Chapter 22
Legendre function
Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton

(Date: November 06, 2010)
Laplace's equation
Spherical harmonics
Legendre polynomials
Rodrigues' formula
Generating function
Addition theorem

22.1 Laplace's equation in the spherical coordinate

We consider the solution of Laplace's equation,

$$
\nabla^{2} \Phi(\mathbf{r})=0 .
$$

where $\Phi(\mathbf{r})$ is a scalar electric potential. The Laplacian in the spherical coordinate is given by

$$
\begin{aligned}
\nabla^{2} & =-\frac{1}{\hbar^{2} r^{2}} \mathbf{L}^{2}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \\
& =-\frac{1}{\hbar^{2} r^{2}} \mathbf{L}^{2}+\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r)
\end{aligned}
$$

where L is the angular momentum. The differential equation of the potential $\Phi(\mathbf{r})$ is given by

$$
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \Phi(\mathbf{r}))-\frac{1}{\hbar^{2} r^{2}} \mathbf{L}^{2} \Phi(\mathbf{r})=0
$$

Here we assume that

$$
\Phi(\mathbf{r})=U(r) Y_{l}^{m}(\theta, \phi) .
$$

(separation variable). Then we have

$$
\frac{1}{r} Y_{l}^{m}(\theta, \phi) \frac{\partial^{2}}{\partial r^{2}}(r U(r))-\frac{1}{\hbar^{2} r^{2}} U(r) \mathbf{L}^{2} Y_{l}^{m}(\theta, \phi)=0
$$

We use the relation

$$
\mathbf{L}^{2} Y_{l}^{m}(\theta, \phi)=\hbar^{2} l(l+1) Y_{l}^{m}(\theta, \phi) .
$$

Thus we get

$$
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}[r U(r)]-\frac{l(l+1)}{r^{2}} U(r)=0 .
$$

The solution of $U(r)$ is given by

$$
U(r)=A r^{l}+B r^{-(l+1)} .
$$

where A and B are constants. Then the general solution is expressed by

$$
\Phi(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left[A_{l m} r^{l}+B_{l m} r^{-(l+1)}\right] Y_{l}^{m}(\theta, \phi) .
$$

((Mathematica))

$$
\text { eq1 }=\frac{1}{r} D[r U[r],\{r, 2\}]-\frac{1(1+1)}{r^{2}} U[r]=0 ;
$$

DSolve[eq1, U[r], r] // Simplify[\#, l > 0] \& //
Expand
$\left\{\left\{\mathrm{U}[\mathrm{r}] \rightarrow \mathrm{r}^{1} \mathrm{C}[1]+\mathrm{r}^{-1-1} \mathrm{C}[2]\right\}\right\}$

22.2 Spherical harmonics

$$
\begin{aligned}
& \langle\mathbf{n} \mid l, m\rangle=\langle\theta, \phi \mid l, m\rangle=Y_{l}^{m}(\theta, \phi) \\
& \hat{L}_{z}|l, m\rangle=m \hbar|l, m\rangle,
\end{aligned}
$$

or

$$
\begin{aligned}
& \langle\mathbf{n}| \hat{L}_{z}|l, m\rangle=-i \hbar \frac{\partial}{\partial \phi}\langle\mathbf{n} \mid l, m\rangle=m \hbar\langle\mathbf{n} \mid l, m\rangle, \\
& |\mathbf{n}\rangle=|\theta, \phi\rangle .
\end{aligned}
$$

The closure relation

$$
\int|\theta, \phi\rangle d \Omega\langle\theta, \phi|=\hat{1}
$$

where

$$
d \Omega=\sin \theta d \theta d \phi
$$

The θ and ϕ dependence of $\langle\mathbf{n} \mid l, m\rangle$ is given by

$$
\begin{align*}
\langle\mathbf{n}| \hat{L}^{2}|I m\rangle & =-\hbar^{2}\left[\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)\right] Y_{l}^{m}(\theta, \phi) \tag{1}\\
& =\hbar^{2} l(l+1) Y_{l}^{m}(\theta, \phi) \\
\langle\mathbf{n}| \hat{L}_{z}|l m\rangle & =\frac{\hbar}{i} \frac{\partial}{\partial \phi} Y_{l}^{m}(\theta, \phi)=\hbar m Y_{l}^{m}(\theta, \phi) \tag{2}
\end{align*}
$$

Equation (2) shows that

$$
Y_{l}^{m}(\theta, \phi)=\Theta_{l}^{m}(\theta, \phi) e^{i m \phi}
$$

We must require that the eigenfunctions be single valued

$$
e^{i m \phi}=e^{i m(\phi+2 \pi)}
$$

which means that $m=0, \pm 1, \pm 2$, (integers). Equation (1) can be rewritten as

$$
\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}+l(l+1)\right] \Theta_{l}^{m}(\theta, \phi)=0 .
$$

The orhogonality relation $\left\langle l^{\prime}, m^{\prime} \mid l, m\right\rangle=\delta_{l, l^{\prime}} \delta_{m, m^{\prime}}$ leads to

$$
\delta_{l, l^{\prime}} \delta_{m, m^{\prime}}=\int d \Omega\left\langle l^{\prime}, m^{\prime} \mid \mathbf{n}\right\rangle\langle\mathbf{n} \mid l, m\rangle=\iint \sin \theta d \theta d \phi Y_{l^{\prime}}^{m^{*}}(\theta, \phi) Y_{l}^{m}(\theta, \phi) .
$$

To obtain the form of $Y^{m}(\theta, \phi)$, we may start with $m=l$.

$$
\hat{L}_{+}|l, m=l\rangle=0
$$

or

$$
\langle\mathbf{n}| \hat{L}_{+}|l, m=l\rangle=-i \hbar e^{i \phi}\left(i \frac{\partial}{\partial \theta}-\cot \theta \frac{\partial}{\partial \phi}\right)\langle\mathbf{n} \mid l, m=l\rangle=0
$$

Since $\langle\mathbf{n} \mid l, m=l\rangle=Y_{l}^{l}(\theta, \phi)=\Theta_{l}^{l}(\theta) e^{i l \phi}$,

$$
\left(\frac{d}{d \theta}-l \cot \theta\right) \Theta_{l}^{l}(\theta)=0
$$

or

$$
Y_{l}^{l}(\theta, \phi)=C_{l} e^{i l \phi} \sin ^{l} \theta
$$

where C_{l} is a normalization constant.

$$
C_{l}=\frac{(-1)^{l}}{2^{l} l!} \sqrt{\frac{(2 l+1)(2 l)!}{4 \pi}},
$$

The result for $m \geq 0$ is

$$
Y_{l}^{m}(\theta, \phi)=\frac{(-1)^{l}}{2^{l} l!} \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l+m)!}{(l-m)!}} e^{i m \phi} \frac{1}{\sin ^{m} \theta} \frac{d^{l-m}}{d(\cos \theta)^{l-m}}(\sin \theta)^{2 l},
$$

and we define $Y_{l}^{-m}(\theta, \phi)$ by

$$
Y_{l}^{-m}(\theta, \phi)=(-1)^{m}\left[Y_{l}^{m}(\theta, \phi)\right]^{*},
$$

or

$$
\left[Y_{l}^{m}(\theta, \phi)\right]^{*}=(-1)^{m} Y_{l}^{-m}(\theta, \phi) .
$$

22.3 Legendre polynomial

We consider the special case when $m=0$ (the system has axis symmetry). This means that potential $\Phi(\mathbf{r})$ is independent of ϕ,

$$
\begin{aligned}
& {\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)+l(l+1)\right] \Theta_{l}(\theta)=0,} \\
& Y_{l}^{0}(\theta, \phi)=\Theta_{l}(\theta),
\end{aligned}
$$

and
$\Theta_{l}(\theta)$ can be also expressed by

$$
\Theta_{l}(\theta)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}^{0}(\cos \theta)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\mu)
$$

where and $\mu=\cos \theta$ and $P_{l}(\mu)$ is the Legendre function. The solution for Φ of the system with axis symmetry is given by

$$
\Phi(r, \theta)=\sum_{l=0}^{\infty}\left(A_{i} r^{l}+\frac{B_{1}}{r^{l+1}}\right) P_{l}(\mu) .
$$

((Note)) Rodrigues' formula
The Legendre polynominals $P_{l}(x)$ are defined by the formula

$$
P_{l}(x)=\frac{1}{2^{l}!!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}
$$

where l is an integer (Rodrigues' formula).
$P_{l}(x)$ satisfy the Legendre's differential equation.

$$
\begin{aligned}
\left(1-x^{2}\right) P_{l}^{\prime \prime}(x)-2 x P_{l}^{\prime}(x)+l(l+1) P_{l}(x) & =0 \\
& (|x| \leq 1)
\end{aligned}
$$

22.4 Example

A hollow copper sphere of radius a is divided into two halves at the equator by a thin insulating strip. The top half of the sphere is held at potential V, and the bottom is grounded, what is the potential inside?

We need to set all the coefficients B_{l} to zero. Otherwise, the potential becomes divergent at $r \rightarrow 0$.

$$
\Phi(r, \theta)=\sum_{l=0}^{\infty} A_{l} a^{l} P_{l}(\mu)
$$

When $r=a$,

$$
\Phi(a, \theta)=\sum_{l=0}^{\infty} A_{l} a^{l} P_{l}(\mu)=V \text { for } 0<\mu \leq 1, \text { and } 0 \text { for }-1 \leq \mu<0 .
$$

We note that

$$
\int_{-1}^{1} P_{l}(\mu) P_{l^{\prime}}(\mu) d \mu=\frac{2}{2 l+1} \delta_{l, l^{\prime}} . \text { (orthogonality) }
$$

Then we have

$$
\begin{aligned}
\int_{-1}^{1} \Phi(a, \theta) P_{l}(\mu) d \mu & =\sum_{l^{\prime}=0}^{\infty} A_{l} a^{l^{\prime}} \int_{-1}^{1} P_{l^{\prime}}(\mu) P_{l}(\mu) d \mu \\
& =\sum_{l^{\prime}=0}^{\infty} A_{l^{\prime}} a^{l^{\prime}} \frac{2}{2 l+1} \delta_{l^{\prime}, l} \\
& =A_{l} a^{l} \frac{2}{2 l+1}
\end{aligned}
$$

or

$$
A_{l}=\frac{2 l+1}{2 a^{l}} \int_{-1}^{1} \Phi(a, \theta) P_{l}\left(\mu^{\prime}\right) d \mu^{\prime}=\frac{2 l+1}{2 a^{l}} V \int_{0}^{1} P_{l}\left(\mu^{\prime}\right) d \mu^{\prime}
$$

Then we have

$$
\Phi(r, \theta)=\sum_{l=0}^{\infty}\left(\frac{2 l+1}{2}\right) \frac{r^{l}}{a^{l}} V P_{l}(\mu) \int_{0}^{1} P_{l}\left(\mu^{\prime}\right) d \mu^{\prime}
$$

((Mathematica)) The form of $\Phi(r, \theta)$

$$
\begin{aligned}
& \left(\frac{\vee}{2}+\frac{3 r \vee \cos [\theta]}{4 a}-\frac{7 r^{3} \vee\left(-3 \cos [\theta]+5 \cos [\theta]^{3}\right)}{32 a^{3}}+\right. \\
& \frac{11 r^{5} \vee\left(15 \cos [\theta]-70 \cos [\theta]^{3}+63 \cos [\theta]^{5}\right)}{256 a^{5}}-
\end{aligned}
$$

$$
\frac{75 r^{7} v\left(-35 \operatorname{Cos}[\theta]+315 \operatorname{Cos}[\theta]^{3}-693 \operatorname{Cos}[\theta]^{5}+429 \operatorname{Cos}[\theta]^{7}\right)}{4096 a^{7}}+
$$

$$
\frac{1}{65536 a^{9}} 133 r^{9} \mathrm{~V}\left(315 \operatorname{Cos}[\theta]-4620 \operatorname{Cos}[\theta]^{3}+\right.
$$

$$
\left.\left.18018 \operatorname{Cos}[\theta]^{5}-25740 \operatorname{Cos}[\theta]^{7}+12155 \operatorname{Cos}[\theta]^{9}\right)\right)
$$

Fig. $\quad V=1 . a=1$. The distribution of potential $\Phi(r, \theta)$ in the $z-x$ plane. The electric field $(E=-\nabla \Phi)$ line is perpendicular to the $\Phi(r, \theta)=$ constant line.

22.5 Mathematica

LegendreP[n,x]: gives the Legendre polynomial $P_{\mathrm{n}}(\mathrm{x})$.
Legendre $\mathrm{Q}[\mathrm{n}, \mathrm{x}] \quad$ gives the Legendre function of the second kind $Q_{\mathrm{n}}(\mathrm{z})$. gives the Legendre function of the second kind $\mathrm{Q}_{\mathrm{n}}(\mathrm{z})$.

Fig. Legendre polynomial $P_{\mathrm{n}}(x)$ with $\mathrm{n}=0,1,2,3,4,5$, and 6 .

Fig. Legendre function of the second kind $Q_{\mathrm{n}}(x)$ with $\mathrm{n}=0,1,2,3,4,5$, and 6 .

22.6 Generating function

We introduce a generating function

$$
g(t, x)=\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

for $|t|<1$.
(i) Recurrence relations

If the generating function is differentiated with respect to t, we obtain

$$
\frac{\partial g(t, x)}{\partial t}=\frac{x-t}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty} n P_{n}(x) t^{n-1},
$$

or

$$
\left(1-2 x t+t^{2}\right) \sum_{n=0}^{\infty} n P_{n}(x) t^{n-1}+(t-x) \sum_{n=0}^{\infty} P_{n}(x) t^{n}=0 .
$$

From this equation we find

$$
\begin{equation*}
(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x) \tag{1}
\end{equation*}
$$

If we take $n=1$,

$$
3 x P_{1}(x)=2 P_{2}(x)+P_{0}(x)
$$

or

$$
P_{2}(x)=\frac{3}{2} x P_{1}(x)-\frac{1}{2} P_{0}(x)
$$

Since $P_{0}(x)=1$ and $P_{1}(x)=x$, we have $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

(ii) Differential equation

$$
\frac{\partial g(t, x)}{\partial x}=\frac{t}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty} P_{n}^{\prime}(x) t^{n}
$$

or

$$
\left(1-2 x t+t^{2}\right) \sum_{n=0}^{\infty} P_{n}^{\prime}(x) t^{n}=t \sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

The co-efficient of each power of t is set equal to zero and we obtain

$$
\begin{equation*}
P_{n+1}{ }^{\prime}(x)+P_{n-1} \prime(x)=2 x P_{n}^{\prime}(x)+P_{n}(x) \tag{2}
\end{equation*}
$$

By differentiating Eq.(1) with respect to x, and using Eq.(2),

$$
\begin{aligned}
(2 n+1)\left[P_{n}(x)+x P_{n}^{\prime}(x)\right] & =(n+1) P_{n+1}^{\prime}(x)+n P_{n-1} '^{\prime}(x) \\
& =P_{n+1} 1^{\prime}(x)+n\left[P_{n+1}^{\prime}(x)+P_{n-1}^{\prime}(x)\right] \\
& =P_{n+1}^{\prime}(x)+n\left[2 x P_{n}^{\prime}(x)+P_{n}(x)\right]
\end{aligned}
$$

or

$$
\begin{equation*}
P_{n+1}{ }^{\prime}(x)=(n+1) P_{n}(x)+x P_{n}^{\prime}(x) \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{align*}
& P_{n+1}^{\prime}(x)=-n P_{n}(x)+x P_{n}^{\prime}(x) \tag{3'}\\
& \left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)=0 \\
& \left(1-x^{2}\right) P_{n}^{\prime}(x)=(n+1) x P_{n}(x)-(n+1) P_{n+1}(x)=0
\end{align*}
$$

From these relations, we have the differential equation.

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0
$$

22.7 Addition theorem

$$
g(t, x)=\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \quad \text { for }|t|<1
$$

In physics, this equation often appears in the vector form

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}{ }^{l+1}} P_{l}(\cos \theta)=\frac{1}{r>} \sum_{l=0}^{\infty} \frac{r_{<}{ }^{l}}{r_{>}^{l}} P_{l}(\cos \theta)
$$

Note

$$
\left|\mathbf{r}-\mathbf{r}^{\prime}\right|=\sqrt{r^{2}-2 r r^{\prime} \cos \theta+r^{\prime 2}}
$$

(i)

$$
\begin{aligned}
& r_{>}=r \\
& r_{<}=r^{\prime} \quad \text { for } r>r^{\prime} \\
& \left|\mathbf{r}-\mathbf{r}^{\prime}\right|=r\left(1-2 \frac{r^{\prime}}{r} \cos \theta+\frac{r^{\prime 2}}{r^{2}}\right)^{1 / 2} \\
& \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r} \frac{1}{\sqrt{1-2 \frac{r^{\prime}}{r} \cos \theta+\frac{r^{\prime 2}}{r^{2}}}}=\frac{1}{r} \sum_{l=0}^{\infty} P_{l}(\cos \theta)\left(\frac{r^{\prime}}{r}\right)^{l}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& r_{>}=r^{\prime} \\
& r_{<}=r, \quad \text { for } r<r^{\prime} \\
& \left|\mathbf{r}-\mathbf{r}^{\prime}\right|=r^{\prime}\left(1-2 \frac{r}{r^{\prime}} \cos \theta+\frac{r^{2}}{r^{\prime 2}}\right)^{1 / 2}
\end{aligned}
$$

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r^{\prime}} \frac{1}{\sqrt{1-2 \frac{r}{r^{\prime}} \cos \theta+\frac{r^{2}}{r^{\prime 2}}}}=\frac{1}{r^{\prime}} \sum_{l=0}^{\infty} P_{l}(\cos \theta)\left(\frac{r}{r^{\prime}}\right)^{l}
$$

APPENDIX

1. $\int_{-1}^{1} d \mu P_{l}(\mu) P_{l^{\prime}}(\mu)=\delta_{l, l^{\prime}} \frac{2}{2 l+1}$
2.

$$
\int_{-1}^{1} \mu d \mu P_{l}(\mu) P_{l}(\mu)=\frac{2(l+1)}{(2 l+1)(2 l+3)} \delta_{l ; l+1}+\frac{2 l}{(2 l-1)(2 l+1)} \delta_{l ;, l-1}
$$

(Jackson, p.100)

