Chapter 25

Translation operator
Masatsugu Sei Suzuki
Department of Physics, SUNY at Bimghamton
(Date: November 22, 2010)

25.1 Definition of the translation operator

Here we discuss the transportation operator
$\hat{T}(a)$: translation operator (unitary operator)

$$
\left|\psi^{\prime}\right\rangle=\hat{T}(a)|\psi\rangle
$$

or

$$
\left\langle\psi^{\prime}\right|=\left\langle\psi^{\prime}\right| \hat{T}^{+}(a) .
$$

(i) Analogy from classical mechanics for \boldsymbol{x}

The average value of \hat{x} in the new state $\left|\psi^{\prime}\right\rangle$ is equal to the average value of \hat{x} in the new state $|\psi\rangle$ plus the x-displacement a.

$$
\left\langle\psi^{\prime}\right| \hat{x}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{x}+a|\psi\rangle
$$

or

$$
\langle\psi| \hat{T}^{+}(a) \hat{x} \hat{T}(a)|\psi\rangle=\langle\psi| \hat{x}+a|\psi\rangle
$$

or

$$
\begin{equation*}
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=\hat{x}+a \hat{1}, \tag{1}
\end{equation*}
$$

Normalization condition:

$$
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| \hat{T}^{+}(a) \hat{T}(a)|\psi\rangle=\langle\psi \mid \psi\rangle
$$

or

$$
\begin{equation*}
\hat{T}^{+}(a) \hat{T}(a)=\hat{1} \tag{2}
\end{equation*}
$$

((Unitary operator))

From Eqs.(1) and (2), we have

$$
\hat{x} \hat{T}(a)=\hat{T}(a)(\hat{x}+a)=\hat{T}(a) \hat{x}+a \hat{T}(a)
$$

((Commutation relation))

$$
\begin{aligned}
& {[\hat{x}, \hat{T}(a)]=a \hat{T}(a),} \\
& \hat{x} \hat{T}(a)|x\rangle=\hat{T}(a) \hat{x}|x\rangle+a \hat{T}(a)|x\rangle=(x+a) \hat{T}(a)|x\rangle .
\end{aligned}
$$

Thus $\hat{T}(a)|x\rangle$ is the eigenket of \hat{x} with the eigenvalue $(x+a)$.
or

$$
\begin{aligned}
& \hat{T}(a)|x\rangle=|x+a\rangle \\
& \hat{T}^{+}(a) \hat{T}(a)|x\rangle=\hat{T}^{+}(a)|x+a\rangle=|x\rangle
\end{aligned}
$$

When x is replaced by $x-a$

$$
|x-a\rangle=\hat{T}^{+}(a)|x\rangle
$$

or

$$
\langle x-a|=\langle x| \hat{T}(a) .
$$

Note that

$$
\left\langle x \mid \psi^{\prime}\right\rangle=\langle x| \hat{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle=\psi(x-a) .
$$

(ii) Analogy from the classical mechanics for \boldsymbol{p}

The average value of \hat{p} in the new state $\left|\psi^{\prime}\right\rangle$ is equal to the average value of \hat{p} in the new state $|\psi\rangle$.

$$
\left\langle\psi^{\prime}\right| \hat{p}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{p}|\psi\rangle,
$$

or

$$
\langle\psi| \hat{T}^{+}(a) \hat{p} \hat{T}(a)|\psi\rangle=\langle\psi| \hat{p}|\psi\rangle
$$

$$
\hat{T}^{+}(a) \hat{p} \hat{T}(a)=\hat{p}
$$

So we have the commutation relation

$$
[\hat{T}(a), \hat{p}]=0 .
$$

From the above commutation relation, we have

$$
\hat{p} \hat{T}(a)|p\rangle=\hat{T}(a) \hat{p}|p\rangle=p \hat{T}(a)|p\rangle .
$$

Thus $\hat{T}(a)|p\rangle$ is the eigenket of \hat{p} associated with the eigenvalue p.

25.2 Infinitesimal translation operator

We now define the infinitesimal translation operator by

$$
\hat{T}(d x)=\hat{1}-\frac{i}{\hbar} \hat{G} d x
$$

where \hat{G} is called a generator of translation. The dimension of \hat{G} is that of the linear momentum.

The operator $\hat{T}(d x)$ satisfies the relations:

$$
\begin{align*}
& \hat{T}^{+}(d x) \hat{T}(d x)=\hat{1} \tag{1}\\
& \hat{T}^{+}(d x) \hat{x} \hat{T}(d x)=\hat{x}+d x
\end{align*}
$$

or

$$
\begin{equation*}
\hat{x} \hat{T}(d x)-\hat{T}(d x) \hat{x}=d x \hat{T}(d x) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
[\hat{T}(d x), \hat{p}]=0 \tag{3}
\end{equation*}
$$

Using the relation (1), we get

$$
\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)^{+}\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)=\hat{1},
$$

or

$$
\left(\hat{1}+\frac{i}{\hbar} \hat{G}^{+} d x\right)\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)=\hat{1}+\frac{i}{\hbar}\left(\hat{G}^{+}-\hat{G}\right) d x+O\left[(d x)^{2}\right]=\hat{1},
$$

or

$$
\hat{G}^{+}=\hat{G} .
$$

The operator \hat{G} is a Hermitian operator. Using the relation (2), we get

$$
\hat{x}\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)-\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right) \hat{x}=d x\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)=d x \hat{1}+O(d x)^{2}
$$

or

$$
-\frac{i}{\hbar}[\hat{x}, \hat{G}] d x=d x \hat{1}
$$

or

$$
[\hat{x}, \hat{G}]=i \hbar \hat{1} .
$$

Using the relation (3), we get

$$
\left[\hat{1}-\frac{i}{\hbar} \hat{G} d x, \hat{p}\right]=0
$$

Then we have

$$
[\hat{G}, \hat{p}]=0
$$

From these two commutation relations, we conclude that

$$
\hat{G}=\hat{p} .
$$

and

$$
\hat{T}(d x)=\hat{1}-\frac{i}{\hbar} \hat{p} d x
$$

We see that the position operator and the momentum operator \hat{p} obeys the commutation relation

$$
[\hat{x}, \hat{p}]=i \hbar \hat{1} .
$$

which leads to the Heisenberg's principle of uncertainty.

25.3 Momentum operator \hat{p} in the position basis.

$$
\begin{aligned}
\hat{T}(\delta x)|\psi\rangle & =\widehat{T}(\delta x) \int d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle=\int d x^{\prime}\left|x^{\prime}+\delta x\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\int d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime}-\delta x \mid \psi\right\rangle=\int d x^{\prime}\left|x^{\prime}\right\rangle \psi\left(x^{\prime}-\delta x\right)
\end{aligned}
$$

We apply the Taylor expansion:

$$
\psi\left(x^{\prime}-\delta x\right)=\psi\left(x^{\prime}\right)-\delta x \frac{\partial}{\partial x^{\prime}} \psi\left(x^{\prime}\right)
$$

Substitution:

$$
\begin{aligned}
\hat{T}(\delta x)|\psi\rangle & =\int d x^{\prime}\left|x^{\prime}\right\rangle \psi\left(x^{\prime}-\delta x\right) \\
& =\int d x^{\prime}\left|x^{\prime}\right\rangle\left[\psi\left(x^{\prime}\right)-\delta x \frac{\partial}{\partial x^{\prime}} \psi\left(x^{\prime}\right)\right] \\
& =\int d x^{\prime}\left|x^{\prime}\right\rangle\left[\left\langle x^{\prime} \mid \psi\right\rangle-\delta x \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle\right] \\
& =|\psi\rangle-\delta x \int d x^{\prime}\left|x^{\prime}\right\rangle \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\left(\hat{1}-\frac{i}{\hbar} \hat{p} \delta x\right)|\psi\rangle
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\hat{p}|\psi\rangle= & \frac{\hbar}{i} \int d x^{\prime}\left|x^{\prime}\right\rangle \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle \\
\langle x| \hat{p}|\psi\rangle & =\frac{\hbar}{i} \int d x^{\prime}\left\langle x \mid x^{\prime}\right\rangle \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\frac{\hbar}{i} \int d x^{\prime} \delta\left(x-x^{\prime}\right) \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle
\end{aligned}
$$

We obtain a very important formula

$$
\langle x| \hat{p}|\psi\rangle=\frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle
$$

$$
\begin{aligned}
\langle\psi| \hat{p}|\psi\rangle & =\int d x\langle\psi \mid x\rangle \frac{\hbar}{i}\langle x| \hat{p}|\psi\rangle \\
& =\int d x\langle\psi \mid x\rangle \frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle \\
& =\frac{\hbar}{i} \int d x\langle x \mid \psi\rangle^{*} \frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle
\end{aligned}
$$

These results suggest that in position space the momentum operator takes the form

$$
\hat{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x}
$$

25.4 The finite translation operator

What is the operator $\hat{T}(a)$ corresponding to a finite translation a ? We find it by the following procedure. We divide the interval into N parts of size $\mathrm{d} x=a / N$. As $N \rightarrow \infty, a / N$ becomes infinitesimal.

$$
\widehat{T}(d x)=\hat{1}-\frac{i}{\hbar} \hat{p}\left(\frac{a}{N}\right) .
$$

Since a translation by a equals N translations by a / N, we have

$$
\begin{aligned}
& \hat{T}(a)=\operatorname{Lim}_{N \rightarrow \infty}\left[\hat{1}-\frac{i}{\hbar} \hat{p}\left(\frac{a}{N}\right)\right]^{N}=\exp \left(-\frac{i}{\hbar} \hat{p} a\right) \\
& \underbrace{}_{0}
\end{aligned}
$$

Here we use the formula

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left(1+\frac{1}{N}\right)^{N}=e, \quad \lim _{N \rightarrow \infty}\left(1-\frac{1}{N}\right)^{N}=e^{-1} \\
& \lim _{N \rightarrow \infty}\left[\left(1-\frac{a x}{N}\right)^{\frac{N}{a x}}\right]^{a x}=\lim _{N \rightarrow \infty}\left(1-\frac{a x}{N}\right)^{N}=\left(e^{-1}\right)^{a x}=e^{-a x}
\end{aligned}
$$

In summary, we have

$$
\hat{T}(a)=\exp \left(-\frac{i}{\hbar} \hat{p} a\right)
$$

25.5 Discussion

It is interesting to calculate

$$
\hat{T}^{+}(a) \hat{X} \hat{T}(a)=e^{\frac{i}{\hbar} \hat{p} a} \hat{x} e^{-\frac{i}{\hbar} \hat{p} a}
$$

by using the Baker-Hausdorff theorem:

$$
\exp (\hat{A} x) \hat{B} \exp (-\hat{A} x)=\hat{B}+\frac{x}{1!}[\hat{A}, \hat{B}]+\frac{x^{2}}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\frac{x^{3}}{3!}[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]+\ldots
$$

When $x=1$, we have

$$
\exp (\hat{A}) \hat{B} \exp (-\hat{A})=\hat{B}+\frac{1}{1!}[\hat{A}, \hat{B}]+\frac{1}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\frac{1}{3!}[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]+\ldots
$$

Then we have

$$
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=e^{\frac{i}{\hbar} \hat{p} a} \hat{x} e^{-\frac{i}{\hbar} \hat{p} a}=\hat{x}+\left[\frac{i}{\hbar} \hat{p} a, \hat{x}\right]=\hat{x}+\frac{i}{\hbar} a[\hat{p}, \hat{x}]=\hat{x}+\frac{i}{\hbar} a \frac{\hbar}{i}=\hat{x}+a \hat{1} .
$$

So we confirmed that the relation

$$
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=\hat{x}+a \hat{1},
$$

holds for any finite translation operator.

25.6 Invariance of Hamiltonian under the translation

Now we consider the condition for the invariance of Hamiltonian \hat{H} under the translation.

The average value of \hat{H} in the new state $\left|\psi^{\prime}\right\rangle$ is equal to the average value of \hat{H} in the new state $|\psi\rangle$.

$$
\left\langle\psi^{\prime}\right| \hat{H}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{H}|\psi\rangle
$$

or

$$
\hat{T}^{+}(d x) \hat{H} \hat{T}(d x)=\hat{H}, \quad \text { or } \quad \hat{H} \hat{T}(d x)=\hat{T}(d x) \hat{H}
$$

or

$$
\hat{H}\left(\hat{1}-\frac{i}{\hbar} \hat{p} d x\right)=\left(\hat{1}-\frac{i}{\hbar} \hat{p} d x\right) \hat{H}
$$

Then we have

$$
[\hat{H}, \hat{p}]=0 .
$$

