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In 1921, the Stern-Gerlach experiment demonstrated the quantization of angular
momentum .

Otto Stern (17 February 1888 — 17 August 1969) was a German physicist and Nobel
laureate in physics. As an experimental physicist Stern contributed to the discovery of
spin quantization in the Stern-Gerlach experiment with Walther Gerlach in 1922,
demonstration of the wave nature of atoms and molecules; measurement of atomic
magnetic moments; discovery of the proton's magnetic moment; and development of the
molecular ray method which is utilized for the technique of molecular beam epitaxy. He
was awarded the 1943 Nobel Prize in Physics, the first to be awarded since 1939.

http://en.wikipedia.org/wiki/Otto_Stern

Walt(h)er Gerlach (1 August 1889 - 10 August 1979) was a German physicist who co-
discovered spin quantization in a magnetic field, the Stern-Gerlach effect. In 1920, he
became a teaching assistant and lecturer at the Johann Wolfgang Goethe University of
Frankfurt am Main. The next year, he took a position as extraordinarius professor at
Frankfurt. It was in November 1921 that he and Otto Stern discovered space quantization
in a magnetic field, known as the Stern-Gerlach effect.



27S.1 Stern-Gerlach (SG) experiment

We consider the Stern-Gerlach experiment, which provides a direct evidence of the
quantization of magnetic moment and angular momentum. One way of measuring the
angular momentum is by means of a Stern-Gerlach experiment. Suppose that we want to
measure the angular momentum of the electrons in a given type of atom. A beam of these
atoms is prepared by evaporation from the solid, and passing the evaporated atoms
through a set of collimating slits. This beam then enters a region in which there is an
inhomogeneous magnetic field that is normal to the direction of motion of atoms. The
apparatus is shown schematically in Fig. The angular magnetic moment is related to the
orbital angular momentum as

e

- L,
h = ome

where e>0. In an inhomogeneous magnetic field, we have an interaction energy called the
Zeeman energy,

V=-n_B.

The atoms experience a force given by



F=-VV =-V(-p_-B)=V(n,B).

We consider the case when the magnetic field B = B,e, is applied along the z axis. Then
we have the force along the z axis,

o8B,
Fz = /uLz =

B en 5682 B L, 0B,
0z 2mec A o0z

ey o

where g, (=eh/2mc)is the Bohr magneton. Thus, each atom experiences a force which

is proportional to the z component of the orbital angular momentum. The beam is
collected some distance from the magnet at a point that is far enough away so that atoms
of different L; is separated. By measuring the deflection one can calculate L,.

L,

l,m)=m#

I, m)

where m=-l, -I+1,..., I.

The experiment can also be used to reveal the existence of electron spin. For example,
if we send a beam of hydrogen atoms in their ground state, the beam split into two parts.
Note that the spin magnetic moment is related to the spin angular momentum as

S
=22
Hs Hg 7

where 4 is the spin magnetic moment and S (= EG ) is the spin angular momentum, and

S,

D=3l SR=-3h.
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http://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment

Fig.  Stern-Gerlach (SG) apparatus. A beam of particles with magnetic moment enters
the inhomogeneous magnetic field. Classically, the beam is expected to fan out
and a produce a continuous trace. In fact, the atomic beam is split into two beams,
indicating that the magnetic moments of the atoms are quantized to two

orientation in space.

27S.2 Stern-Gerlach for S = 1/2 with the magnetic field along the z axis
Spin angular momentum is related to the Paili matrices as

S, =—o,, Sy= )

N | S
o |

The eigenkets of §Z are given by

The Pauli matrices are defined as

. 0 1 . 0 —i .
ze , o, = . . Gzz
10 o

The commutation relations

o, S, =

)



[6.,6.]=2i6 [6,,6,1=2i6,,  [6,,6,]1=2i6

SG, stands for an apparatus with the inhomogeneous magnetic field along the z direction.

We assume that 6882 >0. The atom with g, > 0 (S, < 0) experiences a downward force,
Z

while the atom with P, < 0 (S,> 0) experiences a upward force, where the force F, along
the z axis is given by

S, oB
F =2p, ~t2
z Hp PR
where
S
:—2 —_
n Hp 7

where s 1s the Bohr magneton, and the magnetic moment w is antiparallel to the spin
angular momentum S.

The beam is then expected to get slit according to the values of Y (or S,). In other words,
the SG apparatus measures the z-component of [, or equivalently, the Z-componenet of S.

A ho. 7]

SZ+>:EO'Z+>:E+>

3 hoo v

$1)=26))=-21)
where

sy 0} we()} ()

We have a closure relation.



4]+ N =1
#H |+ =)D =S = 2N

27S.4 Stern-Gerlach for S = 1/2 with the magnetic field along the X axis

S, =S,(

[+>

|—>x

Here we discuss the expression for |J_r>X

1), =4%),

X

1

N R N PR

A B 5D
V2
((Mathematica))



Clear["Global %'"];

*

SuperStar /: expr_* = expr /. {Complex[a_, b ] = Complex[a, -b]};
ox = {{0, 1}, {1, 0}};

eql = Eigensystem[oX]

{{711 1}1 {{711 1}1 {11 1}}}

¥2 = -Normalize[eql[[2, 1]]]

1 1
¥1 = Normalize[eql[[2, 2]]]
(57

z2 2

UT = {y1, ¥2}

1 1 1 1
Unitary operator U

U = Transpose [UT]

(F ST )

U // MatrixForm

11
V2o 2
11
Yy

Hermite conjugate of U

UH = UT*

(EE S E L)

UH // MatrixForm

11

V2o V2

11

V2o W2
UH.U

{{1, 0}, {0, 1}}

U.UH

P ~ A Y



((Summary))

Eigenvalues: =+1

[£),=Ul)
Eigenkets:
1
[+), = \/15 =lj((l)j,
7
The Unitary operator:
L
2
((Another method))

b oe )4

or
—4 1Ye) (0
1 -a)c,) (0
S I
det = =4 -1=0
1 -2
A==+1.
For A=1,



Similarly,
For A=-1,
Ll
1 e \0
L
=
x 1
V2
LI
Ggo|v2 2
B 1
V2o 2

27S.5 Stern-Gerlach for S = 1/2 with the magnetic field along the y axis

l+>y

|=>y

Expression for |i>y




((Mathematica))
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Clear["Global %"7];
SuperStar /: expr_* = expr /. {Complex[a_, b ] :» Complex[a, -b]};
o.y= {{O! _j'}v {j-’ 0}};

eql = Eigensystem[oy]
{{711 1}1 {{11 1}1 {7].11 1}}}

Y2 = (-1) Normalize[eql[[2, 1]1]]
1 i

(L. -1}

¥l = i Normalize[eql[[2, 2]]]
1 i

(. 1)

UT = {y1, ¥2}

1 i 1 i
Unitary operator U

U = Transpose [UT]

(EE S E L)

U // MatrixForm

11
V2o V2
V2o V2

Hermite conjugate of U

UH = UT*

(F SRR RN )

UH // MatrixForm

1 i

V2 V2

1 i

V2 V2
UH.U

{{1! O}! {01 1}}

U.UH



((Summary))

The eigenkets:

X
<|I
S-S
<
o p—
%/

{76
V2

The Unitary operator:

S5l

1
V2
|
V2
((Another method))

Expression for |i>y

o)

y i>y = i|i>y

We solve the eigenvalue problem

OA-y i>y - i|i>y

where A is an eigenvalue.



or
_ﬂ/ _i C]
) =0
i -A)\C,
[—/1 —i
M=| .
1 -1
-A =1
deth . =ﬂ,—1=0
1 -1
or
A==l
For A=1
-1 -i\C I
i -1)\C, )
or
C, =-iC,

The normalization condition: |C1|2 + |C2|2 =1. We choose C, =-iC, = % Then we have

1
#hy=| Y2 |-+
7z

Similarly, for A=-1

1le)e

or

13



The normalization condition: |C1|2 + |C2|2 =1. We choose C, =iC, =

IR
A 2 5t

1
2
—
2

Unitary operator U

14

1
——. Then we have
V2



-~ ie A . e7i9/2 O
U exp(—;ay)U:( 0 eie/zj

From this we can calculate the matrix of 6y .

. 0

|0 . . e—i5/2 O . COSE —SII’IE
exp(-—-0,) =U( iH/ZJ =

2 0 € sing cosg

27S.6 Stern-Gerlach for S = 1/2 with the magnetic field along the n direction

[+>n

> SG—-n
|=>n
)

n = (sin #cos @,sinfsin @, cos O)

A cosf sinG™
G,=6-m=| "
sin &8 —cosé

15



((Eigenvalue problem))
Here we use the rotation operator for j = 1/2.

=1

Unitary operator U is given by the rotation operator for j = 1/2.

A

Sl +), =), g

n

,if ,ig 9
. e 2cos(—) —e Zsin(—)
U-p"@p= , ;7 . )

is . i 0
e 2 e 2
sm(—2 ) cos(—2 )

The eigenkets |+>n and |—>n are obtained as

¢
. e 2cos(—)

[+), =Ul)=| :
e 2 sin(—)

and

16



=), =Ul=)=|
e 2cos(—)

We note that

6,Ul+)=U]|+) U*,Ul+)=|+)

GA” +>n = _| +>n

6,U|-)=U|-) U+6,U|-)=--)

o (1 0 J
oU =
0 -1

((Another method))

The above formula can be derived without Mathematica.
(o-n)y) = Ay
Since (o-n)* =1,
(o-n)’|y) = A(c-n)y)= 1|w) (cigenvalue problem)
We get A2=1, or A ==+I.
Thus
(o-n)+), =|+),

(o-ml-), =,

- u, U 1 U
|+>n _ U|+> :L 11 IZJ( J :( IIJ
U21 U22 O U21

S EE v B E

where

17



LU“* UZI*J(UH Ulzj B [1 OJ
U12* Uzz* U, U, 0 1
Derivation of the eigenket |+>n

[ cosd sin6€i¢J(UuJ _(Unj
sinde?  —cosd \U,) \U,,

or

or
cos@J,, +sinée U, =U,,
: ig —
sine*U,, —cosdU,, =U,,
or

. ig .
21 :(lsm—aae)ull = tan§e|¢ull
+ COoS

Since
|U”|2 +|U21|2 =1 (normalization),
we get

0
|U11|2 =coszz.

When we choose

£ 0
i?
U, =e ?cos—
2
we have
¢
U, =e?sin—
2

Derivation of the eigenket |+>n

18



Lcos& sinéb_i¢]£U12J_ {UuJ
singe?  —cosd \U,,) U,

cos U, +sin 69_"’)U22 =-U,
: i —
sine*U,, —cosJ,, =-U,,

 (L+cosB)e”

U, =
2 sin @

0. i
U, = —cot(E)e U,

Since
|U12|2 + |U22 |2 =1 (normalization),

we get
|U22 |2 =cos’ (—z).

When we choose

.

i2

—n?2
U22 =€ COS2

we have

_i?
U,=-e 2 smE

27S.7 Derivation of the eigenkets in each SG configuration from the above formula

(i) SGy experiment:

0= /2 and ¢= 0.
1 L
- 2. A= 2

The eigenket of |—>X thus obtained is different from the conventional eigenket

19



NG

except for the phase factor exp(irn).

(ii) SGy experiment:
0= /2 and ¢ = /2.

Le—iﬂ'/4 L _Le—izzM L
|+> — \/5 g4 \/5 |_> _ \/E _ g4 \/E
y _l_éﬁM I’ y _l_éﬁm —|

V2 V2 V2 V2

The eigenket of |—|—>y is different from the conventional |—|—>y except for the phase factor
e"'*. The eigenket of |—>y is different from the conventional |—>y except for the phase

factor (-e~*'*).

27S.8 SG Thinking experiment

1. Experiment
[+>
|+>;
SG-z
_> —
SG-z _s |
2. Experiment
[+>x

+>
> SG-x

— _
— SGz ||, | m—|

3. Experiment

20



+>
Gy >2 5! SG-x |-
—> - =>4 —
Analysis of experiment-3
ne L
el Bl R B
V2 2
=L ([ = =5
Po= | =Kol =3
X X 2
2 1
P+ =5
2 1]
Po=l=l+)) =3
1
_A(L 1Y 0 o
S I A
N2
or
(s.)= 2R+ DR =0
1
<52>_h_2[L le 0V V2 |_ 1
a2 2o 1) 1| 4
NG

or

21

SG-z

+>5

-z

vy




4
4. Experiment
[+>y
2 SG .
_y _
—— sGx | >y
S. Experiment
|+>
l+>n
SG-z |_>
——>| SG-n s S SR
(¢=0) |
6. Experiment
|+>x
PLE NN (e
X >
——> SG-n |,_. | —]
(¢=0)
Analysis of experiment-6
1 1
COS— = =
_| 2 _| V2 _| V2
|+>n_ e |+>x_ 1 ? |+>x_ 1
sin— — -
2 V2 V2

22



1\ %5 1 0 .6 1 0 =«
X<+|+>n=(—2 ﬁj 5 :ﬁ(COSE+SIHE):ﬁ[cos(z_z)]

I:)+x = x<+|+>ﬂ 2 =%(COS§+Sin§)2 =%(1+Sin9) ’
S| 6 .6, 1 .

P,=|(-|+) | ==(cos——sin—)’ =—(1-sin8),

—X x< | >n 4( 2 2) 4( )

= hsingcosg = Esin@
2 2 2

or

h h ho.
(S,) = 5 P+ (—E)P_X = Esme

0
e R 6 e\l 0)°%y
<SZ>—n <+|SZ|+>H—E[0055 s1n5j[0 _J 9

sin—
2

= E(coszg— sinzg) = Ecos@
2 2 27 2

27S.9 Stern-Gerlach experiment with J =1

23



1+cos@ _siné’ 1—cos@
2 V2 2
~ sin @ sin@
R (0) = cos@ -
0= 5 N
l-cos@ i,sin@ 1+cosd
e
2 J2 2

Using the Mathematica, one can get the matrix representation

cosd

sin @
V2
0

'l

The above result can be obtained by solving the eigenvalue problem:

(J-mj1),

h|1>n ?

(J -m)0),

0,

(Jml-1),

Sin9 —idi
e 0
V2
sinf _;
0 e
NG
sin & ii
—e —cosd
V2
-1,

Use the Mathematica to obtain the eigenkets and the eigenvalues:

Eigensystem[J,,]

For 8= m/2 and ¢= 0 (corresponding to the X axis)

B (T - _1 1
), =Rl =| Uz | =T+

0), =R, ()]0) =

1/2

1/2 V2
~1/42 1
o

24




1/2

1/2
1), = @y(§)|_1>[_1/ﬁ]%|1>_%|0>+%|_1>

More generally for the unit vector n in the Xx-z plane,

1+cosd sin @ 1- cosH
== W+ 0)+ -1).

0>n _ Sll’l 0 | 1> + cOoS 9| 0> Sln 9 | 1>
1—cos@ sin @ 1+c050
D= =10+ -1),
or, inversely
1+cos@ _sin¢9 l1—cos@ ) l+cos@ sind 1-cos@
2 V2 2 2 V2 2
sin @ cosd B sin @ B sin @ 030 sin @
V2 V2 V2 V2
l1-cos@ sin@ 1+cos@ 1—-cos@ _sinH 1+ cos@
2 2 2 2 V2 2

When 6= /2, this matrix is expressed by

r 1 1
2 22
o, L
V2 V2
r 1 1
2 J2oo2

or

25




1

=) =310, + 75 10),+ 311,

more generally

1+cos@ sin @ 1—cos@
)= Lol Oy Lol
sin & sin @
0) =250, + coseto), -2,
1-coséd sind 1+ coséd
1=y o S Lrconl

For 8= n/2 and ¢ = n/2 (corresponding to the y axis)

—-i/2 1/2
RI(=| /42 |=-i[i/v2 |,
i/2 -1/2

i/v2) (142
RO)=| 0 |=i 0 |,
i/N2] (142

—1/2 1/2
RI-1)=|-1/32 |=-i| —=i/4/2 |.
i/2 -1/2
Conventionally we use
1/2
|1>y= i/2 |,
-1/2

1/42

|0>y = 0 ’
1/+/2

26



1/2
-1, {—i/ﬁ}

-1/2

or inversely,
1 1 1
=311, +10), +31-1),
[ i
0)=——+=1) +—|—1
o)==, + =1,

=) =—3, +55l0), -3,

Calculation of the rotation matrix with J = 1 without the use of Mathematica

Taylor expansion:

i ol _ 1 i o 1 I ol 2 1 i o 3 l _L fo 4
exp(—g&]y)—1+1—!(—%6?Jy)+5!(—gl9\]y) +§(—%H\]y) +4'( ha]y) +..

where
;3 -3
YT
Note that
J=o, J.|0) =2n]1), J.|-1)=+2n0)

J|1y=+2n/0), J|0)=+2n-1), J|-1)=0

B=lo). o)==, §-)=-o

27



i
0 —— 0
o2 -1 0 1
[ | | 22 2
Jo=nl—— o0 -——| 3*=-#0 -2 o0
y \/E \/E y
. . 1 0 -1
V2

Therefore

ex (—lej )—1+i[(—9)+l(—i9)3+l(—i6’)5+ ]
PEL Sy n 31 51 )
NI 1.
Y T2 (i o~ (_ip)*
+_h2 [2!( 109) +4!( 10)" +..]
A 22

1 Jy(i'¢9)+Jy( 6-1)
=1———"—(ISIn ——(COSU —
h 1

1+cos@ B sin@ 1-cos@

2 2 2

sin @ sin @

= cos@ -
V2 V2

1—cos@ sin@ 1+cosl@

2 V2 2

We also get
_ e” 0 0
exp(——dl,)=| 0 1 0
n y
0 0 e

which is a diagonal matrix.

27S.10 Examples of SG experiments

1. A spin-1 particle exists an SGy device in a state with S =7. The beam then

enters an SG, device. What is the probability that the measurement of S,
yields the value 0, +7, and -7 ?

28



Jﬁ)&» SG-z JO—>_>
— 3| SG-y 0>y ISP .
|_1>y
1/2
) =2 =—|1> o)+ —|—>
y -1/2 \/_

The probability for finding the state |l> is

=, af =fom,[ =3

The probability for finding the state |0> is

| o) =foln, | =

The probability for finding the state |— 1> is

2. ((Townsend 3.16)) A spin-1 particle exists an SG, device in a state with
S, = fi. The beam then enters an SG, device. What is the probability that the

measurement of S, yields the value 0, +7, and -7 ?

29



> SG-z 0> [—1> -

[—] >

o), == 1)+ 511

The probability for finding the state [1) is
P = (ol =Kilo)] =

The probability for finding the state |0) is
R = {olo} =[(ojo},[ =0

The probability for finding the state |- 1) is

P,=

o1 =[(-1]0),[ =

3. ((Shankhar)) A beam of spin 1 particles, moving along the y axis, is incident
on two collinear SG apparatuses, the first with B along the z axis and the
second with B along the z' axis, which lies in the X-z plane at an angle 6
relative to the z axis. Both apparatuses transmit only the uppermost beams.
What fraction leaving the first will pass the second?

The intial state after passing the first SG,, is |1>Z = |1>

30



IES T SG-n 10>
> SG-z 0> (¢=O) [=1>2
[—1>.
We note that

1+ cosé sin@ 1- cosH
D=— M+=0)+ -1).

0>n _ sm<9|1>+ 059|0> Sln9| 1>

1—cosé sin @ 1+cos<9
D = -1+ -1).

The probability for finding the state [1) is
[, A1 =[], = 0+ cos0).
The probability for finding the state |0) is
| (O[] =[1[0), =sin*0
The probability for finding the state |- 1) is
P, =[, (-1 =fa]-1), =i(l—cos<9)2

The total probability is

P+P+P, =1

4. ((Townsend 3.20)) A beam of spin-1 particle is sent through a series of three
Stern-Gerlach measuring devices. The first SG, device transmits particles

with S, = % and filters out particles with S, = 0 and S, = -A. The second

31



device, an SG, device, transmits particles with S;, = 7 and filters out particles
with S, = 0 and S, = - %, where the axis N makes an angle 0 (0<6<r/2) in the
X-z plane with respect to the z axis. A last SG;, device transmits particles with
Sz =0 and filters out particles with S, =7 and S, = -A.

bel=y
elage| SG-7 g
el SG-n {24 B
——| SG-z =4 (¢=0) [=1l=y
-4

(a) What fraction of the particles transmitted by the first SG; device will
survive the third measurement?

(b) How must the angle 6 of the SG,, device be oriented so as to maximize
the number of particles that are transmitted by the final SG; device?
What fraction of the particles survive the third measurements for this
value of 0?

() What fractions of the particles with Sy = A, Sy =0, and Sy = -7,
respectively, survive after the fourth device, SGx which device
transmits particles with Sy =7, Sy =0, and Sy = -A?

SG—x
SG-z |
SG—n |
(¢=0)]
We note that
1>n=1+<:2059|1> sm<9|0> 1- cosH|_1>
0}, == 221 + coselo) + S77-1),

1- cos(9 siné 1+ cosé
-1), = == 100+ ==—I=1).
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1

1), =5 10+10)+ 511,

o), == 1)+ 7510,

1

1 1
-1) =—|I)——|0)+—=|-1
1, =20 —10)+ 111
(a)
The fraction of the particles transmitted by the first SG, device will survive the third

measurement 1S

2 sin’ O(1+ cos0)’

Py =[(an), a0} =[coln),

8
(b)
Po
0.20]
0.15"
0.10
0.05 -
6 (Degrees)
20 40 60 80 &
% = 2cossgsing(2cost9—1).
deo 272

Py takes a maximum (= 0.210938) at = 60°

(c)
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The fractions of the particles with Sy = 7,

2 P

0

2

RJ(0[1),
The fractions of the particles with Sy =0,
2
R[(0[0),| =0

The fractions of the particles with Sy = -7,

2

O

—_0

T2

Pflol-1),

A spin-1 particle is in the state

1
1 1 .
v) =Tz 32| = ﬁ(m +2/0)+3i-1))

(a) What are the probabilities that a measurement of S, will yield the values 7, 0, or -
h for this state?

(b) What is <S,>?

(©) What is the probability that a measurement of Sy will yield the values 7, 0, or - &

for this state?
(d) What is <S> for this state?

1/2
| ] |
), =142 —§|1>+3|0>+§|—1>’
1/2
~1/2 1 1
0,=| 0 |=-—4|)+—=|-1),
/42 22
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1/2 | . .
|4vaquwaﬁww5rw

1.2
(a) and (b)
[+1>,
> SG-z 10>,
|=1>,
P =l =
: 4 2
P(O) =[O} = 3=
P(-1) =1l =2

(S,) =hP(]1)) + 0nP(|0)) — AP(|—1))
h 9n 8h  4n

= - = = =_0.57143h
14 14 14 7
(c) and (d)
[+1>,
> SG-x o
|- 1>x
> 9+22
P =[ (1) =—
2 5
P(0),) =[{olw)] =
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9-22

P(|_1>x): X<_1|l//>‘2 = 28

(S,)=hP(1) )+0nP(|0) ) —AP(-1) )
=n[P(1) ) P(-1))]
V2

= Th =0.202317

27S.11 Feynman's thinking SG experiment

Richard Phillips Feynman (pronounced /' famnman/, May 11, 1918 — February 15, 1988)
was an American physicist known for his work in the path integral formulation of
quantum mechanics, the theory of quantum electrodynamics and the physics of the
superfluidity of supercooled liquid helium, as well as in particle physics (he proposed the
parton model). For his contributions to the development of quantum electrodynamics,
Feynman, jointly with Julian Schwinger and Sin-Itiro Tomonaga, received the Nobel
Prize in Physics in 1965. He developed a widely used pictorial representation scheme for
the mathematical expressions governing the behavior of subatomic particles, which later
became known as Feynman diagrams. During his lifetime, Feynman became one of the
best-known scientists in the world.

http://en.wikipedia.org/wiki/Richard Feynman

http://www.atomicarchive.com/Bios/FeynmanPhoto.shtml

1. Experiment-1
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J.‘I‘.LL» SG-n J0_>n_>
> SG-z 0> (¢=O) [—1>1 >
[=1>.
2. Experiment-2
J-'I'-]Zn_>
lt1>2 ol 3Gon 0>,
> SG-z 0> (¢:0) [=1>q

[—1 >

Two Stern-Gerlach type filters in series; the second is tilted at the angle € from the z axis

in the X-Z plane.

3. Experiment-3

SG-n

R
SG-z H=4
==y

J«:fﬁ

Llw; g
—| SG-z l0-4| (¢=0) |
ey

4. Experiment 4

L1y SG-n

SG-z (=4
==y

J«:fﬁ

—_— SGoz (¢=0) |
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The probability that an atom that comes out of SG, (the first) will also go through both
SG, and SGz (the second) is

(110}, . 0lo).f

5. Experiment-5

2

P, =

11z SG-n plzp—p Ly
— SG-z ple—p| (¥=0) 1=y

=

The probability that an atom that comes out of SG, (the first) will also go through both
SG, and SGz (the second) is

(0[0),[ 1, o]0y,

Then we have

2

P, =

2 2

110}, _ [iulo),
{0jo),["[(olo),

This ratio does not depend on which state is selected by the first SG,.

Boliee;

1 2
=—tan” @
2 )

6. Experiment-6

SG—n |
——>»| SG-z (¢=0) |

oy
SG-z pi=4
m
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