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22.1 Laplace’s equation in the spherical coordinate
We consider the solution of Laplace's equation,

VO(r)=0.

where @(r) is a scalar electric potential. The Laplacian in the spherical coordinate is
given by

1
Vie - 12,99
hr? r ar( r)
1 2, 1 o
:—— P— r
hr? rar 7 (")

where L is the angular momentum. The differential equation of the potential d(r) is
given by

18 2o

d(r)=0.

Here we assume that
o(r)y=U(r)Y,"(6,¢).

(separation variable). Then we have

We use the relation



L2Y,"(0,6) = 5*1(1 + 1)Y," (0, 4).

Thus we get
1 &2 I(1+1
——[ru(r)]- ( > )U(r):O.
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The solution of U(r) is given by
U(r)=Ar'+Br ",

where A and B are constants. Then the general solution is expressed by

o |

O(r,0,¢) =Y D [Aur +B,r I "(0.9).

1=0 m=-1

((Mathematica))

1 1 (1+1)
eql =-D[rU[r], {r, 2}] - —— U[r] =0;
r r?

DSolve[eql, U[r], r] // Simplify[#, 1 >0] &//
Expand

[{urr > ey« ritterzr}}

22.2  Spherical harmonics

(nfl,m) =(6,4[1,m) =Y,"(0,9)
L,[1,m) = mz|l,m),
or
. . _
(n|L[1,m) =—in §¢<n l,m) =ma(n|l,m),
In)=|6,9).

The closure relation
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where
dQ =sindédg.

The fand ¢ dependence of {n

I, m> is given by
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(n|L,[Im) = i §¢Y| (0,4) = hmY,"(0,4). (2)

Equation (2) shows that
Y"(0,6)= O/ (6, p)e™.

We must require that the eigenfunctions be single valued
img im(¢+27)

e =€

which means that m =0, £1, £2, (integers). Equation (1) can be rewritten as
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The orhogonality relation <|', m'

I,m> =¢,,0. . leads to

LI'Ym,m'

1O = IdQ{I',m'|n><n

|, m) = [[sin A4, (0.4)%"(0.9) .
To obtain the form ofY"|(8,¢4), we may start with m = I.

L,

ILm=1)=0,

or

(n|L,

O ) e
l,m=1)=—ine (|§0 cot9§¢)<n Lm=1)=0,



Since <n

Lm=1)=Y,'(0,4)=0|(0)e",
(i—lcote)@)'(e)—o
do "

or
Y'(6,4) = Ce"sin' 0,

where C, is a normalization constant.
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The result for m>0 is

Y\"(0.9) =

D" [2l+1) (+m)! img .1 dr —(sin8)”,
2'10Y 4z (I-m)! sin" 6 d(cosd) "

and we define Y, " (6, #) by
Y "(0,9) = (-D"Y"(0.9]
or

" (@.9)1 = (=D"Y, "(0.9).

22.3  Legendre polynomial
We consider the special case when m = 0 (the system has axis symmetry). This means

that potential ®(r) is independent of ¢,
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. d
(sin0— ) +1(1+1]0, (6) =0,

Y, "(0.4)=0,(0),
and

®,(0) can be also expressed by



0,(0) = 5 cost) = |2 R

where and ¢ =cos@ and P,(u) is the Legendre function. The solution for @ of the
system with axis symmetry is given by

O(r,0)= Y (Ar' + R (4).

((Note)) Rodrigues' formula

The Legendre polynominals B (X) are defined by the formula

am=%ﬁ%W—w

where | is an integer (Rodrigues' formula).

P (x) satisfy the Legendre’s differential equation.
(1=x*)P"(X)=2xP'(X) +I(1 + DP(x) =0
(Jx<1)

22.4 Example

A hollow copper sphere of radius a is divided into two halves at the equator by a thin
insulating strip. The top half of the sphere is held at potential V, and the bottom is
grounded, what is the potential inside?



We need to set all the coefficients B to zero. Otherwise, the potential becomes
divergent at r — 0.

D(r,0) =D Aa'R(u),
1=0
When r = a,
®(a,60) =) Aa'P(u)=V for 0<x<1, and 0 for -1<u<0.
1=0

We note that

1

2 )
[P ()P (w)du=="=5,,.. (orthogonality)
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Then we have



[ (@0, (u)du = i%\-a" JRG0P
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1'=0
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or

21 +1

21+
A = |@@OP (il —2—v Pyu

Then we have

OEE “j—VP(u)j P4

((Mathematica)) The form of ®(r,8)

V. 3rVCos[o] 7r3V(—3C05[@] +5Cos[9]3>
_+ pa—
2 4a 32a’

+

11 r°V (15Cos[e] - 70 Cos ]2 + 63 Cos[6]°)
256 a°
75r’V (-35Cos[6] + 315 Cos[6]> - 693 Cos[6]° + 429 Cos[o] ')
4096 a’

+

1

——~ 133 r’V (315 Cos[6] - 4620 Cos[6]° +
65536 a’

18018 Cos[6]° - 25740 Cos[0]’ + 12155 Cos[0]?)
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Fig. 'V = 1. a= 1. The distribution of potential ®(r,f) in the z-X plane. The electric
field (E = -V @) line is perpendicular to the ®d(r,d)= constant line.

22.5 Mathematica
LegendreP[n,x]: gives the Legendre polynomial P (x).

LegendreQ[n,x] gives the Legendre function of the second kind Q,(z). gives the
Legendre function of the second kind Q,(z).
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Fig.  Legendre polynomial P,(x) withn=0, 1, 2, 3,4, 5, and 6.
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Fig.  Legendre function of the second kind Q,(X) withn=0, 1, 2, 3, 4, 5, and 6.

22.6  Generating function
We introduce a generating function

g(t,x) = P (x)t",
% Z
for |t|<I.

() Recurrence relations
If the generating function is differentiated with respect to t, we obtain

og(t,x) _ S n-1
E nP,(x)t" ",
ot (- 2xt+t B R ()

or
(1-2xt+t)> " nP,O0t"" +(t—x)D_P,(0t" =0.
n=0 n=0

From this equation we find
(2n+DxPF,(X) = (n+ P, (x)+nB_,(X) (D

If we taken=1,



3xR (X) = 2P, (x) + Ry (x)

or

P,(X) = xP(x) P H(X)

Since P,(X) =1 and P,(X) = X, we have P,(X) = %(3X2 -1)

(i) Differential equation

ag(t,x) _
P'(x)t"
x (- 2xt+t 2y Z; )

or
(1-2xt+t%)> P'(0)t" =tD_P,(0t"
n=0 n=0

The co-efficient of each power of t is set equal to zero and we obtain
P.,'(X)+P,_,"(X)=2xP,'(x) + P,(X)
By differentiating Eq.(1) with respect to X, and using Eq.(2),

(2n+D[R,(X) + xB,'(x)] = (n+ DR,.,'(X) + nk,_,'(X)

P 00 +n[R,' 00+ R (X)]
=P,,,"(X)+ N[2xP,"(X) + P,(X)]

n+l
or

'(X)=(n+1)P,(X)+ xP,"(x)

nH
Similarly, we have

P..'(X) =-nP,(X)+ XxP,"(X)
(1-x*)P,"(X)=nP,_,(X) —nxP,(x) =0

(l—x)P X)=(n+DHxP,(X)—(n+DHP,,,(x)=0

n+1

2)

€)

(37



From these relations, we have the differential equation.
(1—Xx*)P."(X) = 2XP.,"(x) +n(n+ 1P, (x) =0

22.7 Addition theorem

for [t|<1

g(t,x) = Ji ZP(x)t

In physics, this equation often appears in the vector form

o ! 1 &
= =P (cosl)=— B (cosd
Ir— rl =T (cos0) r>§r> (cos6)

Note
Ir=r'l=/r2=2rr'cos 0 +r">
(1)
r =
, for r>r'
rr=r'
r' r'?
Ir-r'l=r(l-2—cos@+—)"
r r
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r=r
, for r<r'
r.=r
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