Chapter 26 Parity operator
 Masatsugu Sei Suzuki
 Department of Physics
 (Date: November 22, 2010)

26.1 Property of parity operator

$\hat{\pi}$: parity operator (unitary operator)

$$
\left|\psi^{\prime}\right\rangle=\hat{\pi}|\psi\rangle
$$

or

$$
\left\langle\psi^{\prime}\right|=\langle\psi| \hat{\pi}^{+}
$$

Definition: the average of \hat{x} in the new state $\left|\psi^{\prime}\right\rangle$ is opposite to that in the old state $|\psi\rangle$

$$
\left\langle\psi^{\prime}\right| \hat{x}\left|\psi^{\prime}\right\rangle=-\langle\psi| \hat{x}|\psi\rangle
$$

or

$$
\langle\psi| \hat{\pi}^{+} \hat{x} \hat{\pi}|\psi\rangle=-\langle\psi| \hat{x}|\psi\rangle
$$

or

$$
\begin{equation*}
\hat{\pi}^{+} \hat{x} \hat{\pi}=-\hat{x} \tag{1}
\end{equation*}
$$

The position vector is called a polar vector.

Normalization:

$$
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| \hat{\pi}^{+} \hat{\pi}|\psi\rangle=\langle\psi \mid \psi\rangle=1
$$

or

$$
\begin{equation*}
\hat{\pi}^{+} \hat{\pi}=\hat{1} \tag{2}
\end{equation*}
$$

Thus the parity operator is an unitary operator. From Eqs.(1) and (2),

$$
\hat{x} \hat{\pi}+\hat{\pi} \hat{x}=0
$$

or

$$
\hat{x} \hat{\pi}|x\rangle=-\hat{\pi} \hat{x}|x\rangle=-x \hat{\pi}|x\rangle
$$

Thus
$\hat{\pi}|x\rangle$ is the eigenket of \hat{x} with the eigenvalue ($-x$).
or

$$
\begin{aligned}
& \hat{\pi}|x\rangle=|-x\rangle \\
& \hat{\pi} \hat{\pi}|x\rangle=\hat{\pi}|-x\rangle=|x\rangle
\end{aligned}
$$

or

$$
\hat{\pi}^{2}=\hat{1}
$$

Since $\hat{\pi}^{+} \hat{\pi}=\hat{1}$ and $\hat{\pi}^{2}=\hat{1}$,

$$
\hat{\pi}^{+} \hat{\pi} \hat{\pi}=\hat{\pi}
$$

or

$$
\hat{\pi}^{+}=\hat{\pi}
$$

So the parity operator is a Hermite operator.

$$
\begin{aligned}
\hat{\pi}|p\rangle & =\hat{\pi} \int_{-\infty}^{\infty} d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid p\right\rangle=\int_{-\infty}^{\infty} d x^{\prime} \hat{\pi}\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid p\right\rangle=\int_{-\infty}^{\infty} d x^{\prime}\left|-x^{\prime}\right\rangle\left\langle x^{\prime} \mid p\right\rangle \\
& =\int_{-\infty}^{\infty} d x^{\prime}\left|-x^{\prime}\right\rangle \frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p x^{\prime}}{\hbar}\right)=\int_{-\infty}^{\infty} d x|x\rangle \frac{1}{\sqrt{2 \pi \hbar}} \exp \left(-\frac{i p x}{\hbar}\right)=\int_{-\infty}^{\infty} d x|x\rangle\langle x \mid-p\rangle \\
& =|-p\rangle
\end{aligned}
$$

Note that $x^{\prime}=-x$ and $\mathrm{d} x^{\prime}=-\mathrm{d} x$.

$$
\begin{aligned}
\hat{\pi}|p\rangle & =|-p\rangle \\
\hat{p}|p\rangle & =p|p\rangle \\
\hat{\pi}|p\rangle & =p \hat{\pi}|p\rangle=p|-p\rangle \\
\hat{p} \hat{\pi}|p\rangle & =\hat{p}|-p\rangle=-p|-p\rangle
\end{aligned}
$$

Thus we have

$$
\hat{\pi} \hat{p}+\hat{p} \hat{\pi}=0
$$

Thus the linear momentum is called a polar vector.

26.2 Eigenvalue problem for the parity operator

We consider the eigenvalue problem for the parity operator.

$$
\begin{aligned}
& \hat{\pi}\left|\psi_{\alpha}\right\rangle=\alpha\left|\psi_{\alpha}\right\rangle \\
& \hat{\pi}^{2}\left|\psi_{\alpha}\right\rangle=\alpha \hat{\pi}\left|\psi_{\alpha}\right\rangle=\alpha \hat{\pi}\left|\psi_{\alpha}\right\rangle=\alpha^{2}\left|\psi_{\alpha}\right\rangle=\left|\psi_{\alpha}\right\rangle
\end{aligned}
$$

Thus we have

$$
\alpha^{2}=1 \quad \text { or } \quad \alpha= \pm 1
$$

We define $\left|\psi_{+}\right\rangle$and $\left|\psi_{-}\right\rangle$such that

$$
\hat{\pi}\left|\psi_{ \pm}\right\rangle= \pm\left|\psi_{ \pm}\right\rangle
$$

Note that

$$
\hat{\pi}|x\rangle=|-x\rangle
$$

or

$$
\begin{aligned}
& \langle x| \hat{\pi}^{+}=\langle x| \hat{\pi}=\langle-x| \\
& \langle x| \hat{\pi}\left|\psi_{ \pm}\right\rangle= \pm\left\langle x \mid \psi_{ \pm}\right\rangle
\end{aligned}
$$

or

$$
\left\langle-x \mid \psi_{ \pm}\right\rangle= \pm\left\langle x \mid \psi_{ \pm}\right\rangle
$$

or

$$
\psi_{ \pm}(-x)= \pm \psi_{ \pm}(x)
$$

$\psi_{+}(x)$ is an even function with respect to $x . \psi_{-}(x)$ is an odd function with respect to x.

26.3 Commutation relation between the Hamiltonian and parity operator

$V(-\hat{x})=V(\hat{x}):$ symmetric potential

$$
\begin{aligned}
& \hat{H}=\frac{1}{2 m} \hat{p}^{2}+V(\hat{x}) \\
& \hat{\pi}^{+} V(\hat{x}) \hat{\pi}=V(-\hat{x})=V(\hat{x}) \\
& \hat{\pi}^{+} \hat{p}^{2} \hat{\pi}=(-\hat{p})^{2}=\hat{p}^{2}
\end{aligned}
$$

Thus we have

$$
\hat{\pi}^{+} \hat{H} \hat{\pi}=\hat{H}
$$

or

$$
[\hat{\pi}, \hat{H}]=0
$$

The Hamiltonian \hat{H} is invariant under parity. $\left|\psi_{\alpha}\right\rangle$ is the simultaneous eigenket of \hat{H} and $\hat{\pi}$.

$$
\hat{H}\left|\psi_{\alpha}\right\rangle=E_{\alpha}\left|\psi_{\alpha}\right\rangle
$$

and

$$
\hat{\pi}\left|\psi_{\alpha}\right\rangle=\alpha\left|\psi_{\alpha}\right\rangle
$$

with $\alpha= \pm 1$. For $\alpha=1$, symmetric state. For $\alpha=-1$, antisymmetric state.

26.4 Projection Operartor

Any function $\psi(x)$ can be expressed by an addition of even function $\psi_{+}(x)$ and odd function $\psi_{-}(x)$.

$$
\psi(x)=\psi_{+}(x)+\psi_{-}(x)
$$

with

$$
\begin{aligned}
& \psi_{+}(x)=\frac{\psi(x)+\psi(-x)}{2} \\
& \psi_{-}(x)=\frac{\psi(x)-\psi(-x)}{2}
\end{aligned}
$$

Since

$$
\hat{\pi}|x\rangle=|-x\rangle
$$

or

$$
\begin{aligned}
& \langle x| \hat{\pi}^{+}=\langle x| \hat{\pi}=\langle-x| \\
& \hat{\pi}|x\rangle=|-x\rangle \\
& \psi_{+}(x)=\frac{\psi(x)+\psi(-x)}{2}
\end{aligned}
$$

or

$$
\begin{aligned}
\left\langle x \mid \psi_{+}\right\rangle & =\frac{1}{2}[\langle x \mid \psi\rangle+\langle-x \mid \psi\rangle] \\
& =\frac{1}{2}\left[\langle x \mid \psi\rangle+\langle x| \hat{\pi}^{+}|\psi\rangle\right] \\
& =\frac{1}{2}[\langle x \mid \psi\rangle+\langle x| \hat{\pi}|\psi\rangle]
\end{aligned}
$$

or

$$
\begin{aligned}
\left|\psi_{+}\right\rangle= & \frac{1}{2}(\hat{1}+\hat{\pi})|\psi\rangle=\hat{P}_{+}|\psi\rangle \\
\left\langle x \mid \psi_{-}\right\rangle & =\frac{1}{2}[\langle x \mid \psi\rangle-\langle-x \mid \psi\rangle] \\
& =\frac{1}{2}[\langle x \mid \psi\rangle-\langle x| \hat{\pi}|\psi\rangle \\
\left|\psi_{-}\right\rangle & =\frac{1}{2}(\hat{1}-\hat{\pi})|\psi\rangle=\hat{P}_{-}|\psi\rangle
\end{aligned}
$$

We define the following operators (projection operators)

$$
\begin{aligned}
& \hat{P}_{+}=\frac{1}{2}(\hat{1}+\hat{\pi}) \\
& \hat{P}_{-}=\frac{1}{2}(\hat{1}-\hat{\pi})
\end{aligned}
$$

We have

$$
\hat{\pi}\left|\psi_{+}\right\rangle=\frac{1}{2} \hat{\pi}(\hat{1}+\hat{\pi})|\psi\rangle=\frac{1}{2}(\hat{1}+\hat{\pi})|\psi\rangle=\hat{P}_{+}|\psi\rangle=\left|\psi_{+}\right\rangle
$$

Thus $\left|\psi_{+}\right\rangle$is the eigenket of $\hat{\pi}$ with the eigenvalue +1 . We also have

$$
\hat{\pi}\left|\psi_{-}\right\rangle=\frac{1}{2} \hat{\pi}(\hat{1}-\hat{\pi})|\psi\rangle=-\frac{1}{2}(\hat{1}-\hat{\pi})|\psi\rangle=-\hat{P}_{-}|\psi\rangle=-\left|\psi_{-}\right\rangle
$$

Thus $\left|\psi_{-}\right\rangle$is the eigenket of $\hat{\pi}$ with the eigenvalue -1 . In summary, the projection operators satisfy the following properties.

1. $\hat{P}_{+}+\hat{P}_{-}=\hat{1}$
2. $\left[\hat{P}_{+}, \hat{P}_{-}\right]=\hat{0}$
3. $\quad \hat{P}_{ \pm}^{2}=\hat{P}_{ \pm}$
4. $\quad \hat{P}_{+} \hat{P}_{-}=\hat{0}, \quad \hat{P}_{-} \hat{P}_{+}=\hat{0}$
5. $\quad \hat{\pi} \hat{P}_{+}=\hat{P}_{+}, \quad \hat{\pi} \hat{P}_{-}=-\hat{P}_{-}$
((Proof))
6.

$$
\begin{aligned}
& \hat{P}_{+} \hat{P}_{-}=\frac{1}{4}(\hat{1}+\hat{\pi})(\hat{1}-\hat{\pi})=\hat{0} \\
& \hat{P}_{-} \hat{P}_{+}=\frac{1}{4}(\hat{1}-\hat{\pi})(\hat{1}+\hat{\pi})=\hat{0} \\
& {\left[\hat{P}_{+}, \hat{P}_{-}\right]=\hat{0}}
\end{aligned}
$$

26.5 Parity Selection Rule (Even and Odd parity Operators)

We define a new operator as

$$
\hat{\pi}^{+} \hat{A}_{+} \hat{\pi}=\hat{A}_{+}
$$

for operator with even parity

$$
\hat{\pi}^{+} \hat{A}_{-} \hat{\pi}=-\hat{A}_{-}
$$

and for operator with odd parity.
((Example))

$$
\begin{aligned}
& \hat{\pi}^{+} \hat{J}_{x} \hat{\pi}=\hat{J}_{x} \text { (even parity) } \\
& \hat{\pi}^{+} \hat{x} \hat{\pi}=-\hat{x} \text { (odd parity) } \\
& \hat{\pi}^{+} \hat{p} \hat{\pi}=-\hat{p} \text { (odd parity) }
\end{aligned}
$$

Suppose that $\left|\varphi_{\alpha}\right\rangle$ and $\left|\varphi_{\beta}\right\rangle$ (parity eigenstate, $\alpha= \pm 1, \beta= \pm 1$)

$$
\hat{\pi}\left|\varphi_{\alpha}\right\rangle=\alpha\left|\varphi_{\alpha}\right\rangle, \hat{\pi}\left|\varphi_{\beta}\right\rangle=\beta\left|\varphi_{\beta}\right\rangle
$$

with $\alpha= \pm 1$ and $\beta= \pm 1$.

$$
\left\langle\varphi_{\beta}\right| \hat{\pi}^{+} \hat{A}_{+} \hat{\pi}\left|\varphi_{\alpha}\right\rangle=\alpha \beta\left\langle\varphi_{\beta}\right| \hat{A}_{+}\left|\varphi_{\alpha}\right\rangle=\left\langle\varphi_{\beta}\right| \hat{A}_{+}\left|\varphi_{\alpha}\right\rangle
$$

When $\alpha=-\beta$ (different parity) the matrix element $\left\langle\varphi_{\beta}\right| \hat{A}_{-}\left|\varphi_{\alpha}\right\rangle$ is equal to zero.

$$
\left\langle\varphi_{\beta}\right| \hat{\pi}^{+} \hat{A}-\hat{\pi}\left|\varphi_{\alpha}\right\rangle=\alpha \beta\left\langle\varphi_{\beta}\right| \hat{A}\left|\varphi_{\alpha}\right\rangle=-\left\langle\varphi_{\beta}\right| \hat{A}_{-}\left|\varphi_{\alpha}\right\rangle
$$

When $\alpha=\beta$ (the same parity), the matrix element $\left\langle\varphi_{\beta}\right| \hat{A}\left|\varphi_{\alpha}\right\rangle$ is equal to zero.

((Example))

Simple harmonics

$$
\begin{aligned}
& \hat{\pi}|n\rangle=(-1)^{n}|n\rangle, \quad\langle n| \hat{\pi}^{+}=(-1)^{n}\langle n| \\
& \langle n| \hat{\pi}^{+} \hat{x} \hat{\pi}|m\rangle=-\langle n| \hat{x}|m\rangle=(-1)^{n+m}\langle n| \hat{x}|m\rangle
\end{aligned}
$$

or

$$
\langle n| \hat{x}|m\rangle=(-1)^{n+m+1}\langle n| \hat{x}|m\rangle
$$

26.6 Applications to the Simple Harmonics

Suppose that $[\hat{H}, \hat{\pi}]=\hat{0}$. The Hamiltonian \hat{H} and $\hat{\pi}$ are commutable and $|n\rangle$ is nondegererate eigenket of \hat{H} with the energy E_{n}.

$$
\hat{H}|n\rangle=E_{n}|n\rangle .
$$

Then $|n\rangle$ is also a parity eigenket.

((Proof))

$\hat{P}_{+}|n\rangle$ (even parity) and $\hat{P}_{+}|n\rangle$ (odd parity) are the eigenkets of $\hat{\pi}$ with eigenvalues ± 1.
Since $[\hat{H}, \hat{\pi}]=\hat{0}$,

$$
\hat{H} \hat{P}_{ \pm}|n\rangle=\hat{P}_{ \pm} \hat{H}|n\rangle=E_{n} \hat{P}_{ \pm}|n\rangle
$$

$\hat{P}_{ \pm}|n\rangle$ is the eigenket of \hat{H} with the eigenvalue $E_{\mathrm{n}} .|n\rangle$ and $\hat{P}_{ \pm}|n\rangle$ must represent the same energy. Otherwise there could be two states with the same energy-contradiction of our nondegenerate assumption.
$\hat{P}_{ \pm}|n\rangle$ should be proportional to $|n\rangle$.
or

$$
\begin{aligned}
& \hat{P}_{ \pm}|n\rangle=a_{ \pm}|n\rangle \\
& \hat{\pi}_{ \pm}|n\rangle= \pm \hat{P}_{ \pm}|n\rangle=a_{ \pm} \hat{\pi}|n\rangle
\end{aligned}
$$

or

$$
\pm a_{ \pm}|n\rangle=a_{ \pm} \hat{\tau}|n\rangle
$$

or

$$
\hat{\pi}|n\rangle= \pm|n\rangle
$$

$|n\rangle$ must be a parity eigenket with the parity ± 1.

26.6 ((Example)) Simple harmonic oscillator (nondegenerate)

Since

$$
\begin{aligned}
& \langle x| \hat{\pi}|0\rangle=\langle x \mid 0\rangle=\langle-x \mid 0\rangle \text { (even function), } \\
& \hat{\pi}|0\rangle=|0\rangle \\
& \hat{\pi}|1\rangle=\hat{\pi} \hat{a}^{+}|0\rangle=\frac{\beta}{\sqrt{2}} \hat{\pi}\left(\hat{x}-\frac{i \hat{p}}{m \omega_{0}}\right)|0\rangle=-\hat{a}^{+} \hat{\pi}|0\rangle=-\hat{a}^{+}|0\rangle=-|1\rangle
\end{aligned}
$$

Then $|1\rangle$ must have an odd parity. Similarly $|n\rangle$ has a $(-1)^{n}$ parity.

26.7 Parity of spherical harmonics

$$
\begin{aligned}
& {\left[\hat{\pi}, \hat{J}_{x}\right]=\left[\hat{\pi}, \hat{J}_{y}\right]=\left[\hat{\pi}, \hat{J}_{z}\right]=\hat{0}} \\
& {\left[\hat{\pi}, \hat{J}_{x}^{2}\right]=\left[\hat{\pi}, \hat{J}_{y}^{2}\right]=\left[\hat{\pi}, \hat{J}_{z}^{2}\right]=\hat{0}}
\end{aligned}
$$

((Proof))
Note that

$$
\hat{\pi}^{+} \hat{J}_{x} \hat{\pi}=\hat{J}_{x} \text { or }\left[\hat{\pi}, \hat{J}_{x}\right]=\hat{0}
$$

$$
\left[\hat{\pi}, \hat{J}_{x}{ }^{2}\right]=\hat{\pi}_{x} \hat{J}_{x}-\hat{J}_{x} \hat{J}_{x} \hat{\pi}=\left[\hat{\pi}, \hat{J}_{x}\right] \hat{J}_{x}=\hat{0}
$$

We now use the following relations:

$$
\left[\hat{\pi}, \hat{J}_{z}\right]=\hat{0}, \quad\left[\hat{\pi}, \hat{J}^{2}\right]=\hat{0}
$$

$|l m\rangle$ is an eigenket of $\hat{\pi}$:

$$
\hat{\pi}|l m\rangle=(-1)^{l}|I m\rangle
$$

From the definition of the spherical harmonics

$$
\begin{aligned}
& \langle\mathbf{n} \mid \ell m\rangle=Y_{\ell}^{m}(\theta, \phi) \\
& \langle\mathbf{n}| \hat{\pi}=\langle\theta, \phi| \hat{\pi}=\langle\pi-\theta, \phi+\pi|
\end{aligned}
$$

(Note that $\langle\mathbf{r}| \hat{\pi}=\langle-\mathbf{r}|$)

$$
\langle\mathbf{n}| \hat{\pi}|l m\rangle=\langle\pi-\theta, \phi+\pi \mid l m\rangle=Y_{l}^{m}(\pi-\theta, \phi+\pi)
$$

Here

$$
Y_{l}^{m}(\theta, \phi)=\frac{(-1)^{l}}{2^{l} l!} \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l+m)!}{(l-m)!}} e^{i m \phi} \frac{1}{\sin ^{m} \theta} \frac{d^{(l-m)}}{d(\cos \theta)^{(l-m)}}(\sin \theta)^{2 l}
$$

for $m \geq 0$.
and

$$
Y_{l}^{-m}(\theta, \phi)=(-1)^{m}\left[Y_{l}^{m}(\theta, \phi)\right]^{*}
$$

Note that
for $\theta \rightarrow \pi-\theta, \cos \theta \rightarrow-\cos \theta$
for $\phi \rightarrow \phi+\pi, e^{i m \phi} \rightarrow(-1)^{m} e^{i m \phi}$

$$
\begin{aligned}
\langle\pi-\theta, \phi+\pi \mid l m\rangle & =Y_{l}^{m}(\pi-\theta, \phi+\pi) \\
& =(-1)^{m}(-1)^{l-m} Y_{l}^{m}(\theta, \phi) \\
& =(-1)^{l} Y_{l}^{m}(\theta, \phi)
\end{aligned}
$$

Therefore

$$
\langle\mathbf{n}| \hat{\pi}|l m\rangle=(-1)^{l}\langle\mathbf{n} \mid \operatorname{lm}\rangle
$$

or

$$
\hat{\pi}|l m\rangle=(-1)^{\ell}|I m\rangle
$$

