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25.1 Definition of the translation operator
Here we discuss the transportation operator

T(a): translation operator (unitary operator)
) =T@ly)

or
W= @.

Q) Analogy from classical mechanics for x
The average value of X in the new state |1//'> is equal to the average value of X in the

new state |g//> plus the x-displacement a.

(W'[&y) = (w[%+aly)

or
T @ @[y) = (w[x+aly)
or
T*(@)%T(a)=%+al, (1)
Normalization condition:
W)= @T@ly)=(vv)
or
T @T(@=1 2)

((Unitary operator))



From Egs.(1) and (2), we have
KT (a)=T(@)(X+a)=T(a)k+aT (a)
((Commutation relation))
[%T(@)]=aT(a),

KT (a)|x) =T (@)% x) +aT (a)|x) = (x+a)T (a)|).

Thus T(a)|x) is the eigenket of & with the eigenvalue (x+a).
or
T (a)|x) =|x+a)
T (@T(a)x)=T"(a)|x+a) =|x)
When X is replaced by x-a
k=)= (@)
or
(x-a|]=(x[T(a).
Note that
Xy} = (X @lw) = {x—aly) = p(x-a).

(i) Analogy from the classical mechanics for p
The average value of p in the new state |l//'> is equal to the average value of P in

the new state |1//> .

(w'|ply) =(w|blw),
or

(W @pT@|w)=(w|plv)



T (@)pT(a)=p

So we have the commutation relation

A

[T(a),p]=0.
From the above commutation relation, we have

pT(a)|p)=T(a)p|p) = pT (a)| p).

Thus 'I:(a)| p> is the eigenket of p associated with the eigenvalue p.

25.2 Infinitesimal translation operator
We now define the infinitesimal translation operator by

T (dx) :i—%édx

where G is called a generator of translation. The dimension of G is that of the linear
momentum.
The operator 'f(dx) satisfies the relations:
TH(d)T(dx) =1, (1)
T (dX)KT (dx) = K+ dx,,
or
KT (dx) =T (dx)% = dxT (dx), )

and

[T (dx), p] =0, 3)

Using the relation (1), we get
A i oa A i .
1-—Gdx)" (1-—-Gdx) =1,
( - ) ( - )

or



(i +%é*dx)(i —%édx) -1 +%(é+ ~G)dx+O[(dx)*] =1,

or

G =G.

The operator G is a Hermitian operator. Using the relation (2), we get
2(1- %de) —(1- %édx)k =dx(1- %de) = dx1 + O(dx)’

or

%[)‘(,é]dx = dxi
or
[X,G]=iAl.
Using the relation (3), we get

[1——Gdx, p]=0

Then we have
[G, p]=0

From these two commutation relations, we conclude that

A

G=9p.
and

T (dx) =1-— pdx

I
h
We see that the position operator and the momentum operator P obeys the commutation
relation

[X,p]=inl.



which leads to the Heisenberg’s principle of uncertainty.

25.3 Momentum operator f in the position basis.

T()|w) =f(§x)J'dx' X)X |y) =J.dx'|x'+5x><x'|z//>_
—J.dx N x'=|w) Idx Y (X'—6X)

We apply the Taylor expansion:
' 1 & '
y(X'=X) =y(X') - 5X§!//(X )

Substitution:
(G0l = [ (-
= [ ) - k-2 x)
= a1y} -0 S ()
= w)—axj dx'|x') §<X'|l//>
=i~ paoly)

Thus we have

=2 fax]x)-2(x|w)
:?de'<x X

h . ZEa.
:Tj.dxé(x—x)§<x|z//>
hﬁ
~

w)

We obtain a very important formula

(x{flw) =22 (xlw)

p



(v[Bly) = (%)% (x|plw)
=[x [T (xly)

=[xl 32 (xlw)

These results suggest that in position space the momentum operator takes the form

i ox
25.4  The finite translation operator
What is the operator f(a) corresponding to a finite translation a? We find it by the

following procedure. We divide the interval into N parts of size dx = a/N. As N—owo, a/N
becomes infinitesimal.

T@dx)=1-—p(—).

1o
noN

Since a translation by a equals N translations by a/N, we have

- Los day
T(a)=Lim[l ~ P(W)] = exp( - pa)

0 a

Ax=a/N

Here we use the formula
lim(l+i)N =e lim(l—i)N —e!
N N ’ N N

N
aX. ax
im[(1-=—2)*1* = lim(1-—=)" = (e )@ =™
[( N)] Nﬁw( N) €e)

N—>o

In summary, we have



T(a)= exp(—% pa).

25.5 Discussion
It is interesting to calculate

i
—pa

T+ (@)xT (@) =e" ge '
by using the Baker-Hausdorff theorem:

2

3
exp(Ax)Bexp(—Ax) = B +%[A, B]+%[A,[A, B]]+%[A,[A,[A, BI1]+...
When X = 1, we have
- N U N SN
exp(A)BeXp(—A)= B+F[A9 B]+E[A9[ :B]]+§[A9[A:[A9 B]]]+

Then we have

i
——pa

Tt (@) =e e " = K+ f)a,k]=>2+%a[p,>”<]=§<+

i

h

So we confirmed that the relation
T*(@)XT(a)=%+al,

holds for any finite translation operator.

25.6 Invariance of Hamiltonian under the translation
Now we consider the condition for the invariance of Hamiltonian H under the
translation.

The average value of H in the new state |l//'> is equal to the average value of H in the

new state |y/> .

'Ry ={w ),

T (dx)HT (dx)=H , or HT (dx) =T (dx)H ,



or

AP S .
H( - pdx) =1 - — pdx)H
( hIOX) ( 2P )

Then we have



