CurlA1
2 x  2 z, 0, x2  2 z

CurlCurlA1
0, 2  2 x, 0

CurlCurlCurlA1
0, 0, 2  

__________________________________________________________________ 
1.2.13 Line and surface integral 

We consider about the line integral 
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where dsd r  and the tangential component is assumed to be AS' 
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If the contour is closed, we can write down as 
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In general the line integral depends on the choice of path. If F  ( ; scalar) 
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This value does not depend on the path of integral. 
 
1.2.14 Surface Integral 
n̂ normal vector to the surface 
 

dad na    (da; area element) 
 
Then the surface integral is defined by 
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Fig. Right-hand rule for the positive normal. 
 
If F corresponds to the magnetic field; F = B, 
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daB  is a magnetic flux through the area element S. 
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1.2.15 Gauss's theorem 
 
Here we define the volume integral as 
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where  is a scalar. 
 
(A) Gauss's theorem 
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First we consider the physical interpretation of F . Suppose that F = J (current 
density). The current coming out through ABCD is 
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The current coming in through EFGH is equal to 
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Thus the net current through EFGH is equal to 
 

dxdydz
x

J x




 

 



Thus the net current along the x direction through this small region is 
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Similarly for the y and z components, we have the net current along the y-direction and z-
direction through the small region as 
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respectively. Therefore the net current coming out through the volume element 

dxdydzd   can be expressed by 
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Summing over all parallel-pipes, we find that aJ d terms cancel out for all interior faces. 
Only the contributions of the exterior surface survive. 
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(B) Gauss' theorem 
Let F be a continuous and differentiable vector throughtout a region V of the space. Then  
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where the surface integral is taken over the entire surface that encloses V. 
 

 
((Example-1))  
In the maxwell's equation, we have 
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where  is the charge density. From the Gauss's law, we have 
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We assume that the volume V is formed of sphere with radius r. From the symmetry, E is 
perpendicular to the sphere surfaces, 
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   (Coulomb's law) 

 
((Example-2)) 
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From the Gauss's law, we have 
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E1n and E2n are the normal components of E1 and E2. Then we have 
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Therefore we have the boundary condition for E as 
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1.2.16 Green's theorem 
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((Proof)) In the Gauss's theorem, we put 
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1.2.17 Stokes' theorem 
 

x

y

A x0, y0 B

CD

1

dx

2

3

4 dy

 

 














2

00

1

00

4321

1234

)},(),({)},(),({

)(

dyyxFydxxFdxdyyxFyxF

dyFdxFdyFdxF

ncirculatiod

yyxx

yxyx

lF

 

 
Note that 
 

dx
x

F
yxFydxxF

dy
y

F
yxFdyyxF

yx

y
yy

yx

x
xx

00

00

,

00

,

00

),(),(

),(),(



























 

 
Then we have 
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We can write down this as 
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where 
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Imagine that paths 1 and 2 are expanded out until they coalesce with path C (or path 3). 
Since the line integrals of F along the potions that 1 and 2 have in common will cancel 
each other,
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Now let the surface S be divided up into a large number N of elements.  
 

 
 
The above idea is extended to arrive at 
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((Stoke's theorem)) 
Let S be a surface of any shape bounded by a closed curve C. If F is a vector, then 
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________________________________________________________________________ 

1.3 Curvilinear co-ordinates 
1.3.1 General definition 

We consider that new co-ordinate (q1, q2, q3) are related to (x, y, z) through 
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 (second rank tensor). 

 
We now consider the general coordinate system. The relation between the constants h1, 
h2, and h3 and the tensor gij will be discussed later. 
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Now we limit ourselves to orthogonal co-ordinate system. 
 

ijg  for i ≠ j. 

 

In order to simplify the notation, we use 2
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Where e1, e2, and e3 are unit vectors which are perpendicular to each other. 
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The volume element for an orthogonal curvilinear coordinate system is given by 
 

321321333222111 )}(){( dqdqdqhhhdqhdqhdqhdV  eee  

 
1.3.2 Spherical coordinete 
(A) Unit vectors 

The position of a point P with Cartesian coordinates x, y, and z may be expressed in 
terms of r, , and  of the spherical coordinates; 
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This can be described using a matrix A as 
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or by using the inverse matrix A-1 as 
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A  Sin Cos, Sin Sin, Cos,

Cos Cos, Cos Sin, Sin,

Sin, Cos, 0;

A  MatrixForm

Cos Sin Sin Sin Cos
Cos Cos Cos Sin Sin

Sin Cos 0

Ainv  InverseA  Simplify;

Cos Sin, Cos Cos, Sin,

Sin Sin, Cos Sin, Cos,

Cos, Sin, 0

Ainv  MatrixForm

Cos Sin Cos Cos Sin
Sin Sin Cos Sin Cos

Cos Sin 0

A.Ainv  Simplify

1, 0, 0, 0, 1, 0, 0, 0, 1  
 
The time derivatives er, e, and e are obtained as 
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(B)   

From the definition of  , we have 
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where  is a scalar function of r, , and . 
 
(C) A  

When a vector A is defined by 
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The divergence is given by 
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(D) A  
 

A  is given by 
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(E) Laplacian 
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We can rewrite the first term of the right hand side as 
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which can be useful in shortening calculations. 
 
Note that we also use the expression for the operator  
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((Mathematica)) 

We derive the above formula using the Mathematica. 



We use the Spherical co-rdinate. 
We need a Vector Analysis Package. We also need SetCordinatinates.In this system the vector is expressed 
in terms of (Ar, Aq, Af)

Clear"Gobal`";

Needs"VectorAnalysis`";

SetCoordinatesSphericalr, , ;

Vector analysis
Grad, Curl, Laplacian which are expressed in terms of the spherical coordin ates

eq1  Laplacianr, ,   Simplify

1

r2 Csc2 0,0,2r, ,   Cot 0,1,0r, ,  
0,2,0r, ,   2 r 1,0,0r, ,   r2 2,0,0r, , 

eq2  Gradr, , 

1,0,0r, , ,
0,1,0r, , 

r
,

Csc 0,0,1r, , 
r



A  Arr, , , Ar, , , Ar, , ;

eq3  CurlA
 1

r2 Csc r Ar, ,  Cos 
r A0,0,1r, ,   r Sin A0,1,0r, , ,

1

r
Csc Ar, ,  Sin  Ar0,0,1r, ,  

r Sin A1,0,0r, , ,

Ar, ,   Ar0,1,0r, ,   r A1,0,0r, , 
r



eq3  DivA
1

r2 Csc
r Ar, ,  Cos  2 r Arr, ,  Sin  r A0,0,1r, ,  

r Sin A0,1,0r, ,   r2 Sin Ar1,0,0r, ,   
 
_______________________________________________________________________ 
1.3.3 Velocity and acceleration in the spherical coordinate 

The velocity (v) and acceleration (a) in the spherical co-ordinates are given by 
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((Mathematica)) 

We drive the above formula using the Mathematica. 

Velocity and acceleration in the spherical coordinates

Clear"Gobal`"
 "VectorAnalysis`"

SetCoordinatesCartesianx, y, z
Cartesian x, y, z

RRt_ : rt Sint Cost, rt Sint Sint, rt Cost
DRRt, t  FullSimplify

Cost Sint rt  Cost rt t  rt Sint Sint t,

Sint Sint rt  Cost rt t  Cost rt Sint t,

Cost rt  rt Sint t

DRRt, t, 1  FullSimplify

Cost Sint rt  Cost rt t  rt Sint Sint t,

Sint Sint rt  Cost rt t  Cost rt Sint t,

Cost rt  rt Sint t

DRRt, t, 2  FullSimplify

Cost 2 t Cost rt  rt Sint t  Cost rt t 
Sint Cost rt t2  t2  rt 

Sint 2 rt t  rt t, Sint
Sint rt t2  t2  rt  Cost 2 rt t  rt t 

Cost 2 Sint rt  Cost rt t t  rt Sint t,

Cost rt t2  rt  Sint 2 rt t  rt t

DRRt, t, 3  FullSimplify

Cost 3 Sint t 2 rt t  rt t  rt t t  Cost
3 t rt  3 rt t  rt t3  3 t t2  3t  Sint

Cost 3 rt t2  t2  3 rt t t  t t  r3t 
Sint 3 t rt  rt t  rt 3 t2 t  t3  3t,

Sint Sint 3 rt t2  t2 
3 rt t t  t t  r3t 

Cost 3 t rt  3 rt t  rt t3  3 t t2  3t 
Cost 3 Cost t 2 rt t  rt t  rt t t 

Sint 3 t rt  3 rt t  rt 3 t2 t  t3  3t,

Cost 3 t rt t  rt t  r3t 
Sint 3 t rt  rt t  rt t3  3t  



 
Unit vectors along the r, q, and f directions (Cartesian coordinate)

ur  rt RRt  Simplify

Cost Sint, Sint Sint, Cost

u  t RRt rt  Simplify

Cost Cost, Cost Sint, Sint

u  t RRt rt Sint  Simplify

Sint, Cost, 0

ur.u

0

ur.u  Simplify

0  
 



ü Velocity and kinetic energy in the spherical coordinates

Vr  DRRt, t.ur  Simplify

rt

V  DRRt, t.u  Simplify

rt t

V  DRRt, t.u  Simplify

rt Sint t

K1 
m

2
Vr2  V2  V2  Simplify

1

2
m rt2  rt2 t2  Sint2 t2

ü Acceleration in the spherical coordinate

Ar  DRRt, t, 2.ur  Simplify

rt t2  Sint2 t2  rt

A  DRRt, t, 2.u  Simplify

2 rt t  rt Cost Sint t2  t

A  DRRt, t, 2.u  Simplify

2 Sint rt t  rt 2 Cost t t  Sint t

ü Some application

Sr  DRRt, t, 3.ur  Simplify

1

2
6 rt t2  Sint2 t2 

3 rt t Sin2 t t2  2 t  2 Sint2 t t  2 r3t

S  DRRt, t, 3.u  Simplify

1

2
6 t rt  rt 3 Sin2 t t2  6 t 

rt 2 t3  6 Cost2 t t2  3 Sin2 t t t  2 3t

S  DRRt, t, 3.u  Simplify

3 Sint t rt  3 rt 2 Cost t t  Sint t 
rt 3 Sint t2 t  Sint t3 

3 Cost t t  3 Cost t t  Sint 3t  
 
_______________________________________________________________________ 
1.3.4 Quantum mechanical orbital angular momentum 
 
The orbital angular momentum in the quantum mechanics is defined by 
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in the spherical coordinate. Then we have 
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The angular momentum Lx, Ly, and Lz (Cartesian components) can be described by 
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We define L+ and L- as 
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We note that the operator   can be expressed using the operator L as 
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The proof of this equation is given as follows. 
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where the proof is given by Mathematica. Using  
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1.3.5 Mathematica 
 
Arfken 2-5-13

Show that

- ‰ Ñ (x ∂
∂y

 - y ∂
∂x

 ) = -‰  Ñ 
∂

∂f

This is the quantum mchanical operator corresponding to the z-componenet of 
orbital angular momentum.  
 
_______________________________________________________________________ 
Arfken 2-5-14

With the quantum mechanical orbial angular momentum operator defined as L = r × p
= r × (-ÂÑ—), show that

(a) Lx  + Â  Ly  = - Ñ ‰Âf  ( ∑
∑q

 + Â cotq ∑
∑f

)

(b) Lx  + Â  Ly  = - Ñ ‰-Âf  ( ∑
∑q

 - Â cotq ∑
∑f

)
 

 
________________________________________________________________________ 
Arfken 2-5-15

Verify that L× L = ‰ L  in spherical polar coordinates. L = -ÂÑ( r × —),  the quantum 
mechanical orbital angular momentm operator  
 
________________________________________________________________________ 
 



Arfken 2-5-16

(a) Show that

L = - Â Ñ (r × “) = Â Ñ (eq 1
sinq

∑
∑f

 - ef ∑
∑q

)

(b) Resolving eq and ef into Cartesiancomponents, determine Lx , Ly , and Lz  in terms of q, f, and 
their derivatives.

(c) From Lx
2  +  Ly

2  +  Lz
2 , show that

L2

Ñ2  = - 1
sinq

 ∑
∑q

 (sinq ∑
∑q

) - 1
sin2 q

 ∑
2

∑q2
 = - r2  “2  + ∑

∑r
r2 ∑

∑r


or

—2= - L2

Ñ2 r2  + 1
r2

∑
∑r

r2 ∑
∑r



This identity is useful in relating orbital angular momentum.  
 
________________________________________________________________________ 
Arfken 2-5-17

With   L = - Â Ñ (r × “) , verify the operator identities

(a) “ = e r ∑
∑r

 - Â  r μ L
r2

(b) r “2 = - “ (1 + r ∑
∑r

) = Â “ × L
 

________________________________________________________________________ 
 



Clear"Gobal`"
 "VectorAnalysis`"

SetCoordinatesSphericalr, , 
Spherical r, , 

Clear
L   — Crossur r, Grad &

 — ur rGrad 1 &

Lx : ux. — Crossur r, Grad &  Simplify

Ly : uy. — Crossur r, Grad &  Simplify

Lz : uz. — Crossur r, Grad &  Simplify

Lxr, ,   Simplify

 — Cos Cot 0,0,1r, ,   Sin 0,1,0r, , 

Lyr, ,   Simplify

 — Cot Sin 0,0,1r, ,   Cos 0,1,0r, ,  
 



Arfken Problem 2-5-13

Lzr, ,   Simplify

 — 0,0,1r, , 

Arfken Problem 2-5-14

Lx r, ,    Ly r, ,   FullSimplify

  —  Cot 0,0,1r, ,   0,1,0r, , 

Lx r, ,    Ly r, ,   FullSimplify

—  Cos  Sin Cot 0,0,1r, ,    0,1,0r, , 

Arfken Problem 2-5-15

Lx Lyr, ,   Ly Lxr, ,    — Lzr, ,  
Expand  FullSimplify

0

Ly Lzr, ,   Lz Lyr, ,    — Lxr, ,  
Expand  FullSimplify

0

Lz Lxr, ,   Lx Lzr, ,    — Lyr, ,  
Expand  FullSimplify

0  
 



Arfken Problem 2-5-16 (a)

Lr, ,   Simplify

0,  — Csc 0,0,1r, , ,  — 0,1,0r, , 

Arfken Problem 2-5-16 (b)

Lxr, ,   Simplify

 — Cos Cot 0,0,1r, ,   Sin 0,1,0r, , 

Lyr, ,   Simplify

 — Cot Sin 0,0,1r, ,   Cos 0,1,0r, , 

Lzr, ,   Simplify

 — 0,0,1r, , 

Arfken Problem 2-5-16 (c)

seq1  LxLxr, ,   FullSimplify

1

4
—2 3  Cos2  Csc2 Sin2  0,0,1r, ,  

4 Cot Cos2 Cot 0,0,2r, ,   0,1,0r, ,  
Sin2  0,1,1r, ,   4 Sin2 0,2,0r, , 

seq2  LyLyr, ,   FullSimplify


1

4
—2

3  Cos2  Csc2 Sin2  0,0,1r, ,   4 Cot Sin
Sin Cot 0,0,2r, ,   0,1,0r, ,  

2 Cos 0,1,1r, ,   4 Cos2 0,2,0r, , 

seq3  LzLzr, ,   Simplify

—2 0,0,2r, , 

seq123  seq1  seq2  seq3  Expand  FullSimplify

—2

Csc2 0,0,2r, ,   Cot 0,1,0r, ,   0,2,0r, , 

seq4  —2 r2 Laplacianr, ,   —2 Dr2 Dr, , , r, r 
Simplify

—2

Csc2 0,0,2r, ,   Cot 0,1,0r, ,   0,2,0r, , 

seq123  seq4  Simplify

0  



Arfken Problem 2-5-17(a)

Gradr, ,   

—

1

r2 Crossr, 0, 0, Lr, ,  
Simplify

1,0,0r, , , 0, 0

Arfken Problem 2-5-17(b)



—
CurlLr, ,   r, 0, 0 Laplacianr, ,  

Gradr, ,   r r r, ,   Expand  FullSimplify

0, 0, 0  
 
______________________________________________________________________ 
1.3.6 Radial momentum operator in the quantum mechanics 
 
(a) In classical mechanics, the radial momentum of the radius r is defined by 
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1

pr 
r

prc  

 
(b) In quantum mechanics, this definition becomes ambiguous since the component 

of p and r do not commute. Since pr should be Hermitian operator, we need to 
define as the radial momentum of the radius r is defined by 
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This symmetric expression is indeed the canonical conjugate of r. 
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Note that 
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((Mathematica)) 
 



Clear"Gobal`"
 "VectorAnalysis`"

SetCoordinatesSphericalr, , 
Spherical r, , 

Clear
prc :  — 1, 0, 0.Grad &
prcr, , 
 — 1,0,0r, , 

prq :   —
2

1, 0, 0.Grad 
  —

2
Div 1, 0, 0  &

prqr, ,   Simplify


 — r, ,   r 1,0,0r, , 

r

((Commutation relation))

prqr r, ,   r prq r, ,   Simplify

 — r, ,   
 
________________________________________________________________________ 



ü

Arfken 2-5-18

Show that the following three forms (spherical coordinates) of  —2y(r) are equvalent:

(a) 
1

r2
 

d

dr
 [ r2 dyr

dr
]; (b) 

1

r
 

d2

dr2
 [ r y (r)]; (c) 

d2 y r
dr2

 + 
2

r
 

dy r
dr

 

Clear"Gobal`"
 "VectorAnalysis`"

SetCoordinatesSphericalr, , 
Spherical r, , 

Clear

kr :  
1

r
Dr , r &

krkrr  Expand

2 r
r

 r

1

r
Dr r, r, 2  Simplify

2 r
r

 r

1

r2
Dr2 Dr, r, r  Simplify

2 r
r

 r
 

_______________________________________________________________________ 
1.3.7 Cylindrical coordinates 
 

The position of a point in space P having Cartesian coordinates x, y, and z may be 
expressed in terms of cylindrical co-ordinates 
 

 cosx ,  siny , z = z. 
 
The position vector r is written as 
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The unit vectors are written as 
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We note that 
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 ee   ,  ee   , 0ze   (time derivative) 

 
 
The above expression can be described using a matrix A as 
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or by using the inverse matrix A-1 as 
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1.3.8 Differential operations in the cylindrical coordinate 
The differential operations involving   are as follows. 
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where V is a vector and  is a scalar. 
 
1.3.9 Mathematica 
 



We use the cylindrical co-ordinate. 
We need a Vector Analysis Package. We also need SetCordinatinates.In this system the vector is expressed in terms

of (Ar, Af, Az)

Clear"Gobal`"
Needs"VectorAnalysis`"
SetCoordinatesCylindrical, , z
Cylindrical, , z

Vector analysis
Grad, Curl, Laplacian which are expressed in terms of the cylindrical coordinates

eq1  Laplacian, , z  Simplify

0,0,2, , z  0,2,0, , z
2


1,0,0, , z


 2,0,0, , z

eq2  Grad, , z

1,0,0, , z,
0,1,0, , z


, 0,0,1, , z

B  B, , z, B, , z, Bz, , z
B, , z, B, , z, Bz, , z

eq3  CurlB

 B0,0,1, , z  Bz0,1,0, , z


,

B0,0,1, , z  Bz1,0,0, , z,

B, , z  B0,1,0, , z   B1,0,0, , z




eq3  DivB
1


B, , z   Bz0,0,1, , z  B0,1,0, , z   B1,0,0, , z

 
 
1.3.10 Velocity and acceleration in the cylindrical coordinates 

The velocity (v) and acceleration (a) in the cylindrical co-ordinates are given by 
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((Mathematica)) 



We drive the above formula using the Mathematica. 

Velocity and acceleration in the cylindrical coordinates

Clear"Gobal`"
 "VectorAnalysis`"

SetCoordinatesCartesianx, y, z
Cartesianx, y, z

RRt_ : t Cost, t Sint, zt
DRRt, t  FullSimplify

Cost t  Sint t t,
Sint t  Cost t t, zt

DRRt, t, 2  FullSimplify

Cost t t2  t  Sint 2 t t  t t,

2 Cost t t 
Sint t t2  t  Cost t t, zt

DRRt, t, 3  FullSimplify

Cost 3 t t t  t t  3t 
Sint 3 t t  t t  t t3  3t,

Sint 3 t t t  t t  3t 
Cost 3 t t  3 t t  t t3  3t, z3t

Unit vectors along the r, f, and z directions

u  t RRt  Simplify

Cost, Sint, 0

u  t RRt t  Simplify

Sint, Cost, 0

uz  zt RRt  Simplify

0, 0, 1  
 



ü Velocity and kinetic energy in the cylindrical coordinates

V  DRRt, t.u  Simplify

t

V  DRRt, t.u  Simplify

t t

Vz  DRRt, t.uz  Simplify

zt

K1 
m

2
V2  V2  Vz2  Simplify

1

2
m zt2  t2  t2 t2

ü Acceleration in the spherical coordinate

A  DRRt, t, 2.u  Simplify

t t2  t

A  DRRt, t, 2.u  Simplify

2 t t  t t

Az  DRRt, t, 2.uz  Simplify

zt

ü Some application

S  DRRt, t, 3.u  Simplify

3 t t2  3 t t t  3t

S  DRRt, t, 3.u  Simplify

3 t t  t t  t t3  3t

Sz  DRRt, t, 3.uz  Simplify

z3t  
______________________________________________________________________ 
 



1.3.11 Jacobian 
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Jacobian determinant is defined as; 
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(a) Spherical coordinate 
 

 ddrdrddrdhhhdqdqdqhhh r sin2
321321   

 
(b) Cylindrical co-ordinate 
 

dzdddzddhhhdqdqdqhhh z  321321  

 
((Mathematica)) 
This is the program to determine the Jacobian determinant. 
 



JacobianDeterminant[pt, coordsys]:

to give the determinant of the Jacobian matrix of the transformation from the coordinate 
system coordinate system to the Cartesian coordinate system at the point pt.

Clear"Gobal`"
 "VectorAnalysis`"

Jacobian determinant for transformation from cylindrical to Cartesian coordinates:

jdet  JacobianDeterminant, , z, Cylindrical


Jacobian determinant for transformation from cylindrical to Spherical coordinates:

jdet  JacobianDeterminantr, , , Spherical
r2 Sin  

 
1.3.12 Plane polar coordinate for 2D system 

The point P is located at (r, ), where r is the distance from the origin and  is the 
measured counterclockwise from the reference line (the x axis). 
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We introduce the unit vectors given by 
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These expressions can be rewritten using a matrix A as 
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and using A-1 as 
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The position vector (displacement vector) is given by 
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The velocity and acceleration are 
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((Note)) 
 
Velocity along the e  direction 

 






r

dt

ds
v

rdds




 

 
Velocity along the re  direction 
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dt

dr
vr  . 

 



x

y

P

r

q

dq

drds

 
 
((Note))  
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or 
 

)sincoscos2sin,cossinsin2cos( 22   rrrrrrrr r  
 
or 
 

jrrrrirrrr ˆ)sincoscos2sin(ˆ)cossinsin2cos( 22   r  
 

 ˆ)2(ˆ)()ˆcosˆsin)(2()ˆsinˆ)(cos( 22  rrrrrjirrjirr r  
 
((Mathematica)) 



R  rt Cost, rt Sint
Cost rt, rt Sint

V  DR, t  Simplify

Cost rt  rt Sint t,

Sint rt  Cost rt t

A  DR, t, 2  Simplify

2 Sint rt t  Cost rt 
rt Cost t2  Sint t, 2 Cost rt t 
Sint rt  rt Sint t2  Cost t

ru  Cost, Sint
Cost, Sint

u  Sint, Cost
Sint, Cost

A.ru  Simplify

rt t2  rt

A.u  Simplify

2 rt t  rt t

V.ru  Simplify

rt

V.u  Simplify

rt t  
 
1.13.13 Angular momentum 
 
The angular momentum is defined by 
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1.13.14 Circular motion (r = constant) 



We consider a circular motion with r = constant. since 0r  and 0r . 
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In summary, we have 
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