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22.1 Laplace's equation in the spherical coordinate 

We consider the solution of Laplace's equation, 
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where )(r  is a scalar electric potential. The Laplacian in the spherical coordinate is 
given by 
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where L is the angular momentum. The differential equation of the potential )(r  is 
given by 
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Here we assume that 
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(separation variable). Then we have 
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We use the relation 
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Thus we get 
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The solution of U(r) is given by 
 

)1()(  ll BrArrU . 
 
where A and B are constants. Then the general solution is expressed by 
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((Mathematica)) 
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22.2 Spherical harmonics 
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The closure relation 
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where 
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The  and  dependence of ml,n  is given by 
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Equation (2) shows that 
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We must require that the eigenfunctions be single valued 
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which means that m = 0, ±1, ±2,    (integers). Equation (1) can be rewritten as 
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The orhogonality relation ',',,',' mmllmlml  leads to 
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To obtain the form ofY l

m(, ), we may start with m = l. 
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where Cl  is a normalization constant. 
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The result for m≥0 is 
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and we define Yl

m(,) by 
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22.3 Legendre polynomial 

We consider the special case when m = 0 (the system has axis symmetry). This means 
that potential )(r  is independent of , 
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)(l  can be also expressed by 
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where and  cos  and )(lP  is the Legendre function. The solution for  of the 

system with axis symmetry is given by 
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((Note)) Rodrigues' formula 
 

The Legendre polynominals )(xPl  are defined by the formula 
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where l is an integer (Rodrigues' formula). 
 

)(xPl  satisfy the Legendre’s differential equation. 
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22.4 Example 

A hollow copper sphere of radius a is divided into two halves at the equator by a thin 
insulating strip. The top half of the sphere is held at potential V, and the bottom is 
grounded, what is the potential inside? 

 



 
 

We need to set all the coefficients Bl to zero. Otherwise, the potential becomes 
divergent at r → 0.  
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When r = a, 
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We note that 
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Then we have 
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Then we have 
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((Mathematica)) The form of ),( r  
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Fig. V = 1. a = 1. The distribution of potential ),( r  in the z-x plane. The electric 

field (E = -) line is perpendicular to the ),( r = constant line. 
 
22.5 Mathematica 
 
LegendreP[n,x]: gives the Legendre polynomial Pn(x). 
LegendreQ[n,x] gives the Legendre function of the second kind Qn(z). gives the 

Legendre function of the second kind Qn(z). 
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Fig. Legendre polynomial Pn(x) with n = 0, 1, 2, 3, 4, 5, and 6. 
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Fig. Legendre function of the second kind Qn(x) with n = 0, 1, 2, 3, 4, 5, and 6. 
 
22.6 Generating function 

We introduce a generating function 
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for |t|<1. 
 
(i) Recurrence relations 

If the generating function is differentiated with respect to t, we obtain 
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From this equation we find 
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If we take n = 1, 



 
)()(2)(3 021 xPxPxxP   

 
or 
 

)(
2

1
)(

2

3
)( 012 xPxxPxP   

 

Since 1)(0 xP  and xxP )(1 , we have )13(
2

1
)( 2

2  xxP  

 
(ii) Differential equation 
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The co-efficient of each power of t is set equal to zero and we obtain 
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By differentiating Eq.(1) with respect to x, and using Eq.(2), 
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Similarly, we have 
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From these relations, we have the differential equation. 
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22.7 Addition theorem 
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In physics, this equation often appears in the vector form 
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(ii) 
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APPENDIX 
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(Jackson, p.100) 


