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23.1 Formulation
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img im(¢+2 1)

e =€

which means that m =0, =1, £2, (integers). Equation (1) can be rewritten as

2

.1 i(sin(9i)— —
sind d@ d@” sin“ @

+1(1+ 110" (@) =0

The orhogonality relation <|', m'

I, m> = 0,10 leads to



81 O = de{I', m'|n)(n

1,m) = [[sin Gy, (6.4)Y," (0. ¢)

To obtain the form ofY"|(8,¢), we may start with m = I.

L|Lm=1)=0
or
(n|C.Jtl,m = |>=—ihei¢(i%—cot9§¢)<n LLm=1)=0
Since (n|l,m=1)=Y/'(0,¢) = ©,(0)e"
(i ~lcot£)®,(6) = 0
dé
or

Y'(6,4) = Ce"sin' 0

where C, is a normalization constant.

c _(=D"[@r+Dne!
TR Y

The result for m>0 is

Y. o)) \/(2I+l)(l+m)!nim¢ 1 ™" oy

2N\ 4z (1-m) sin™ O d(cos®) "
and we define Y, " (6, #) by

Y "(0,0) = (D)"Y @.9]

or
[Y,"(0.4)] =(=D"Y,"(0.9)

23.2  Dirac delta function
The Dirac delta function can be described by
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where we use the addition theorem (see Chapter 19)
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In summary, the Dirac delta function is expressed by

This formula will be useful in the theory of scattering from a spherical potential.
23.3 Associate Legendre function

Y,"(6,¢) can be also expressed by
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where P"(cos@) is the associated Legendre function.
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23.4 Parity

for m>0.
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Here we suppose that
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((Mathematica))

Using recurrence relation for spherical harmonics, we get spherical harmonics

Clear["Global " *"];

1
OG[7_, m_] == Exp[-1 ¢] (-D[#, 6] +1 Cot[e] D[#, ¢]) &;

V(Z7+m) (7/-m+1)

H[# , m_, 6, #1 = 0G[7, m + 1][H[7, m+ 1, &, 4]1];

H[1, 1, e, ¢] = SphericalHarmonicY[1l, 1, 6, ¢];

|=l, m=1,0, -1

Table[ {1, m, H[1, m, 6, ¢], SphericalHarmonicY[1l, m, 6, ¢] },
{m, 1, -1, -1}1 /7 Simplify // TableForm
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23.6  Useful formula (summary)
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2. Orthogonality
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23.7  SphericalPlot3D of |v,"(6,¢)|
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23.8 Spherical harmonics in the Cartesian coordinate
Using the relation given by

X=rsinfdcosg, y=rsindsing, Z=rcosé,

the spherical harmonics can be expressed as follows,
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23.9 Example-1
((Sakurai 3-15)) The wave function of a particle subjected to a spherically symmetrical
potential V(r) is given by

p(r)=x+y+2)f(r)

(a) Is y(r)an eigenfunction of L2? If so, what is the I-value? If not, what are the

possible values of | we may obtain when L2 is measured?
(b) What are the probabilities for the particle to be found in various m states?
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which is independent of m.

23.9 Example-2
A particle moving in a potential is described by the wave packet

w(r)=(xy+yz+zx)exp[-a’ (x> + y* + 2°)]

What is the probability that a measurement of L2 and L, yields the results 642 and #,
respectively?

((Solution))
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Thus the wave function can be rewritten as
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The probability that a measurement of L2 and L, yields the results 672 and 7, respectively
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APPENDIX
Al Mathematica
1. Legendre polynomial: LegendreP[n,x]
2. Associated Ledendre polynomial: LegendreP[n,m,x]

Note that the associated Legendre polynomials are defined by

P"(X)=(=D)"(1-x*)""? (? —R(x) for m>0.
X
in the Mathematica.
3. Spherical Harmonics: SphericalHarmonicY[1,m, 8, ]

Note that the spherical harmonics is defined by

—m)! .
21+1(l m)'e'mplm(cosﬁ)
4z (I +m)!

Ylm(H’ ¢) =

in the Mathematica.

4. SphericalPlot3DIr, 6, ¢
to generates a 3D plot with a spherical radius r as a function of spherical
coordinates #and ¢.

A.2  Addition theorem for spherical harmonics



We consider the two coordinate systems, Xyz, and X'y'z'. The position vectors has angular
coordinates 6, ¢, and ¢ and ¢ in the two coordinate systems.
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Under the rotation, an eigenket
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We consider in a particular point on the new Z' axis,
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The direction of 7' axis in space is specified by its polar angle £ and its azimuth « with
respect to the unprimed system.
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We finally obtain the additional theorem for spherical harmonics,
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